
International  Journal  of

Environmental Research

and Public Health

Article

Machine Learning-Based Activity Pattern
Classification Using Personal PM2.5
Exposure Information

JinSoo Park 1 and Sungroul Kim 2,*
1 Department of Industrial Cooperation, Soonchunhyang University, Asan 31538, Korea; vtjinsoo@gmail.com
2 Department of ICT Environmental Health System, Graduate School, Soonchunhyang University,

Asan 31538, Korea
* Correspondence: sungroul.kim@gmail.com; Tel.: +82-41-530-1266

Received: 1 July 2020; Accepted: 2 September 2020; Published: 9 September 2020
����������
�������

Abstract: The activity pattern is a significant factor in identifying hotspots of personal exposure to air
pollutants, such as PM2.5. However, the recording process of an activity pattern can be annoying to
study participants, because they are often asked to bring a diary or a tracking recorder to write or
validate their activity patterns when they change their activity profiles. Furthermore, the accuracy of
the records of activity patterns can be lower, because people can mistakenly record them. Thus, this
paper proposes an idea to overcome these problems and make the whole data-collection process easier
and more reliable. Our idea was based on transforming training data using the statistical properties
of the children’s personal exposure level to PM2.5, temperature, and relative humidity and applying
the properties to a decision tree algorithm for classification of activity patterns. From our final
machine-learning modeling processes, we observed that the accuracy for activity-pattern classification
was more than 90% in both the training and test data. We believe that our methodology can be used
effectively in data-collection tasks and alleviate the annoyance that study participants may feel.

Keywords: machine learning; activity-pattern analysis; environmental data; PM2.5

1. Introduction

Environmental risk assessment [1,2] plays a major role in finding out relationships between the
level of exposure to environmental pollutants and its effect on our bodies caused by the exposure.
For this purpose, people have been gathering numerous environmental data to find out the relationship
for a long time. For example, what a person does when a specific fine-dust value occurs, along with
time, temperature, humidity, latitude, and longitude at the time of the activity, are recorded together as
a base information for the risk assessment tasks. However, there are some problems that need to be
addressed regarding the recording of activity patterns. The recording of activity patterns has to be
manually set each time the activity-pattern change happens, which to some is extremely inconvenient.
Furthermore, it can lead to errors when one chooses the wrong options in the menu. To minimize
these problems and make the whole data-collection process smoother, it is necessary to make the
activity-pattern recording process automatic. Therefore, in this paper, we propose an idea to solve the
inconvenience of manual activity-pattern input in data collection for risk assessment.

It is important to recognize the human activity patterns to make the activity-pattern recording
process automatic. Previously, various research has been conducted to recognize the activity pattern of
human activities, called human activities recognition (HAR), online and offline, and it was led mostly
by a computer-science group. The HAR has received much attention, because it is easy to gather
the required data using built-in sensors on portable terminals including smartphones. Most HAR
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research has used acceleration data from inertial sensors for the estimation of human activities [3–5]
and developed machine-learning techniques to classify the activity patterns. The machine-learning
techniques used include the classical algorithms, such as support vector machine (SVM) [6], decision
tree [7], naive Bayes [8], and k-nearest neighbor (kNN) [9] as well as the modern deep-learning
algorithms, such as convolutional neural network (CNN) [10], recurrent neural network (RNN) [11],
restricted Boltzmann machine (RBM) [12], stacked autoencoder (SAE) [13,14], and deep belief network
(DBN) [15].

There have been a couple of studies reporting machine-learning-based time-use activity-pattern
recognition models. Hafezi et al. developed activity-based travel demand modeling [16]. Using a
machine-learning algorithm, this study identified twelve unique clusters of travel-related daily activity
patterns from a large survey database of Halifax STAR household travel diaries, i.e., activity tracking.
In addition, another previous study also reported activity-based models forecasting activities-based
tour chains as the individual unit of analysis [17]. Recently, environmental health studies applied a
similar technique of analyzing activity-based mobility patterns and evaluated its impact on PM2.5

exposure dose in different age groups [18].
Unlike studies examining PM2.5 exposure levels by activity pattern with or without acceleration

data [3–5], as an opposite way, this study aimed to develop a predicting model identifying human
activity patterns by analyzing environmental information. For this purpose, we used machine-learning
techniques and personal exposure levels of PM2.5, temperature, and relative humidity to identify
pre-defined activity patterns. The idea was based on transforming the training data into its statistical
values, which is a technique used to diversify features of data to improve the performance of
classifiers [19–22].

2. Methods and Materials

2.1. Machine-Learning-Based Activity-Pattern Detection

To evaluate the exposure dose of fine dust, we conducted personal PM2.5 monitoring in 10 s
interval, and the measured data were recorded together with the specific activity pattern associated
with the data. After re-arranging the obtained PM2.5 data according to activity patterns, the statistical
values of the PM2.5 data representing each activity pattern were extracted and used as added feature
values, which means that the statistics of PM2.5 data were used as training data. The summary of the
data transformation process is given in Sections 2.2 and 2.3.

2.2. Strategy for Obtaining Training Data

There were 10 different activity patterns defined in the database: bicycle, bus, car, commercial
building, cooking, education building (like schools), indoor-house, outdoor, restaurant, and walking.
A few of them indicate where the target person actually stays. The children, who carried the real time
measurement sensors were asked to write their activity on a separate diary book whenever he/she
makes a move, which was inconvenient in most cases. The idea was to transform the training data
based on their statistical properties, so that we could diversify the training data by adding a few
more features.

A few previous researchers attempted to transform their dataset into various forms to improve
the performance of the machine-learning system [19–22]. In this research, we chose to use PM2.5,
temperature and relative humidity data as input data of our predictive model. However, these values
were time-series data, measured every 10 s, so it was not wise to use the raw values directly, because
the three types of data were too large to manage and contained semantically less information from an
environmental perspective. Therefore, we used statistical features of input data as training data rather
than the raw data. The statistical properties of the training data included five values from boxplot
statistics: minimum, first quartile, median, third quartile, and maximum. We specifically focused on
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using the PM2.5 data and its statistical features and put aside the temperature and humidity features
for now.

Figure 1 presents an example where 20 PM2.5 datapoints corresponding to indoor-house activity
patterns, which were used to generate the five statistical values. Among the five variables, the variables
of median and the maximum values were specifically chosen as input features. The number of
datapoints was more than 140,000, and the datapoints were separated into appropriate proportions to
be used as training and test datasets in our experiment. Details on the proportion and examples of
boxplot statistics are provided in the next section.
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Figure 1. Snapshot of training data before (on the left-hand side) and after (on the right-hand side) the
data transformation. The median (new_pm_med) and the maximum (new_pm_max) values of PM2.5

were used as features.

Entire estimation steps for the activity-pattern recognition are summarized in Figure 2. We first
took the median and maximum values of PM2.5 for the given training data. Then, we took logarithms
for the four values (median and maximum values of PM2.5, temperature, and relative humidity for each
corresponding activity time). The logarithm of values was purposely used, because the distribution of
all four values were significantly different. Then, we estimated the activity pattern for training and test
dataset using the decision tree algorithm. The training and test dataset were proportionally chosen.
Lastly, we composed a confusion matrix to calculate the accuracy and the error rate of the estimation.

Int. J. Environ. Res. Public Health 2020, 17, x 3 of 12 

 

focused on using the PM2.5 data and its statistical features and put aside the temperature and 
humidity features for now.  

Figure 1 presents an example where 20 PM2.5 datapoints corresponding to indoor-house activity 
patterns, which were used to generate the five statistical values. Among the five variables, the 
variables of median and the maximum values were specifically chosen as input features. The number 
of datapoints was more than 140,000, and the datapoints were separated into appropriate proportions 
to be used as training and test datasets in our experiment. Details on the proportion and examples of 
boxplot statistics are provided in the next section. 

 
Figure 1. Snapshot of training data before (on the left-hand side) and after (on the right-hand side) 
the data transformation. The median (new_pm_med) and the maximum (new_pm_max) values of 
PM2.5 were used as features. 

Entire estimation steps for the activity-pattern recognition are summarized in Figure 2. We first 
took the median and maximum values of PM2.5 for the given training data. Then, we took logarithms 
for the four values (median and maximum values of PM2.5, temperature, and relative humidity for 
each corresponding activity time). The logarithm of values was purposely used, because the 
distribution of all four values were significantly different. Then, we estimated the activity pattern for 
training and test dataset using the decision tree algorithm. The training and test dataset were 
proportionally chosen. Lastly, we composed a confusion matrix to calculate the accuracy and the 
error rate of the estimation. 

 

Figure 2. Flow chart for the estimation of activity patterns. 
Figure 2. Flow chart for the estimation of activity patterns.



Int. J. Environ. Res. Public Health 2020, 17, 6573 4 of 11

2.3. Data Analysis with Decision-Tree-Based Classfication

In our study, as mentioned earlier, the decision tree technique was used as a classifier for the
activity patterns, since this study dealt with both discrete and continuous data at the same time, and
it was less affected by data distribution, i.e., data normalization. Decision tree is also known as an
algorithm that can be applied even when there is missing data that frequently occurs in most datasets,
which is exactly the case we dealt with in our study.

A decision tree is a tree-type classification method, which can be summarized as a way in which
the criteria for classification are made by testing a feature value when building the tree. Each branch in
the tree represents the result of the test, and the leaves of the branch represents class labels. A decision
tree consists of three types of nodes and branches. The top node is called a root node, the middle
node is called an internal node, and the last node is called a leaf node. In addition, the path from
the root node to the leaf node represents the classification rules. There are various types of decision
trees, and the most popular ones include Iterative Dichotomiser 3 (ID3) [23], C4.5 (a successor of
ID3) [24], classification and regression tree (CART) [25], chi-squared automatic interaction detector
(CHAID) [26], multivariate adaptative regression splines (MARS) [27], and conditional inference trees
(CIT) [28]. There are also ensemble methods (such as bagging, random forest, boosted trees, and
rotation forest) [29], which are based on constructing more than one decision trees. The important
thing in the decision tree is to choose features that correspond to the root node and internal node.
A commonly used way to choose the appropriate features is to use the Gini impurity calculation [30],
an information gain calculation [31].

2.4. Dataset and Experimental Setup

With an environmental risk assessment point of view, examination of the human activity pattern
is a significant factor in analyzing its impact on human health. However, the activity-pattern
recording process can be annoying to some people, and mostly, it is done with manually. To conduct
our machine-learning experiment, we collected the real activity-pattern dataset from fifteen study
participants, mostly teenagers, living in urban areas in South Korea. Our study participants carried a
specifically designed sensor-based real time monitors MicroPEM (RTI international, Research Triangle
Park, NC, USA) recording PM2.5, temperature, and relative humidity levels with 10 s intervals [32].
Our experimental data were collected from 18 October 2018 to 24 January 2019. Each observation of
the sensed data was labeled with 10 different types of activity patterns determined chosen a priori.
The corresponding labels were bicycle, bus, car, commercial building, cooking, educational building,
indoor-house, outdoor, restaurant, and walking. Out of all various activities in the children’s daily
activity dairy, we selected 4 major activity-pattern types (1) resting inside home, (2) attending an
educational institute, i.e., spending time inside elementary school or kinder garden, (3) spending time
inside of car or bus for commuting, and (4) spending time inside of other commercial shops including
restaurants, which were the most experienced by our study participants. Since indoor cooking activities
produce a significantly high PM2.5 level, we separated them from indoor activities of resting which
children spend most of their time for. Then, to distinguish their visits to an educational institute located
outside home, we separated them from their visits to outside restaurants.

The data contained many outliers and missing datapoints caused by various factors. In order
to simplify the experiments, we excluded datapoints having the missing values at the moment, but
the missing datapoints can be estimated using various methods, such as linear-interpolation [33],
Spline [33], or Kernel regression [33], if one is required. As a result, we had 142,654 observations in
total for our experiments. Details on the number of observations for each category of activity pattern
were as follows: 679 for bus, 2611 for car, 7482 for commercial building, 599 for cooking, 21,287 for
education building, 106,736 for indoor-house, 348 for outdoor, 417 for restaurant, and 2496 for walking.
However, the dataset did not contain any observations for the bicycle pattern, therefore we excluded it,
and the final number of activity patterns became 9.
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We used the R open programming language (version 3.6.1) and R Studio (Boston, MA, U.S.A.) to
analyze the performance of the experiments, and R packages of stringr, dplyr and party were used to
implement the classifier and to calculate the error rates of classification results. The experiment was
done on a computer with Microsoft Windows 10 (Microsoft Corporation, Redmond, WA, U.S.A.) and
Intel® Core™ i7-6500U CPU at 2.60 GHz.

Table 1 summarizes the experimental environments including the type of classifier and R
packages used.

Table 1. Experimental setup.

No. Contents Details

1 No. of activity patterns 9
2 No. of features 4
3 No. of observations 142,654
4 Features to use Raw PM2.5, median and max of PM2.5, temperature, humidity
5 Type of classifier decision tree
6 Training to test data ratio 8:2 (with replacement)
7 R packages Stringr, dplyr, party

3. Results

3.1. Features for Classification

In order to choose appropriate features, we investigated the statistical nature (minimum, first
quartile, median, third quartile, and maximum) of the PM2.5 by drawing boxplots against each activity
pattern. Figure 3 shows the boxplot of PM2.5 data for each activity pattern drawn for the entire dataset.
As shown in the figure, the PM2.5 data had a wide range of values for each activity pattern. Especially
for the indoor-house and commercial building patterns, the levels of PM2.5 concentrations (for example,
1856 for the indoor-house and 1432 for commercial building) were extremely high compared to those
of the others. These high PM values might be caused by cooking or exercise activities performed
in indoor environments. Even though some datapoints appeared to be outliers, the plot itself gave
insights as to what statistical values were valuable as features for the classification. Among all the
statistical values, we were particularly interested in maximum values, because the PM2.5 values for
each activity pattern showed significant differences for maximum values. In addition to the maximum
value, we chose the median as another training feature, because the median is known to be more
robust against outliers [34]. Thus, we chose the median and maximum values as the features for the
experiment and compared the performance of the classification against that of the experiment using
just raw PM2.5 data.
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the maximum values as features for classification.
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3.2. Logarithmic Transformation of Data

In most machine-learning applications, it is very common to find huge differences of values
between features. In our application, PM values ranged from 0 up to nearly 2000 µg/m3, whereas the
values of temperature and humidity ranged from 0 to 40 ◦C or from 10% to 80%, as shown in Figure 4.
The high PM2.5 values may affect the classification results, so the values for all three were transformed
into logarithms for robust classification results.

Int. J. Environ. Res. Public Health 2020, 17, x 6 of 12 

 

3.2. Logarithmic Transformation of Data 

In most machine-learning applications, it is very common to find huge differences of values 
between features. In our application, PM values ranged from 0 up to nearly 2000 μg/m3, whereas the 
values of temperature and humidity ranged from 0 to 40 °C or from 10% to 80%, as shown in Figure 
4. The high PM2.5 values may affect the classification results, so the values for all three were 
transformed into logarithms for robust classification results. 

 
Figure 4. These boxplots show ranges of temperature and humidity values. They typically range from 
0 to less than 100, and the values are significantly lower than those for PM2.5. 

3.3. Experiments Using a Real PM2.5 Dataset 

The objective of the first experiment was to evaluate the performance of the classification using 
three features: raw PM2.5, temperature, and humidity data. The following two tables illustrate the 
confusion table of corresponding simulation results. The confusion table indicates the accuracy of a 
classifier by comparing the actual and predicted classes. Overall error rates were calculated by the 
following formula. 1 − ∑  off diagnal terms∑ all number of classes 

The diagonal terms in both tables indicate the correctly predicted number of instances, and those 
in the off-diagonal terms were the incorrectly identified number of instances. 

As shown in Table 2, the predicted number of the class was populated for each class of training 
and test data. In Korea, children spent most of their time at home or in educational buildings. Thus, 
the tables show a significantly large number of cases in the columns for education building and 
indoor-house. For instance, 80,757 out of 85,489 indoor-house classes for the training data were 
classified as indoor-house, 27 of them classified as bus, 122 of them as car, 986 as commercial building, 
74 as cooking, 3216 as education building, 30 as outdoor, 26 as restaurant, and 251 of them as walking. 
Hence, the accuracy of the classifier for this particular class was up to 94.5%, with an error rate of 
5.5%, and these were highly accurate performance indicators. 
  

Figure 4. These boxplots show ranges of temperature and humidity values. They typically range from
0 to less than 100, and the values are significantly lower than those for PM2.5.

3.3. Experiments Using a Real PM2.5 Dataset

The objective of the first experiment was to evaluate the performance of the classification using
three features: raw PM2.5, temperature, and humidity data. The following two tables illustrate the
confusion table of corresponding simulation results. The confusion table indicates the accuracy of a
classifier by comparing the actual and predicted classes. Overall error rates were calculated by the
following formula.

1 −
∑

off diagnal terms∑
all number of classes

The diagonal terms in both tables indicate the correctly predicted number of instances, and those
in the off-diagonal terms were the incorrectly identified number of instances.

As shown in Table 2, the predicted number of the class was populated for each class of training
and test data. In Korea, children spent most of their time at home or in educational buildings. Thus,
the tables show a significantly large number of cases in the columns for education building and
indoor-house. For instance, 80,757 out of 85,489 indoor-house classes for the training data were
classified as indoor-house, 27 of them classified as bus, 122 of them as car, 986 as commercial building,
74 as cooking, 3216 as education building, 30 as outdoor, 26 as restaurant, and 251 of them as walking.
Hence, the accuracy of the classifier for this particular class was up to 94.5%, with an error rate of 5.5%,
and these were highly accurate performance indicators.
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Table 2. Confusion table for training data simulation using raw dataset.

Predicted
Actual

Bus Car Commercial
Building Cooking Education

Building Indoor-House Outdoor Restaurant Walking Total

Bus 89 1 19 0 7 27 0 0 4 147

Car 1 540 114 1 62 122 0 6 4 850

Commercial
building 54 115 3194 8 243 986 0 3 149 4752

Cooking 0 1 5 184 19 74 1 0 3 287

Education
building 69 397 291 33 9954 3216 25 4 249 14,238

Indoor-house 310 1036 2301 253 6687 80,757 216 106 1119 92,785

Outdoor 0 1 7 0 7 30 39 0 3 87

Restaurant 0 1 20 0 0 26 0 219 4 270

Walking 13 6 34 0 56 251 0 0 529 889

Total 536 2098 5985 479 17,035 85,489 281 338 2064 114,305

Similar classification accuracy was made for the 20% test data, and the corresponding results are
given in Table 3. Similarly, for the indoor-house case, 19,905 out of 21,247 indoor-house classes for
the test data were classified as indoor-house, 15 of them classified as bus, 53 of them as car, 258 as
commercial building, 25 as cooking, 908 as education building, 7 as outdoor, 12 as restaurant, and 64
of them as walking. Hence, the accuracy of the classifier for this particular class was 93.7%, with an
error rate of 6.3%, and these were also highly accurate performance indicators. Classification results in
Tables 2 and 3 indicate that the overall estimation error for the training dataset was 0.16%, and that of
the test dataset was 0.18%.

Table 3. Confusion table for test data simulation using raw dataset.

Predicted
Actual

Bus Car Commercial
Building Cooking Education

Building Indoor-House Outdoor Restaurant Walking Total

Bus 13 0 0 0 6 15 0 0 0 34

Car 1 109 43 0 17 53 0 1 0 224

Commercial
building 9 28 732 6 67 258 0 2 30 1132

Cooking 0 0 1 31 13 25 0 0 0 70

Education building 16 89 94 8 2300 908 3 1 48 3467

Indoor-house 94 286 606 75 1835 19,905 53 25 254 23,133

Outdoor 0 0 3 0 3 7 11 0 0 24

Restaurant 0 0 7 0 0 12 0 50 0 69

Walking 10 1 11 0 11 64 0 0 99 196

Total 143 513 1497 120 4252 21,247 67 79 431 28,349

3.4. Experiments Using Statistical PM2.5 Dataset

In the previous experiment, the raw PM2.5 data were used for the prediction of activities.
In this experiment set, we strive to demonstrate the performance of classifiers using statistical data.
As demonstrated in Figure 3, PM concentrations for each activity show significant differences, which is
especially noticeable in the maximum values, so we chose the maximum as one feature. In addition,
we chose the median as another feature based on the explanation given before. This set of experiments
demonstrated the performance of classification using these two statistical features.

Table 4 shows the prediction results for the training data where prediction results could reach up
to almost 100% except for the indoor-house case. The overall estimation error was less than 0.02%,
which was more than a 90% improvement over the previous experiment.
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Table 4. Confusion table for training data simulation using statistical dataset.

Predicted
Actual

Bus Car Commercial
Building Cooking Education

Building Indoor-House Outdoor Restaurant Walking Total

Bus 536 0 0 0 0 0 0 0 0 536

Car 0 2098 0 0 0 0 0 0 0 2098

Commercial
building 0 0 5985 0 0 1 0 0 0 5986

Cooking 0 0 0 479 0 0 0 0 0 479

Education building 0 0 0 0 17,035 0 0 0 0 17,035

Indoor-house 0 0 0 0 0 85,488 0 0 0 85,488

Outdoor 0 0 0 0 0 0 281 0 0 281

Restaurant 0 0 0 0 0 0 0 338 0 338

Walking 0 0 0 0 0 0 0 0 2064 2064

Total 536 2098 5985 479 17,035 85,489 281 338 2064 114,305

Similarly, the prediction error for the test data was also very low, as shown in Table 5, which is less
than 0.02%. All nine cases had very accurate estimation results except for the bus and indoor-house
cases, where only one and two observations were estimated in error. These results indicated that the
chosen statistical features could be effectively used for the prediction of activity-pattern classification.

Table 5. Confusion table for test data simulation using statistical dataset.

Predicted
Actual

Bus Car Commercial
Building Cooking Education

Building Indoor-House Outdoor Restaurant Walking Total

Bus 142 0 0 0 0 0 0 0 0 142

Car 0 513 0 0 0 0 0 0 0 513

Commercial
building 0 0 1497 0 0 2 0 0 0 1499

Cooking 0 0 0 120 0 0 0 0 0 120

Education building 0 0 0 0 4252 0 0 0 0 4252

Indoor-house 1 0 0 0 0 21,245 0 0 0 21,246

Outdoor 0 0 0 0 0 0 67 0 0 67

Restaurant 0 0 0 0 0 0 0 79 0 79

Walking 0 0 0 0 0 0 0 0 431 431

Total 143 513 1497 120 4252 21,247 67 79 431 28,349

4. Discussion

Along with massive distribution of smartphones, various research has been conducted for
recognizing human activity patterns using the smartphones, mostly from computer science parties.
Such work can be classified according to the method of data acquisition, data-collection frequency,
position of the smartphone in a human body, domains of feature representation, features for the chosen
domain, and recognition algorithm used [3]. The method of data acquisition is categorized according
to whether the data are obtained from natural human or artificial movement. The data- collection
cycle refers to the operating frequency of used sensors. The position of the smartphone refers to how
the smartphone is worn at the time of data acquisition. A feature point is a representative value that
characterizes data, and data acquisition is usually done at the time or frequency domain. In each
domain, the desired feature is extracted in an appropriate manner. Recognition algorithms are used for
recognition or classification purposes, and they include classical machine-learning-based algorithms
and modern deep-learning-based algorithms.

Like most human activity-pattern research, this paper attempted to recognize the activity patterns
of children in very limited scenarios, where the classification was done only for the data collected in
advance. Unlike most related research associated with acquiring training data for activity-pattern
recognition [5,35], we aim to relieve the inconvenience of manual handwriting work.
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This manual work may sometimes result in unexpected errors or make them feel annoyed.
These reasons can hinder the entire data-collection process from the beginning. Therefore, it is worth
developing automatic classification technology to alleviate the manual-setting burden of the target
person and thereby achieve errorless high-quality training data. Through our study, we proposed an
idea to overcome the problems and showed that it was possible to achieve highly accurate estimates of
activity patterns by transforming data based on their statistical features.

However, our study still has some drawbacks that need to be addressed. First, the proposed idea
should be improved to be fitted with real-time observation scenarios. With our current methodology, a
study participant needed to mark the beginning of every different activity pattern. Although it was a
lot of improvement from the previous way, it may still need further improvement using information of
longitude and latitude. Second, our approach worked in the set of selected activity-pattern scenarios
in the current version. As a part of the whole of project, we thought that it might be possible to
estimate the activity pattern using the PM2.5, temperature, and relative humidity values without using
the acceleration information. However, in the future study, we may conduct a study comparing the
improvement of the prediction accuracy with the measurement of acceleration and that without the
information of acceleration.

When we conducted our modeling, six different combinations of variable sets were applied into
the model. First, we ran our model with variables of (1) medians of temperature (Temp) and relative
humidity (RH) over each children’s corresponding activities. Then, with a similar way, we simulated
our modeling with variables of (2) medians of PM2.5 and Temp followed by (3) medians of PM2.5 and
RH; (4) maximum of PM2.5 and medians of Temp and RH; (5) median of PM2.5 and medians of Temp
and RH; (6) maximum PM2.5, median PM2.5, and medians of Temp and RH over their activity periods,
respectively. From a result of our simulation, we found that the modeling with variable combinations
of (1), (2), and (3) had error rates of nearly 20%, those of (4) and (5) had around 0.1%, but the last
combination showed a significantly lower error rate, compared to the other combinations, which is far
less than 0.1%. Thus, we chose the last variable combination as our final simulation. We will extract
optimal features using an ensemble classifier in our next future study. Although, at the present stage,
this study dealt with selected activity patterns, and there was the classification of activity patterns,
manually examined, the current version of the idea can still be applicable to environmental health
study conducted with children.

There is no machine-learning technique that yields the best classification in all scenarios as
mentioned by Amancio et al. [36] and Tantithanmthavorn et al. [37]. However, in this study, we used
decision tree because of the characteristics of our database composed of both discrete (handwriting
daily activity pattern and its corresponding starting time) and continuous data (temperature, relative
humidity, and PM2.5) at the same time. Decision tree is known as an algorithm that can be applied to
such cases, and it is useful even when there is missing data that frequently occurs in most dataset,
which is exactly the case we dealt with in our study. We are planning to implement ensemble classifiers
in our future study to find the most appropriate features with a bigger dataset, because the ensemble
classifiers require several key parameters, such as the number for trees and relatively enough number
of variables randomly sampled at each node split. These parameters will be chosen carefully, because
it determines the performance of the classifiers, as pointed out by previous studies [36,37].

5. Conclusions

In this study, to solve the inconvenience of direct handwriting of activity patterns with a diary,
we proposed a methodology that could determine the activity pattern through machine-learning
technologies with data transformation. We observed that both training and test data were found to
have an accuracy of more than 90%. We believe that this method can alleviate the annoyance that
people may feel when they are asked to collect their activity-pattern data using a diary in the field and
may be used effectively in data-collection tasks. In a future upcoming study, we may further validate
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our current algorithm using other study population’s activity patterns, which we did not include in
this version of study.
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