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Abstract

We studied the phylogeography and plumage variation of the Russet-crowned Warbler

(Myiothlypis coronata), from Venezuela to Bolivia, with focus on populations from Ecuador

and northern Peru. We analyzed sequences of mitochondrial and nuclear genes, geo-

graphic distributions, as well as photographs of specimens deposited at museum collec-

tions. Phylogenetic analyses identified three major lineages formed by populations from:

Venezuela and Colombia (M. c. regulus), Ecuador and northern Peru (M. elata, M. castanei-

ceps, M. orientalis, M. c. chapmani), and central Peru and Bolivia (M. c. coronata). We

found further population structure within M. c. regulus and M. c. coronata, and population

structure and complexity of plumage variation within the Ecuador-northern Peru lineage.

Time-calibrated trees estimated that most intraspecific variation originated during the Pleis-

tocene; however, this pattern may not be attributed to an increase in diversification rate dur-

ing that period. We discuss these results in the context of the importance of geographic-

ecological barriers in promoting lineage diversification along the Andes and put forward a

preliminary taxonomic proposal for major lineages identified in this study.

Introduction

Our collective understanding of evolutionary patterns of Andean species has advanced rapidly

in the last decade. Thanks to a solid body of research, geographic-ecological barriers have been

identified as important drivers of evolutionary change [1–4]. After causing initial limitation or

cessation of gene flow, these features may provide fertile grounds for other biological forces,
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such as natural and sexual selection [5, 6], or stochastic processes [7, 8]. Thus, studying popu-

lation evolution across these features provides opportunities for witnessing speciation at its ini-

tial stages [9], and has potential to allow identification of evolutionarily significant units for

conservation [10]. The latter is likely to be useful in helping Andean countries to effectively

focus limited resources on preserving species and genetic diversity, as well as long-term evolu-

tionary processes [11].

The Russet-crowned Warbler, Myiothlypis coronata, is an ideal organism for studying

evolutionary diversification along the Andes. It is a humid mountain forest species with a frag-

mented distribution from western Venezuela south to central Bolivia [12], currently repre-

sented by eight subspecies, which vary mainly in ventral coloration. Myiothlypis coronata
regulus (western Venezuela to Colombian Andes) and M. c. elata (extreme southwestern

Colombia to southwestern Ecuador), have gray throat, and yellow breast and belly; M. c. casta-
neiceps (southwest Ecuador and northern Peru) and M. c. chapmani (east slope of west Andes

in northern Peru), have greyish-white throat, breast, and belly; M. c. orientalis (east slope of

east Andes of Ecuador), has been described as an intermediate of yellow and gray forms; M. c.

inaequalis (central Andes in northern Peru), M. c. coronata (E Andes from central Peru to

western Bolivia), and M. c. notia (east Andes in central Bolivia) also have yellow breast and

belly [12, 13]. Differences within subspecies in the “yellow” and “grey” groups are given by

minor changes in size, and color tone in crown and dorsum (see [12]). Also, in Ecuador, in the

extreme southeast (Cordillera del Cóndor and Cordillera de las Lagunillas), birds have been

described as morphologically intermediate between M. c. orientalis and M. c. chapmani [13].

Herein, we aim to understand the evolutionary history of Myiothlypis coronata, based on

molecular phylogenetic analyses of samples from Venezuela to Bolivia. First, we explore

whether plumage differentiation among subspecies of the Russet-crowned Warbler is coupled

with genetic differentiation, and if genetic differentiation may be attributed to the presence of

putative geographic-ecological barriers to dispersal. Second, given previous studies pointing to

the importance of climatic oscillations of the Pleistocene in the evolution of Andean organisms

[14–17], we ask whether most lineages within M. coronata evolved during that period. More

specifically, we test if such pattern may be associated to evolutionary changes in response to

Pleistocene climate cycles; under this hypothesis, we would expect an increase in lineage diver-

sification rates during that period. Third, we refine our phylogeographic analyses along the

Ecuadorian and north Peruvian Andes, where further complexity of coloration and distribu-

tion patterns might be resulting from incipient population divergence. To that end, we ana-

lyzed museum specimens from this region in detail, and assessed if genetic variation couples

with geographic distribution and phenotypic differentiation among populations. With this

information, we discuss how time and topography might have played a role in shaping distri-

bution of populations of M. coronata.

Materials and methods

Tissue samples of Myiothylpis coronata were obtained from museum collections (see Acknowl-

edgments) and through our fieldwork in Colombia, Ecuador, and Venezuela. Analyses were

mainly based on the mitochondrial gene NADH dehydrogenase Subunit 2 (ND2: 1041 base

pairs [bp]) for 153 individuals distributed from Venezuela to Bolivia, plus sequences for M.

cinereicollis, M. conspicillatus, M. chrysogaster, and for two additional outgroup species, M.

bivittatus and M. nigrocristatus, from Lovette et al. [18] (S1 Table). For the three subspecies

found in Ecuador (M. c. elata, M. c. orientalis, and M. c. castaneiceps), we also analyzed partial

sequences of cytochrome b (cytb: 996 bp) for 42 individuals, and complete sequences of the

transforming growth factor beta 2, intron 5 (TGFß2.5: 537 bp) for 17 individuals.
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Genomic DNA was isolated from muscle tissue or blood with an extraction protocol based

on protein precipitation with guanidinine thiocyanate, followed by DNA precipitation with

isopropanol. Amplification by PCR was completed using the following primer pairs: L5219 or

L5143, and H6313, for ND2 [19]; L14990 [20] and H16065 (T. Birt; GTCTTCAGTTTTTGGTT
TACAAGAC), for cytb; and, TGFb2.5F and TGF2.6R, for TGFß2.5 [21]. Mitochondrial genes

were amplified using a standard PCR protocol (i.e. 94˚C/5min; 35 cycles of 93˚C/1min, 52˚C/

1min, 72˚C/2min; and 72˚C/10min), whereas the TGFß2.5 was amplified using a touchdown

protocol (i.e. 94˚C/3 min; 5 cycles of 94˚C/30 s, 60˚C/30 s, 72˚C/40 s; 5 cycles of 94˚C/30 s,

56˚C/30 s, 72˚C/40; 35 cycles of 96˚C/30 s, 52˚C/30 s, 72˚C/40 s; and 72˚C/10 min). Amplifica-

tion products were visualized in 2% agarose, unincorporated primers and dNTPs degraded

using ExoSap-it (Affymetrix-USB), and sequencing reactions conducted at Macrogen Inc.

(Korea), using PCR primers. Data from heavy and light strands were assembled in Geneious

5.4 [22]. Sequences were aligned in Clustal X2 [23], and were inspected and translated into

proteins in Mesquite ver. 3.2 [24].

Phylogenetic trees were obtained using maximum likelihood (ML) and Bayesian analyses.

We first used PartitionFinder2 [25] to determine the most appropriate partition scheme for all

datasets (ND2, ND2 + cytb “Ecuador”, ND2 + cytb + TGFß2.5 “Ecuador”), with branch

lengths linked, all models tested under the AIC, and “greedy” algorithm. Maximum likelihood

trees were estimated using GARLI 2.0 [26], running 20 independent analyses with default set-

tings. Bootstrap support (1000 pseudo replicates), was assessed running one replicate per

search. Bayesian analyses were conducted in MrBayes 3.2 [27], using a random starting tree,

with four simultaneous Markov chains run for 10,000,000 generations, sampling every 1000

trees, discarding the first 20% of trees as burn-in, and combining the remaining trees into a

50% majority-rule consensus tree.

To explore the timeframe for the evolution of different lineages within Myiothlypis coro-
nata, we performed a time-calibrated phylogenetic analysis over the ND2 dataset, in BEAST

1.7.4 [28]. Myothlypis fraseri was used as outgroup, constraining M. coronata to be monophy-

letic. Analyses were run under the GTR + I + G substitution model, log-normal uncorrelated

relaxed clock (0.0125 substitutions/site/Myr; [29]; Euclidian standard variation = 0.1), Yule

speciation tree prior, running for 50 million generations, and sampling every 1000 generations.

After checking for stationarity in Tracer [30] (all ESS over 200), we discarded the first 10,000

trees as burn-in and obtained a maximum clade probability tree with the remaining trees.

To explore the effect of Pleistocene climatic events on the evolution of Myiothlypis coronata,

we tested for deviations from a constant diversification rate. Here, we assumed that genetically

differentiated populations identified during phylogenetic analyses represented discrete evolu-

tionary lineages. We re-ran the BEAST analysis including only one representative sample per

lineage, using the same settings from the previous analysis, but running the analysis for only

10 million generations (2000 trees burn in). Then, we tested which of two constant rate mod-

els, a Yule pure-birth [31] or a birth-death process [32] best explained our BEAST tree, using

Phytools 0.6–44 [33] as implemented in R 3.4.3 [34]. This comparison was based on both the

likelihood ratio test and the Akaike Information Criterion (AIC). Then, we obtained a lineages

through time (LTT) plot and applied the gamma (γ) test [35], which allows detecting changes

in diversification rate. We also simulated 100 random trees assuming the appropriate specia-

tion model, with the same duration and resulting in the same number of lineages as the empir-

ical tree, and obtained LTT plots for those trees.

Population comparisons were performed as follows. Uncorrected and ML-corrected genetic

pairwise distances were calculated in PAUP v.4.0a109 [36]; migration rates between adjacent

lineages were estimated with MDiv [37], using the infinite sites model, maximum value for

scaled migration rate = 10, scaled divergence time = 5, steps = 5 million, and burn-in = 500,000.
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In DNAsp [38] we calculated indices of molecular diversity and estimated deviations from neu-

trality (Tajimas’ D and Fu’s Fs) of ND2 sequences across lineages. Finally, in TCS 1.21 [39], we

obtained a statistical parsimony network among M. coronata populations from Ecuador and

northern Peru.

Plumage analysis of Ecuadorian populations (Myiothlypis coronata elata, M. c. orientalis,
and M. c. castaneiceps) was based on examination of 40 specimens from ornithological collec-

tions (S1 Table). We took photographs of the venter, dorsum, and crown in RAW format

using a gray background surface, and illumination with white lighting (4,500–5,500 K) with

flash and diffuser. Photographs were analyzed in Photoshop CS6 for standardized compari-

sons. We also analyzed photographs of specimens of M. c. elata, M. c. orientalis, and alleged M.

c. chapmani > orientalis deposited at the Academy of Natural Sciences of Philadelphia, and

specimens identified as M. c. castaneiceps and M. c. chapmani, deposited at the Louisiana State

University Museum of Natural Science. Although these later photographs were not taken

under the same standardized conditions as those applied to Ecuadorian specimens, they were

useful in widening the geographic scope of the analysis.

Results

Both Bayesian and ML analyses of ND2 estimated the same tree topology, showing Myiothlypis
fraseri and M. coronata as sister species, and recovering three major lineages (Fig 1). The first

lineage consists of samples of M. c. coronata (central Peru-Bolivia), and is sister to a group

formed by all other populations of M. coronata. This later group is further divided into two lin-

eages: one containing samples of M. c. regulus (Venezuela-Colombia), and another of samples

from Ecuador and northern Peru (hereafter, Ecuador-northern Peru). The Ecuador-northern

Peru lineage splits further into four clades: (1) M. c. elata (western Ecuador south to Azuay);

(2) clade A (M. c. orientalis [eastern Ecuador, Napo]; M. c. chapmani>orientalis [Cordillera del

Cóndor], and samples from southern Ecuador [Loja] and northern Peru [Cajamarca]); (3)

clade B (one M. c. elata [Azuay], one M. c. castaneiceps [El Oro], and samples from southern

Ecuador [Loja] and northwest Peru [Piura and Cajamarca]); and (4) M. c. inaequalis (Ama-

zonas and San Martı́n). Sample details and GenBank Accession numbers are available in

S1 Table.

Combined mitochondrial (ND2 + cytb) and mitochondrial-nuclear trees for the Ecua-

dorian samples did not provide additional information on topology. Both recovered three

phylogroups within Ecuador (M. c. elata, clade A, and clade B), but did not resolve the rela-

tionships among them. Variation in the nuclear gene TGFß2.5 was restricted to only nine

nucleotide substitutions (four autapomorphic) and a six base-pair indel in M. fraseri, provid-

ing no resolution regarding relationships among phylogroups. Sequences of cytb and TGFß2.5

were deposited on Genbank (Accession numbers MG721366– MG721407, and MG721408–

MG721423, respectively).

Divergence-time estimation suggests that M. coronata originated in the late Miocene or in

the Pliocene (95% Highest Posterior Density [HPD] = 5.4–2.6 million years), and that most

genetic and morphological diversification at the population level occurred within the late

Pliocene and the Pleistocene (Fig 2). The likelihood-ratio test could not reject the Yule pure-

birth model over the more complex birth-death model (log likelihood 48.526 vs. 48.549; chi-

squared = 0.0456; p = 0.839), and the AIC (AIC 0.727 vs. 0.2735) showed that the majority of

weight of evidence favors the Yule model. The LTT plot was virtually linear (Fig 3) and the

gamma (γ) statistic for the tree under the Yule model was 0.1243 (p = 0.9011), which is close to

zero, indicating either constant diversification rate or constant extinction rate with decreasing

speciation [40]. However, this later possibility is not supported by our LTT plot.
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ANSP 19410 Napo EC
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MZUTI A099 Loja EC

QCAZ 3302 Napo EC

FM 398553 Cusco PE

IAvHBT 7439 Huila CO
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QCAZ 4411 Pichincha EC

LSUMNS 211 Piura PE

LSUMNS 33069 Cajamarca PE
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QCAZ 4507 Pichincha EC
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QCAZ 4045 Pichincha EC
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MZUTI A104 Loja EC

M. chrysogaster
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M. conspicillatus
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QCAZ 4434 Imbabura EC
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ASNP 15540 Carchi EC
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QCAZ 3398 Carchi EC
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QCAZ4505 Azuay EC

FM 398554 Cusco PE
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QCAZ 3517 Bolívar EC
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QCAZ 3617 Imbabura EC
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IAvH 14922 N Santander CO
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QCAZ 4508 Imbabura EC

LSUMNS 1799 Pasco PE

IAvHBT 1654 Caldas CO
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The statistical parsimony network of 75 sequences of ND2 (Fig 4) recovered 44 different

haplotypes (33 singletons) of M. coronata from Ecuador-northern Peru, which divided into

four main networks that correspond to the same clades found in phylogenetic analyses: (1)

west Ecuador (M. c. elata): (2) east Ecuador and northern Peru (clade A; M. c. orientalis, M. c.

chapmani>orientalis, Loja, and Cajamarca); (3) southwest Ecuador and northern Peru (clade

B; M. c. castaneiceps, Loja, Cajamarca, and Piura); and (4) north eastern Peru (M. c. inaequalis:
Amazonas and San Martı́n). Samples from the same localities (Cajanuma, [Loja]; Quebrada

Lanchal, Cordillera del Cóndor, and San José de Lourdes [Cajamarca]) belong to either clade

A or B. Again, one sample of M. c. elata is located within clade B.

Uncorrected and ML-corrected genetic distances were higher between samples of the Ecua-

dor-northern Peru lineage and M. c. coronata, and samples of M. regulus and M. coronata
(Table 1). As expected, migration-rate analyses (S1 Fig) estimated small numbers of migrants

per generation between M. c. regulus (Colombia-Venezuela) vs. Ecuador-northern Peru, and

Ecuador-northern Peru vs. M. c. coronata (maximum likelihood estimate of number of

migrants, MLE [Nm] = 0.02 in both cases). Within the Ecuador-northern Peru lineage, num-

bers of migrants were, as follows: M. c. elata vs. clade A, MLE [Nm] = 0.02; M. c. elata vs. clade

B, MLE [Nm] = 0.16; clade A vs. clade B, MLE [Nm] = 0.1; clade A vs. M. c. inaequalis, MLE

[Nm] = 0.02; and, clade B vs. M. c. inaequalis, MLE [Nm] = 0.04. Tajimas’ D and Fu’s Fs statis-

tics found no deviations from neutrality with one exception: Tajimas’ D for M. c. elata, was sig-

nificant because the sample in clade B introduced a high number of polymorphic sites; when

we excluded this sample, the result was non-significant (Table 2).

Plumage differences among Ecuadorian and northern Peruvian populations were found

mainly in the ventral region (see S2 Fig for Ecuadorian specimens). Specimens of M. c. elata
are unambiguously different from specimens identified as M. c. orientalis, M. c. castaneiceps,
and M. c. chapmani; they have gray throat and bright yellow venter, and breast, crissum, and

flaks yellow with feathers slightly emarginated with olive. All specimens were similar across

localities from northern (Carchi) to southwestern Ecuador (Azuay). Individuals of M. c. orien-
talis are easily diagnosable in the northern part of its range: they have gray throat, and inter-

mixed yellow and light-gray feathers across venter and belly, with the amount of yellow

varying across localities. Specimens from Cordillera del Cóndor and Cordillera de Lagunillas

(Zamora Chinchipe), Loja, and El Oro are difficult to distinguish from one another. They are

mainly gray along their underparts, but the tone of gray, and the amount of yellow in the mid-

belly, coppery feathers in the low venter, and yellowish coppery feathers in the crissum vary in

different combinations depending on the specimen. Specimens from Piura and Cajamarca are

ventrally gray. An approximation to the dominant plumage color on each sample is portrayed

in Fig 1.

Discussion

Major lineages and barriers to dispersal

Phylogenetic and demographic analyses of ND2 revealed clear divergence and isolation of

populations of Myiothlypis coronata in three different lineages: populations along the Andes of

Venezuela and Colombia (M. c. regulus), populations along Ecuador-northern Peru (M. c.

elata, M. c. orientalis, M. c. castaneiceps, and M. c. chapmani), and populations along central

Fig 1. Bayesian tree based on the analysis of ND2, showing the correspondence of phylogroups and recognized subspecies.

Bayesian probabilities and ML bootstrap support are provided next to major nodes. Analyses were run with a partition by codon,

using the following models: HKY + I + G for 1st codon, TRN + I for 2nd codon, and TRN + G for 3rd codon. Color bars indicate an

approximation to the dominant ventral plumage colors per sample.

https://doi.org/10.1371/journal.pone.0191598.g001
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Peru-Bolivia (M. c. coronata). As seen in other Andean organisms (e.g. [2–4]) these major

genetic breaks coincide with geographic-ecological barriers that may be responsible for the ini-

tial isolation of such populations.

M. c. regulus W Venezuela
M. c. regulus E  slope E Andes
M. c. regulus W slope E Andes
M. c. regulus C and W Andes
Ecuador-northern Peru
M. c. coronata central Peru
M. c. coronata S Peru-W Bolivia

Táchira Depression

E Andes
divide

Magdalena 
valley

Patía valley
Caquetá valley

Huallaga valley

Apurimac
 valley

00.5122.53 1.5

PleistocenePliocene

3.544.55

0.98/96

1.00/98

1.00/96

0.99/98

1.00/100

1.00/100

1.00/98

0.95/68

0.56/52

1.00/97

1.00/96

A B

Fig 2. Phylogeography of Myiothlypis coronata. A. Geographic location of samples analyzed, as well as geographic breakpoints between

populations. B. BEAST maximum clade credibility tree showing geographic location of major clades; Bayesian probabilities and bootstrap

support (derived from the ML and Bayesian analyses) are provided for each phylogroup.

https://doi.org/10.1371/journal.pone.0191598.g002
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Divergence between M. c. regulus and the Ecuador-northern Peru populations coincides

geographically with the Patı́a and the Caquetá river valleys in southern Colombia (Fig 2). Several

Andean bird species or pairs of subspecies have distributions that end abruptly around these

same limits (e.g., Cyanolyca turcosa [41], Aulacorhynchus derbianus [42], Grallaria nuchalis rufi-
ceps and G. n. obsoleta [43]). However, it seems improbable that divergence among M. coronata
lineages and these other taxa was caused by geographic or ecological isolation exerted by these

valleys in their present configuration. Understanding both species distributions and historical

(ecological/topographic) changes in this region would be of great interest. On the other hand,

population structure within M. c. regulus is clearly dictated by the presence of three major fea-

tures: the divide of the east Andean cordillera, the Táchira Depression, and the Magdalena river

valley. Limitation of gene flow across these barriers has only started to be documented with

0.
0

0.
5

1.
0

1.
5

2.
0

0.00 1.00 2.00 4.003.00

lo
g(

lin
ea

ge
s)

Time from basal divergence

Fig 3. Lineages through time plot derived from the BEAST three of Myiothlypis coronata and 100 trees simulated under the Yule pure-birth

model. Black line, LTT of Myiothlypis coronata; gray lines, LTT of simulated trees; red-dotted line, expectation of a constant rate. Number of

lineages is presented in logarithmic scale.

https://doi.org/10.1371/journal.pone.0191598.g003
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molecular data (e.g. [4, 44]), but an analysis of geographic and ecological barriers of bird popula-

tions across Colombia [45] highlights their biogeographic significance.

Separation of the Ecuador-northern Peru populations and the central Peru-west Bolivia

populations (M. c. coronata) could be caused by the Huallaga river valley in central Peru (Fig

2). However, denser sampling around that river valley is necessary to confirm its importance

in the isolation of these populations. Further south, the separation of populations of M. c. coro-
nata seems to be dictated by the presence of the Apurimac river valley, which has been recog-

nized as a potentially isolating factor between populations of other bird species (e.g. Cyanolyca
viridicyana [46] and Metallura tyrianthina [47]).

Effect of the Pleistocene on the evolution of Myiothlypis coronata
Our time-calibrated tree shows that most lineages have evolved during the Pleistocene (Fig 2).

However, the analysis of diversification rates revealed that this pattern is consistent with a

Cordillera del Cóndor

Cordillera 
de Lagunillas

NE Andes

Marañón 

Caquetá

Patía 

J ub o nes 

M. c. elata (w Ecuador)

CLADE A
E Ecuador
N Peru

CLADE B
S Ecuador
N Peru

M. c. 
inaequalis
NE Peru

Not sampled 
haplotypes 

No. Individuals per sampled 
haplotype

1 2 3 4

14

Southern populations of M. c. regulus

Fig 4. Statistical parsimony network of the 75 samples in the Ecuador-northern Peru lineage, and geographic location of samples.

https://doi.org/10.1371/journal.pone.0191598.g004
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constant rate of diversification, rather than an acceleration of diversification rate during the

Pleistocene (Fig 3). We were conscious that the inclusion of all the genetic lineages detected in

the phylogenetic tree (Fig 2) could bias the results towards indicating a deviation from con-

stant rates towards the mid-Pleistocene; still, the analysis favored a constant rate of diversifica-

tion. Our results both agree and contrast with previous studies showing either a steady [3] or

an accelerated rate of diversification of Andean birds during the Pleistocene [14, 17]. Such dif-

ferences are likely to reflect the diversity of age and vagility of different taxa, as well as the

diversity of evolutionary processes that promote the formation of new lineages in each case.

Evolution of Ecuadorian and Peruvian populations

Phylogenetic analyses were unable to discern with high statistical support the sequence of splits

that conduced to the four clades within the Ecuador-northern Peru lineage. Plumage changes

are equally puzzling, but certain patterns emerge from the combined analysis of plumages,

molecular data, and distributions. First, M. c. elata, which inhabits the western slope of the

western Andes, is both phylogenetically and geographically separated from all other forms in

Ecuador-northern Peru. It is separated from populations of M. c. orientalis by the Ecuadorian

Andes, and seems to be restricted southwards by the Jubones river valley, where it is replaced

by M. c. castaneiceps (clade B; Fig 4). The finding of an individual of M. c. elata within clade B,

Table 1. Pairwise comparisons among lineages identified in the phylogeographic analyses of Myiothlypis coronata. Above diagonal: pairwise average ML corrected

distances. Diagonal: average ML corrected pairwise distances between individuals within each lineage. Below diagonal: pairwise average uncorrected distances. Bold letters

and numbers refer to the three mayor lineages, whereas regular letters and numbers refer to sub-populations within each mayor lineage.

1 2 3 4 5 6 7 8 9 10 11 12 13

1. Venezuela-Colombia (regulus) 0.021 0.055 0.068

2. W Venezuela (regulus) 0.000 0.005 0.039 0.039

3. E slope E Andes (regulus) 0.005 0.001 0.036 0.036

4. W slope E Andes (regulus) 0.033 0.031 0.004 0.016

5. C and W Andes (regulus) 0.033 0.031 0.015 0.004

6. Ecuador-northern Peru 0.045 0.015 0.080

7. W Ecuador (elata) 0.004 0.023 0.017 0.015

8. E Ecuador-N Peru (clade A) 0.021 0.002 0.019 0.020

9. SW Ecuador-N Peru (clade B) 0.016 0.016 0.005 0.010

10. NE Peru (inaequalis) 0.015 0.018 0.009 0.003

11. Central Peru-W Bolivia (coronata) 0.053 0.061 0.010

12. C Peru (coronata) 0.003 0.017

13. S Peru-W Bolivia (coronata) 0.015 0.004

https://doi.org/10.1371/journal.pone.0191598.t001

Table 2. Indices of molecular diversity for lineages within Myiothlypis coronata based on 1041 bp ND2. Sample size (n), number of polymorphic or variable sites

(var), nucleotide diversity (π), haplotype diversity (Hd), Fu’s F and Tajima’s D are reported. We found non-significant results for Fu’s F and Tajima’s D which suggest no

deviations from neutrality.

Population N Var π Hd Fu’s F Tajima’s D

Venezuela-Colombia (regulus) 54 74 0.01821 0.869 -0.630 0.54325

Ecuador-northern Peru 75 47 0.01570 0.0156 -6.025 0.20737

W Ecuador (elata) 21 13 0.00242 0.922 -8.291 -1.3921

E Ecuador-N Peru (clade A) 30 15 0.00300 0.798 -5.384 -1.5543

SW Ecuador-N Peru (clade B) 15 25 0.00528 0.895 0.931 -1.2751

NE Peru (inaequalis) 8 9 0.00281 1.000 -5.709 -0.7656

Central Peru-W Bolivia (coronata) 24 30 0.00090 0.933 -7.910 0.4717

https://doi.org/10.1371/journal.pone.0191598.t002
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may be caused by current gene flow or by retention of an ancestral ND2 polymorphism, but

lack of intermediate plumages in both populations favors the second hypothesis. Second, pop-

ulations in clade A (including M. c. orientalis) inhabit the eastern slope of the east Andes, but

cross the eastern Andean divide in the low areas of Loja and Zamora Chinchipe, sharing locali-

ties with individuals in clade B. Whereas both the phylogeny and the haplotype network sepa-

rate these two linages clearly, gradual north-to-south change of plumage pattern of M. c.

orientalis, from yellow-gray to virtually gray venter, suggest intergradation between M. c. orien-
talis and individuals from northern Peru currently assigned to either M. c. castaneiceps or M. c.

chapmani (as suggested by Ridgely and Greenfield [13]). Third, samples of M. c. inaequalis
form a monophyletic group geographically separated from clade B (albeit with low nodal sup-

port; Fig 1). Isolation of this population may be attributed to the presence of the Marañón

river valley and the nearby North Peruvian Low, which have been regarded among the main

topographic-ecological barriers to dispersal along the Andes [48, 49]. Still, phylogenetic studies

have documented a diversity of responses from different taxa to the presence of these barriers,

which vary from deep [8, 46, 50] to no genetic differentiation [50, 51]. In our case, only recent

and shallow genetic differentiation coincides with the Marañón river valley and the North

Peruvian Low.

Given the limitations of mitochondrial data in detecting hybridization, we propose the fol-

lowing scenario: (1) M. c. elata, an easily diagnosable subspecies along its range, is isolated

from all other forms; (2) populations from southwestern Ecuador and northern Peru (M. cas-
taneiceps and M. chapmani) maintain gene flow with the yellow-gray venter forms of eastern

Ecuador (M. c. orientalis) in the southern part of its range; and (3) the northeastern Peruvian

form, M. c. inaequalis, maintains its evolutionary independence. Unfortunately, migration rate

data are not independent from sequence data, and may not reflect actual migration rates

between these populations given the potential of not detecting hybridization.

Evolution of plumage and taxonomy of Myiothlypis coronata
Phylogenetic and geographic analyses of M. coronata trace an evolutionary history shaped by

isolation of populations across topographic-ecological barriers that may favor genetic diver-

gence, but the degree in which such divergence is coupled with changes in plumage patterns

varies across populations. For example, relatively deep genetic differentiation (0.055 substitu-

tions per site) separates M. c. regulus from the Ecuador-northern Peru lineage, but only subtle

plumage differences exist between M. c. regulus and M. c. elata. On the other hand, there is a

striking color difference between M. c. elata and specimens from south Ecuador and northern

Peru (clades A and B), but relatively low genetic differentiation between them (0.017 and 0.015

substitutions per site, respectively). Although our approach to analyzing plumage color change

is qualitative, our results contrast with quantitative results of Winger and Bates [8], which sug-

gest 0.032–0.054 substitutions per site as an approximate threshold for plumage differentiation

among isolated bird populations across the Marañón river valley. In the case of the Russet-

crowned Warbler, it would be valuable to test whether isolated populations may be responding

to different selective pressures that either promote or constrain plumage evolution.

Finally, phylogeny, genetic distances, geography, and plumage pattern analyses suggest the

existence of three mayor taxonomic units that qualify as Evolutionary Significant Units [10]

and Unconfirmed Candidate Species [52], these are: M. regulus, M. castaneiceps (Sclater and

Salvin, 1877; a polytypic species formed by populations from Ecuador-northern Peru), and M.

coronata, a species with two subspecies (M. c. coronata and M. c. notia). Future efforts directed

towards solving the question of whether these units qualify as independent evolutionary line-

ages will be of great value in establishing their taxonomic status.
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sity, Museum of Natural Sciences; Field Museum; Academy of Natural Sciences Philadelphia

[ANSP]; and American Museum of Natural History). Cesar Garzón (Museo Ecuatoriano de

Ciencias Naturales), S. Burneo (QCAZ), N.H. Rice [ANSP], and M. Lentino [COP] kindly pro-

vided access to specimens, photographs, or specimen information. Héctor Cadena, M. Möens,
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