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Background: MYCN is an oncogenic transcription factor of the MYC family and plays an
important role in the formation of tissues and organs during development before birth. Due
to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory
networks will help to identify effective therapeutic targets.

Methods: We utilized network controllability theory, a recent developed powerful tool, to
identify the potential drug target around MYCN based on Protein-Protein interaction
network of MYCN. First, we constructed a Protein-Protein interaction network of MYCN
based on public databases. Second, network control analysis was applied on network to
identify driver genes and indispensable genes of the MYCN regulatory network. Finally, we
developed a novel integrated approach to identify potential drug targets for regulating the
function of the MYCN regulatory network.

Results: We constructed an MYCN regulatory network that has 79 genes and 129
interactions. Based on network controllability theory, we analyzed driver genes which
capable to fully control the network. We found 10 indispensable genes whose alternation
will significantly change the regulatory pathways of the MYCN network. We evaluated the
stability and correlation analysis of these genes and found EGFRmay be the potential drug
target which closely associated with MYCN.

Conclusion: Together, our findings indicate that EGFR plays an important role in the
regulatory network and pathways of MYCN and therefore may represent an attractive
therapeutic target for cancer treatment.
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INTRODUCTION

The MYC proto-oncogene family consists of three paralogs: c-
MYC, MYCN, and MYCL (1, 2). Abnormal MYC regulation can
lead to increased cell proliferation and growth, MYC family
members are the dysregulation of MYC family is common in
cancer (2). The MYCN cancer gene in the MYC family is a
structurally and functionally similar fragment of MYC discovered
by Schwab (3) in 1983. It acts to promote cell proliferation, and
inhibit cell differentiation, apoptosis, or programmed cell death
(4–6). Existing researches suggest that MYCN plays a key role in
cell proliferation and cell growth during embryonic development
(7) and it is associated with a number of childhood-onset tumors,
including neuroblastoma, medulloblastoma, rhabdomyosarcoma,
glioblastoma multiform, retinoblastoma, astrocytoma,
hematologic malignancies, and small-cell lung cancer (8, 9), as
well as some adult cancers such as prostate and lung cancer (10,
11). Despite the proven importance of MYCN, which has very
promising therapeutic potential, how to directly target MYCN
remains an open question. There is no better method to target
MYCN directly in existing research (9), but we can still target
MYCN indirectly by targeting molecules that interact directly
with MYCN to control MYCN activity (9, 12–19). Thus, the
problem of targetingMYCN can be translated into the study of the
MYCN regulatory network of its interactions.

Recently, network controllability theory has made remarkable
achievements in analyzing biological networks, such as Protein-
Protein Interaction (PPI) network (20–24), brain network (25, 26)
and disease-related networks (27, 28). Ryouji (20) applied network
controllability theory on breast cancer gene expression networks,
and designed a novel method to identify a set of critical control
proteins that uniquely and structurally control the entire
proteome. Wu (29) determined minimum dominating sets of
proteins (MDSets) in human and yeast protein interaction
networks and found that MDSet proteins were enriched with
essential, cancer-related, and virus-targeted genes. Guo (30)
developed an algorithm for identifying steering nodes to a gene
regulatory network related to type 1 diabetes and they found that
FASLG and CD80 are steering nodes for controlling the target
nodes related to type 1 diabetes and supported by wet experiments.

In the view of control theory, drug targets in a biological
network can be interpreted as a steering node. By applying an
extra signal to this set of guide nodes, the network is expected to
be steered to the desired state. In other words, for a biological
system with an abnormal state, if some biomolecules affect other
biomolecules by extra perturbations and steer the system towards
a healthy state, these perturbed biomolecules can be considered
potential drug targets. Thus, the problem of identifying drug
targets can be mapped to the problem of finding a set of steering
nodes in a network system. By applying a control signal to these
nodes, the states of the network are expected to transition
between the healthy state and the disease state.

Here, we utilized network controllability theory (31–36) to
analyze the protein-protein interaction (PPI) network of MYCN.
We identified possible potential drug targets of the MYCN
regulatory network and evaluated the importance of these
potential targets with several existing databases. The results
Frontiers in Oncology | www.frontiersin.org 2
showed that network controllability theory may provide new
ideas to reveal the function of MYCN and target MCYN, which is
of great importance and application prospect.
METHODS

Network Controllability
Consider a linear time-invariant networked system, the
dynamics of the process can be described as follows:

dx tð Þ
dt

= Ax tð Þ + Bu tð Þ (1)

Where vector x(t) = (x1(t),…,xN(t))
T represents the system

state vector of N nodes at time t; matrix A is a state parameter
describing the components of the system; matrix B of N*M(M≥N)
is the input matrix from which the controlled node is identified by
the external controller. Vector u(t)=(u1(t),…,uM(t))

T represents
the input vector of M nodes at the time t and the controller
uses the input vector u(t) to control the entire system and a single
control signal ui(t) can typically drive multiple nodes.

According to the Kalman rank condition (31, 37):

C = B,AB, A2B,…,AN−1B
� �

rank Cð Þ = N

The system is controllable if and only if the N*NMmatrix C=
(B,AB,A2B,…,AN–1B) is full rank, and the system can drive any
initial state to any final state in a finite time. Based on this theory,
Lin (33) proposed the theory of structural controllability, in
which the state matrix A and the control matrix B can be
regarded as a structured matrix, and if there are matrices A
and B with non-zero weights that make the Kalman criterion
hold, then for the way of combining different weights in matrices
A and B, the system is almost always controllable except for the
all-zero state and some special cases. On this basis, researchers in
the field of network control (32, 34) have transformed the
problem of least external input to a directed network into a
problem of calculating the maximum matching for that network,
as shown in Figure 1. For a directed network, a maximum
matching is a set of maximal edges that do not share the starting
and ending node, while nodes that do not have matching edges
pointing to them are driver nodes. In contrast, the driver nodes
computed by maximum matching is called minimum set of
driver nodes (MDS). Since the maximum matching is often not
unique for the same network, it is often possible to obtain
multiple different MDS for the same network (38–41). In this
case, we can analyze the nodes in different MDS and thus assess
the importance of the nodes.
Node Classification Based
on Network Controllability
This method measures the nodes in different MDS and considers
the importance of the nodes in the whole network. For a
network, MDS can be obtained by using the maximum
April 2021 | Volume 11 | Article 633579
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matching method (34) and the type of node can be determined
by the size of MDS after this node removing from the network.
A node is indispensable if the size of MDS decreases after
removing the node from the network. A node is dispensable if
the size of MDS increases after removing the node from the
network. A node is neutral if the size of MDS do not change after
removing the node from the network. The simple network (Figure
2A) has two different maximum matching (Figure 2B), and the
size of original MDS is 2. The size of the MDS will change when
the nodes in this network are removed and the size of MDS after
different nodes removed are shown in Figures 2C–F.

In this simple network, the removal of node 1 does not change
the MDS size of the network, as defined in the classification that
node 1 is a neutral node. While the removal of node 2 increases
the MDS size, and node 2 is an indispensable node. Similarly,
node 3 and node 4 are dispensable nodes. The classification result
of MYCN regulatory network is shown in Figure 3B.

Source of Data Sets
The Cancer Genome atlas (TCGA, https://tcga-data.nci.nih.gov/
tcga), a project initiated jointly by the National Cancer Institute
(NCI) and the National Genome Research Institute (NHGRI).
Utilize large scale sequencing based genomic analysis techniques
to finalize a complete set of mapping associated with all cancer
genomic alterations. To date, TCGA has been tested in over
10,000 human samples with whole cancers. We selected
PanCancer Atlas Studies as our data set from TCGA for
validating the results of the method, which included 32
different cancers with 10,967 samples. Survival analysis is
provided by Cbioportal (www.cbioportal.org), it supports the
use of custom data and provides researchers with an interactive
interface to discover associations between genetic alterations and
the clinic, and the data source for Cbioportal is TCGA. Co-
expression and pathway analysis is also provided by Cbioportal,
whose pathway data are provided by TCGA research and the
TCGA PanCanAtlas project (42–50). These pathways have been
rigorously extrapolated and validated and are published, which is
Frontiers in Oncology | www.frontiersin.org 3
of great biological significance and very important for the
analysis of disease or gene interaction mechanisms.

Data sets of drug targets provided by Behan et al.’s work (51),
they used genome-scale CRISPR–Cas9 screens in 324 human
cancer cell lines from 30 cancer types and developed a data-
driven framework to prioritize candidates for cancer therapeutics.
RESULTS

Control Analysis of Human Protein-Protein
Interaction Network
Consider a Protein-Protein interactions (PPI) network, a node of
the network represents a protein and the interactions between
proteins are the edges of the network. We used human binary
protein interactions (HuRI) (52), a Protein interaction database
which is the largest human protein interactome data to date. The
protein-protein interaction in the network is of paramount
importance both for understanding the underlying biological
processes and for understanding disease occurrence. In addition,
we have combined the protein-protein interactions provided by
other databases (53–57) to form a more comprehensive network.
The specific data sources are shown in Figure 2A.

The result of the PPI network consists of 11,584 proteins and
76,434 interactions. The average degree of the network is 13.2 and
the diameter of the network is 24. To analyze the control properties
of the PPI network, we used the maximum matching method to
compute the Minimum Driver nodes Set (MDS) in the network.
Although the MDSs are not unique for the PPI network, but the
size of all MDSs is same and determined by the network topology.
In the PPI network, there are 5436 (46.93%) driver proteins which
composed of the MDS of the PPI network. It means that to fully
control the PPI network, we need to control nearly half of the
proteins in the network. Therefore, the MDS did not provide much
information for identifying potential drug target of the network.

Furthermore, We used a control classification method (21) to
divide the proteins into three types: indispensable, dispensable,
A B

FIGURE 1 | Control of the network system. (A) Controllability of a network through the controllability matrix; (B) Controllability of a network through the maximum matching.
April 2021 | Volume 11 | Article 633579
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and neutral proteins. This node classification is based on the size
changes of MDS after removing the node from the network.
A node is indispensable if the size of MDS decreases after
removing the node from the network. A node is dispensable if
the size of MDS increases after removing the node from the
network. A node is neutral if the size of MDS do not change after
removing the node from the network. An example network is
shown in Figure 2. For the PPI network, a total of 1710 (15%)
proteins are indispensable, 5218 (44%) proteins are dispensable
nodes and 4749 (41%) proteins are neutral. We found the
average degree of the indispensable nodes is much higher than
the other class nodes, which means the selected indispensable
proteins have more interactions and are more closely related to
other molecules than the other proteins in the network.
Control Analysis of MYCN Sub-Network
To find potential drug target of MYCN, we extracted the second-
order egocentric network of MYCN from the PPI network. The
MYCN-egocentric network includes the neighbor nodes that
Frontiers in Oncology | www.frontiersin.org 4
interact directly with MYCN and the neighbor nodes that
interact with the neighbors of MYCN. We used the second-
order egocentric network to analyze the MYCN network because
the goal of our analysis is to find molecules that can be targeted
among the direct or indirect interactions of MYCN, and the
nodes we selected should not be too far away from MYCN.
Figure 3 shows the result of control analysis of MYCN network.
The network consists of 79 nodes and 129 edges and the size of
MDS of MYCN network is 49 (62.03%). The number of
matching edges is 30 (23.26%) and the network diameter is 4.

By using the node classification method (21) based on
controllability analysis, we computed the control types of the
proteins in the MYCN network. As the same as the PPI network,
the average degree of the indispensable nodes is much higher than
the other type nodes in MYCN regulation network (Figure 3C).
However, the value of average degree is not involved in the
processing of the classification and the phenomenon is not
accidental or biased. For all the nodes in the MYCN regulatory
network, we found 10 (13%) nodes are indispensable, 21 (26%)
nodes are neutral nodes and 48 (61%) nodes are dispensable.
A

IH

K L

J

B

D E F

G

C

FIGURE 2 | Characterizing of the PPI network. (A) A simple network; (B) Two different maximum matching of (A); (C–F) The size of MDS after different node
removed; (G) Classification results of (A); (H) Classification results of PPI network; (I) Average degree of different type nodes in PPI network; (J) Percentages of
different types in PPI network; (K) Data source of PPI network; (L) Basic property of PPI network.
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Table 1 showed the indispensable proteins and their topological
properties and associated diseases. Meanwhile, among these 10
indispensable nodes, MAX, AURKA, YEATS4, and NMI are the
nodes directly associated with MYCN, these proteins are present
in the first-order egocentric network of MYCN and have close
interactions with MYCN.

Functional Analysis of
Indispensable Proteins
To further investigate the biological significance of indispensable
genes in the MYCN network, we perform survival analysis of
indispensable genes base on the clinical data of The Cancer
Genome Atlas (TCGA) (69) included 32 different cancers with
10,967 samples. Here we used overall survival without disease-
specific for a gene, it can eliminate the survival differences in
certain diseases. By plotting the relationship between survival
months and surviving percentage, can obtain the differences in
survival for altered group and unaltered group. Figure 4 showed
the clinical survival of 10 indispensable genes. Among the ten
indispensable genes, EGFR and YEATS4 had a significant
difference between the altered group and the unaltered group,
which suggested that the mutation of these two genes will
significantly change the survival of patients. Clinical samples
and median survival Months are shown in Table 2. Considering
the differences in disease grade and treatment strategy, we also
Frontiers in Oncology | www.frontiersin.org 5
divided the sample into multiple groups for statistical analysis
(Supplement 2).

Furthermore, we performed pathway analysis for the
indispensable genes (42–50) based on Cbioportal (70). We
found that EGFR, MAX, MNT and SMAD3 are associations
with MYCN or MYC family in several pathways, as shown in
Figure 5. EGFR was indirectly associated with MYC activity in
ESAD-2017-RTK-RAS-PI(3)K-pathway and HNSC-2015-RTK-
RAS-PI(3)K-pathway by PIK3CA. MAX and MNT are
correlated with MYCN in the MYC-pathway, where MAX and
MYCN form the MYC/MAX complex, and MNT associated with
the MAX/MGA complex. The pathway analysis shows that the
indispensable genes computed by the network controllability
theory are precise and are directly or indirectly associated with
MYCN in different pathways.

Finally, we analyzed the indispensable node that are targeted
by the drugs. Based on the database of drug targets in 324 human
cancer cell lines from 30 cancer types (51), we found that EGFR
is an anti-cancer target in Squamous Cell Lung Carcinoma, Lung
Adenocarcinoma, Oral Cavity Carcinoma, Ovarian Carcinoma,
Head and Neck Carcinoma and Esophagus. It has a high priority
and has a class B biomarker, making it a more desirable target.
EGFR has at least one drug that has been developed for the
cancer type in which the target was identified as a priority. In
relation to our research of the MYCN regulatory network, EGFR
A

B D

C

FIGURE 3 | Characterizing of MYCN regulatory network. (A) Topological statistics of MYCN regulatory network; (B) Node classification of MYCN network; (C) Average
degree of different type of nodes; (D) Percentages of different types in MYCN network.
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may be the potential drug target which closely associated
with MYCN.

Overall, based on the survival analysis, cancer pathway and
drug targets analysis of indispensable genes, it is clear that the
indispensable genes have a significant role in the MYCN
regulatory network. The indispensable genes are directly
associated with cancers, especially EGFR, MAX, MNT,
SMAD3. EGFR is also a drug target that has already been
developed and is considered to be the most promising
potential target in the MYCN regulatory network.
Indispensable Proteins in Brain Lower
Grade Glioma
To further validate the biological significance of indispensable
genes, in this section, we verified the effectiveness of our results
with the specific-diseases. For the choice of specific-diseases, we
should select a disease that is associated with MYCN, to analyze
the survival of indispensable genes and the co-expression
relationship with MYCN. Due to MYCN plays a key role in
cell proliferation and cell growth during embryonic development
(7) and it is often associated with a number of childhood-onset
tumors, here we combined Brain Lower Grade Glioma to show
the results of analysis. The survival curves for indispensable
genes for Brain Lower Grade Glioma are shown in Figure 6. And
the co-expression correlation between indispensable genes and
MYCN of Brain Lower Grade Glioma are shown in Table 3. We
found that BANP, NME1, YEATS4, and EGFR, have relatively
significant Spearman’s Correlation with MYCN. Among them,
YEATS4 has been shown in existing studies to have a direct
interaction with MYCN (53–57). Although there are no direct
association between three other genes and MYCN in existing
studies, from the co-expression of Brain Lower Grade Glioma, it
is possible that had correlation between them.
DISCUSSION

MYCN plays an important role in many diseases and cancers (2,
7–11), in-depth understanding of the role of MYCN has a great
Frontiers in Oncology | www.frontiersin.org 6
significance and application prospect. However, MYCN is difficult
to directly target and design therapeutic strategies in existing
research (9). Therefore, we hope to find potential targets around
the MYCN regulatory network and regulate MYCN indirectly by
controlling the potential targets. By using network controllability
method (21), we found ten indispensable genes in the MYCN
regulatory network. Through the pathway, survival, drug target
analysis, we found that the indispensable genes, especially EGFR,
play an important role in MYCN regulatory networks.

To validate the biological significance of indispensable genes,
especially EGFR, we calculated the correlation between the 10
indispensable genes and MYCN using the TCGA dataset
(Supplement 1). For the 33 cancers proposed by TCGA, we
analyzed spearman’s correlation, p-value (2-sided t-test), and q-
value (Benjamini-Hochberg FDR correction) of MYCN with
indispensable genes in expression in different diseases
sequentially. Our core target EGFR had significant positive
correlation results in Thymoma, Kidney Chromophobe, Diffuse
Large B-Cell Lymphoma, Brain Lower Grade Glioma, and Skin
Cutaneous Melanoma. All other indispensable genes also had a
significant co-expression results with MYCN in specific diseases,
this is concur with the results of existing studies. For the ten
potential targets we obtained, MAX, AURKA, YEATS4 and NMI
are directly associated with MYCN. MAX and AURKA in
particular have been rigorously argued to be tightly associated
with MYCN activity (71). For the other 6 potential targets, they
are indirectly connected to MYCN. Although current research of
these genes hasn’t a direct interaction with MYCN, in the theory
of network control when this type of node changes, it can alter
the features of network and affect the state of MYCN result in
indirectly target MYCN. Among them, EGFR, MNT, and
SMAD3 are all directly or indirectly associated with the
MYCN or MYC families in different pathway. EGFR, in
particular, is not only significantly different between the altered
and unaltered groups in clinical survival data, but also a molecule
that can already be drug-targeted (51).

As the driving gene of many kinds of tumors, EGFR plays an
important role in promoting the malignant progression of tumors
(60). Its role in non-small cell lung cancer, glioblastoma and basal-
like breast cancers has spurred many research and drug
development efforts. Tyrosine kinase inhibitors have shown
TABLE 1 | Indispensable genes in MYCN regulatory network.

symbol Full name Indegree Outdegree Diseases associated

AURKA (58) Aurora Kinase A 1 6 Colorectal Cancer/Colorectal Adenocarcinoma.
BANP (59) BTG3 Associated Nuclear Protein 3 1 Keratoconus/Brittle Cornea Syndrome 2
EGFR (60) Epidermal Growth Factor Receptor 4 2 Inflammatory Skin/Bowel Disease, Neonatal, 2/Lung Cancer
FTH1 (61) Ferritin Heavy Chain 1 2 1 Hemochromatosis/Type 5 and Superficial Siderosis Of The Central Nervous

System
MAX (62) MYC Associated Factor X 8 18 Pheochromocytoma/Hereditary Paraganglioma-Pheochromocytoma

Syndromes
MNT (63) MAX Network Transcriptional Repressor 1 2 Tetanus Neonatorum/Mixed Type Thymoma
NME1 (64) NME/NM23 Nucleoside Diphosphate

Kinase 1
2 1 Anal Canal Carcinoma/Larynx Cancer

NMI (65, 66) N-Myc And STAT Interactor 11 34 –

SMAD3 (67) SMAD Family Member 3 3 1 Loeys-Dietz Syndrome 3/Familial Thoracic Aortic Aneurysm And Aortic
Dissection

YEATS4 (68) YEATS Domain Containing 4 1 5 Cellular Myxoid Liposarcoma/Pleomorphic Liposarcoma
April 2021 | Volume 11 | Article 633579
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efficacy in EGFR amplified tumors, most notably gefitinib and
erlotinib. But the mutations in EGFR have been shown to confer
resistance to these drugs, particularly the variant T790M, which
has been functionally characterized as a resistance marker for both
of these drugs. The later generation TKI’s have seen some success
Frontiers in Oncology | www.frontiersin.org 7
in treating these resistant cases, and targeted sequencing of the
EGFR locus has become a common practice in treatment of non-
small cell lung cancer (72–74). Therefore, we consider EGFR to be
the most promising potential target among these indispensable
genes (Supplement 2).
FIGURE 4 | Survival curve of 10 indispensable genes. 10 plots correspond to different indispensable genes, here we chose overall survival data rather than disease-
specific survival data.
April 2021 | Volume 11 | Article 633579
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Meanwhile, referring to the biological properties of MYCN
(7, 75) (Supplement 2), we selected Brain Lower Grade Glioma to
validating indispensable genes. Among them, BANP, NME1,
YEATS4, and EGFR, have relatively significant Spearman’s
Correlation with MYCN. It is worth noting that NMI has a high
Frontiers in Oncology | www.frontiersin.org 8
negative correlation with MYCN. Due to the algorithm views the
biological network as an abstract network structure in isolation
from the specific biological constraints, this algorithm without
specific biological constraints is able to filter out genes with high
correlation (positive and negative), not just positive correlation.
And NMI as an interactor of MYCN, has a high absolute value of
correlation with MYCN in the network, which is consistent with
the algorithm results. For EGFR, which we considered the most
potentially target, there were more significant results in Brain
Lower Grade Glioma, both in the co-expression and survival.

Each cancer is extremely complex and different networks will
come with different results. In this study, we chose pan-cancer
data to construct a more comprehensive network to predict
potential targets for MYCN in terms of overall relationships, and
A

B C

FIGURE 5 | Cancer pathway of indispensable genes. (A–C) are the pathways that EGFR, MAX, MNT, SMAD3 associated with MYCN or MYC, respectively.
TABLE 2 | Clinical samples of indispensable genes.

Id Name Type Number of
Cases,
Total

Number of
Cases,

Deceased

Median
Months
Overall

1 AURKA Altered group 233 77 80.74
Unaltered group 10569 3437 78.97

2 BANP Altered group 237 69 120.62
Unaltered group 10565 3445 78.67

3 EGFR Altered group 812 460 24.3
Unaltered group 9990 3054 85.08

4 FTH1 Altered group 87 27 88.11
Unaltered group 10715 3487 78.9

5 MAX Altered group 99 32 89.72
Unaltered group 10703 3482 78.97

6 MNT Altered group 147 41 74.93
Unaltered group 10655 3473 78.97

7 NME1 Altered group 153 42 105.04
Unaltered group 10649 3472 78.67

8 NMI Altered group 102 30 83.57
Unaltered group 10700 3484 78.97

9 SMAD3 Altered group 175 48 156.49
Unaltered group 10627 3466 78.67

10 YEATS4 Altered group 318 141 49.05
Unaltered group 10483 3373 80.48
TABLE 3 | Co-expression correlation between indispensable genes and MYCN
of Brain Lower Grade Glioma.

Name Spearman’s Correlation p_value q_value

EGFR 0.274 2.83E-10 1.29E-09
AURKA 0.137 1.913E-3 3.532E-3
BANP 0.26 2.25E-09 9.14E-09
FTH1 -0.282 7.77E-11 3.78E-10
MAX 0.085 0.054 0.0775
MNT 0.161 2.418E-4 5.084E-4
NME1 0.29 1.96E-11 1.02E-10
NMI -0.3 3.72E-12 2.11E-11
SMAD3 0.0736 0.0954 0.13
YEATS4 0.361 3.02E-17 3.14E-16
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finally verified the effect of indispensable genes combined with
specific-diseases. The theory of network controllability bring a
new view and theoretical framework to the analysis of regulatory
networks. However, the composition of nodes and edges will
impact the accuracy of the results. Therefore, it is still a challenge
to accurate construction of the initial network and find the exact
target network from a large amount of data and specific-diseases.
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This is a new methodological trying to identify potential targets,
and after the network control framework analysis, how to design
wet experiments to further verify the analysis results is also one
of our subsequent concerns.

Overall, the method of network controllability in this paper is
able to screen potential targets against MYCN and our findings
indicate that EGFR plays an important role in the MYCN
FIGURE 6 | Survival curve of 10 indispensable genes of Brain Lower Grade Glioma. 10 plots are the survival curves of different indispensable genes and Brain
Lower Grade Glioma respectively.
April 2021 | Volume 11 | Article 633579

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pan et al. Control Analysis Network for MYCN
regulatory network. In the future, experimental evidence to support
the above regulatory relationship will be further provided through
in vitro and in vivo experimental systems, so as to promote the
identification and discovery of potential new regulatory targets.
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