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Recalibration Methods for Improved

Clinical Utility of Risk Scores

Anu Mishra , Robyn L. McClelland, Lurdes Y. T. Inoue, and Kathleen F. Kerr

Background. An established risk model may demonstrate miscalibration, meaning predicted risks do not accurately
capture event rates. In some instances, investigators can identify and address the cause of miscalibration. In other
circumstances, it may be appropriate to recalibrate the risk model. Existing recalibration methods do not account
for settings in which the risk score will be used for risk-based clinical decision making. Methods. We propose 2 new
methods for risk model recalibration when the intended purpose of the risk model is to prescribe an intervention to
high-risk individuals. Our measure of risk model clinical utility is standardized net benefit. The first method is a
weighted strategy that prioritizes good calibration at or around the critical risk threshold. The second method uses
constrained optimization to produce a recalibrated risk model with maximum possible net benefit, thereby prioritiz-
ing good calibration around the critical risk threshold. We also propose a graphical tool for assessing the potential
for recalibration to improve the net benefit of a risk model. We illustrate these methods by recalibrating the Ameri-
can College of Cardiology (ACC)–American Heart Association (AHA) atherosclerotic cardiovascular disease
(ASCVD) risk score within the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. Results. New methods are
implemented in the R package ClinicalUtilityRecal. Recalibrating the ACC-AHA-ASCVD risk score for a MESA
subcohort results in higher estimated net benefit using the proposed methods compared with existing methods, with
improved calibration in the most clinically impactful regions of risk. Conclusion. The proposed methods target good
calibration for critical risks and can improve the net benefit of a risk model. We recommend constrained optimiza-
tion when the risk model net benefit is paramount. The weighted approach can be considered when good calibration
over an interval of risks is important.
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Risk models can help clinicians and patients make health
care decisions. Recommendations for specific interven-
tions can be based on comparing patients’ estimated risk
of a particular clinical outcome to a predefined risk
threshold. In 2013, the American College of Cardiology
(ACC) and the American Heart Association (AHA) pub-
lished guidelines recommending that individuals with an
estimated 10-y risk of atherosclerotic cardiovascular dis-
ease (ASCVD) greater than 7.5% receive statin therapy.1

Paired with this guideline, the panel developed the ACC-
AHA-ASCVD risk calculator to estimate 10-y ASCVD
risk, with recommendations to reassess risk every 4 to 6
y in adults aged 40 to 79 y free of ASCVD.

In such settings, risk model calibration carries heigh-
tened importance. The calibration of a risk model refers
to the agreement between predicted risks and observed
rates of events. There is evidence that the ACC-AHA-
ASCVD risk calculator substantially overestimates the
risk of ASCVD.2 Following risk-based treatment guide-
lines, using overestimated risks implies overtreatment in
the population. Hence, miscalibration can have a serious
public health impact.3
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When an established risk model is applied to a new
population, we are particularly concerned that predicted
risks may not be well calibrated. In addition, a well-
calibrated model may become miscalibrated over time.4

Ideally, when miscalibration appears, one can identify
and address the cause. However, this is not always possi-
ble. Miscalibration can arise for complex reasons or
because of fundamental differences between populations.
In such instances, it will not be possible to eliminate the
source of miscalibration.5 When a model is poorly cali-
brated and development of a new model is infeasible or
undesirable, then it may be prudent to use statistical
methods to recalibrate the risk model. However, existing
methods for risk model recalibration do not account for
how the risk model will be used in clinical practice. In
this work, we propose 2 methods for risk model recali-
bration when the purpose of the risk model is to recom-
mend for or against an intervention based on a
predetermined risk threshold.

Before implementing recalibration methods, research-
ers may wish to understand whether recalibration has
the potential to improve the usefulness of a risk model.
We propose a graphical tool to help with this assessment.
The tool indicates when specialized methods of recalibra-
tion, such as those proposed, have the potential to
improve the clinical utility of a risk model beyond stan-
dard methods of recalibration.

First, we define terminology and notation and sum-
marizes key background material. Next, we introduce a
the graphical device to help researchers assess the poten-
tial for recalibration to improve the clinical utility of a
risk model. Following this, we propose 2 new methods
of recalibration, weighted logistic recalibration and con-
strained logistic recalibration. We present simulation

results and illustrate the use of the graphical tool and
apply the proposed methods to recalibration the ACC-
AHA-ASCVD risk model within the ethnically diverse
Multi-Ethnic Study of Atherosclerosis (MESA) cohort.
We close with a discussion of the materials presented.

Methods

Preliminaries

Notation and definitions. Y denotes the clinical outcome
(ASCVD events in the example given above). Through-
out this work, we refer to individuals who experience the
event without intervention as cases (i.e., Y = 1) and indi-
viduals who do not experience the event (i.e., Y = 0)
as controls. In the population without intervention,
p=P(Y = 1), we refer to p as the prevalence of the out-
come, as is customary in the biomarker literature.

The expected benefit of the intervention to a would-be
case is B. Controls expect harm or cost of the interven-
tion C. We note that B encapsulates both the positive
and negative aspects of the intervention for cases. In our
application, the benefit B is the reduction of ASCVD
events (due to statins) to an individual who would have
an event without intervention, after accounting for the
monetary costs and side effects of statins. R is the risk
threshold for recommending for/against the intervention.
As noted above, R= 7:5% in the ASCVD example. Here
and throughout, the term risk threshold refers to the
clinically relevant threshold used to assign intervention,
defined a priori. We use the term cutpoint to refer to any
generic threshold.

Let S be a risk model for Y , based on 1 or more pre-
dictors (risk factors). We call Si the predicted risk, esti-
mated risk, or risk score (equivalently) for individual i.
Z = logit(S) is the logit-transformed risk score. The pre-
mise of this article is that there is an existing risk model
S that we are interested in recalibrating. We assume that
S is monotonically nondecreasing with risk, meaning
Si . Sj ) P½Yi = 1jSi� � P½Yj = 1jSj�. If S did not have
this monotonicity property, we would likely not be inter-
ested in recalibrating it.

Here and throughout, we assume a data set is avail-
able for recalibrating the risk model S. The data set is a
random sample of the relevant population with observed
outcomes Y without the intervention. S0 is a recalibration
of S as long as S0= f (S) for some monotone nondecreas-
ing function f : ½0, 1� ! ½0, 1�.

Risk model calibration. Different notions of calibration
have appeared in the literature on risk models. Van Cal-
ster et al.6 presented 4 notions of risk model calibration:
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strong calibration, moderate calibration, weak or logistic
calibration, and calibration-in-the-large. These types of
calibration are hierarchical: strong calibration implies
moderate calibration, moderate calibration implies weak
calibration, and weak calibration implies calibration-in-
the-large. The definition of calibration in this article is
‘‘moderate calibration,’’ as defined by Van Calster et al.6

and is formally expressed as follows. For risk model S

estimating risk of binary outcome Y , S is calibrated at r

if P½Y = 1jS = r�= r. If P½Y = 1jS = r�= r for all
r 2 ½0, 1�, then we say S is calibrated.

The calibration of a risk model can be assessed by
examining observed event rates in groups with similar
predicted risks. In Hosmer-Lemeshow plots, predicted
risks are typically grouped by deciles; for each decile, the
event rate for the decile is plotted against the average
predicted risk in that group.7 Alternatively, smoothing
functions (such as a LOESS smoother) can be used to
generate a calibration curve.8 The calibration curve for a
calibrated risk model is the identity line.

Logistic recalibration and other methods. Logistic recali-
bration, proposed by Cox in 1958, is the most prominent
method of recalibration.9 Under logistic recalibration, f

has the form f =expit(a0 +a1logit(S)), where a0 is the
recalibration intercept and a1 is the recalibration slope.
The recalibration intercept and slope, a0 and a1, are esti-
mated by fitting a simple linear logistic regression model
in which Y is regressed on the logit-transformed risk
scores Z. Recalibrated risk scores are generated by scal-
ing Z by â1, shifting by â0, then transforming back to
the risk scale via the inverse of the logit function. Note
that this is a family of valid recalibration functions for
any real a0 and positive a1.

More recently, more flexible methods of recalibration
have been proposed.10–14 The greater flexibility of such
methods raises the possibility of overfitting. Some alter-
native methods are not guaranteed to produce a mono-
tone transformation of the original risk score. We
consider that a nonmonotone transformation fundamen-
tally changes a risk model and should not strictly be con-
sidered a recalibration of the risk model. Some flexible
methods of recalibration have been seen to perform
poorly for risk models constructed using logistic regres-
sion.15 Although not a presented as a method of recali-
bration per se, the risk-mapping plot developed under
the relative utility framework has potential to produce
a recalibrated risk marker through similarly flexible
methods, with requirements that ensure monotonicity.16

The goal of the approaches proposed in this article is to
retain the parsimony of Cox’s logistic recalibration while
prioritizing calibration near the clinically important risk
threshold.

Clinical utility of risk models for treatment decisions based
on risk. The clinical utility of a risk model refers to the
usefulness of a risk model for its intended clinical appli-
cation. The standardized net benefit (sNB) is the measure
of risk model clinical utility considered in this article.
Given a risk model S for outcome Y and risk threshold R

for recommending an intervention to prevent or amelio-
rate Y ,

sNBR = TPRR �
R

1� R

1� p

p
FPRR: ð1Þ

where TPRR (FPRR) is the true-positive rate (false-
positive rate) for the risk model using risk threshold R.
sNBR captures the utility of the risk model to correctly
assign intervention to cases, discounted by the propor-
tion of controls receiving intervention, where the ‘‘dis-
counting factor’’ accounts for the prevalence and harms
and benefits of intervention.17–20 Henceforth, we sup-
press notation showing the dependence of sNB on R.
Unless stated explicitly otherwise, we presume the risk
threshold R for all calculations of sNB.

A key assumption is that the risk threshold R accu-
rately represents the benefits and harms of the interven-
tion according to the relation R

1�R
= C

B
.17,20–22 In the

ASCVD example, the risk threshold R= 7:5% implies the
benefit (B) of statins to a case is about 12 times greater
than the harm of statin therapy (C) to a control. Further,
the harm-to-benefit ratio must be independent of the risk
model.20 We adopt these assumptions throughout.

We note that we use the ‘‘opt-in’’ formulation of sNB,
indicating that the default treatment policy without a risk
model should be treat none (rather than treat all).16,23

This article focuses on the standardized version of net
benefit (sNB), but methods could easily be formulated in
terms of net benefit (NB) instead. As shown in equation
(1), sNB divides NB (the net benefit of intervention less
net harms) by the prevalence. The maximum value of
sNB is always 1, which would occur for a risk model that
perfectly discriminates (TPR= 1, FPR= 0).24 We find
this theoretical maximum to be useful for gauging a risk
model’s clinical utility relative to the maximum possible
clinical utility. There are other measures of clinical utility
in the literature (notably relative utility) we do not con-
sider here.16,20
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Calibration of a risk model and its clinical utility. Van
Calster and Vickers25 give examples using simulated data
in which miscalibration reduces the clinical utility of
risk-based treatment policies. As the authors note, these
results are expected because net benefit is a proper scor-
ing rule.26 Baker et al.27 established the connection
between the calibration of a risk model, the slope of its
receiver-operating characteristic (ROC) curve, and the
prevalence, p. Metz28 related ROC analyses to a cost-
benefit framework for decision making. We provide an
alternative presentation of the result in Baker et al.,27

relating the height of the calibration curve for S to
the prevalence p and the slope of the ROC curve. Sup-
plementary Material A provides the full statement of our
version of this Lemma and proof. The relationship yields
the following corollary, with proof given in Supplemen-
tary Material A.

Corollary 1(sNB of risk-based treatment policies and cali-
bration of S at R). Let S be a risk model for binary out-
come Y that is increasing with event rate. Suppose S is
used to select individuals for an intervention based on
S . R, where R is a prespecified risk threshold that rep-
resents the benefits and harms of the intervention. Then
S has maximum sNB among all recalibrated versions of
S if and only if S is calibrated at R.

Graphically Assessing Potential Net Benefit under
Recalibration

Before presenting our methods, we introduce a graphical
tool to help researchers assess the potential for recalibra-
tion to improve the clinical utility of a risk model. Reca-
libration preserves the rank order of risk scores, meaning
that under recalibration, some subset of individuals with
similar predicted risks will move from below the risk
threshold to above the risk threshold, or vice versa.
Given fixed C

B
= R

1�R
, for every ~a that results in a new

value of sNB, there is an equivalent cutpoint, r, that pro-
duces the same sNB when paired with the original risk
score S. Using this relationship, varying the cutpoint
between 0 and 1 for the original risk score S and harm-
benefit ratio R

1�R
yields all values of sNB that can be

achieved by recalibrating the risk model. We propose
that investigators assess this space to understand the
potential for recalibration to improve net benefit. Specif-
ically, we propose that investigators plot estimates of

sNBr = TPRr �
R

1� R

1� p

p
FPRr ð2Þ

on the vertical axis against r 2 ½0, 1� on the horizontal
axis. We emphasize that R is constant in this expression
of sNB because it represents benefits and harms. We note

Figure 1. Potential sNB under recalibration. The dotted line shows 1 standard error below the estimated maximum possible sNB.
In both (A) and (B), the estimated sNB for the original risk model is more than 1 standard error lower than the estimated
maximum possible sNB, indicating that a recalibrated risk score could yield higher net benefit. In (A), the estimated sNB for the
risk model after standard logistic recalibration is near the maximum value. Alternative methods of recalibration may not be
worth pursuing in this setting. In (B), the recalibrated risk model produced by standard logistic recalibration yields estimated
sNB more than 1 standard error lower than the estimated maximum possible sNB, suggesting that alternative recalibration
methods may be useful.
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that when the cutpoint r equals the risk threshold R,
equation (2) is the standardized net benefit of the risk
model. In addition, when evaluated at the cutpoint r that
maximizes sNBr, equation (2) is the relative utility evalu-
ated at risk threshold R.27

Figure 1 shows 2 examples. In Figure 1, the horizontal
axis gives all possible cutpoints, and the vertical axis givesdsNB for cutpoint r and fixed harm-benefit ratio R

1�R
. The

maximum of the curve estimates the maximum sNB that
can be achieved via recalibration of the risk model. The
estimated sNB of the original risk score and the recali-
brated risk score under standard logistic recalibration are
noted on the curves, and these can be compared with the
maximum. If the estimated sNB of the original risk score
is far below the maximum of the curve, then there are
potentially recalibration parameters (a0,a1) 6¼ (0, 1) that
can increase the clinical utility of the risk model. Simi-
larly, if standard logistic recalibration does not produce a
risk model near the maximum, then alternative methods
of recalibration may produce superior results. The gra-
phical tool also provides researchers a sense of how much
loss in sNB occurs due to miscalibration. From corollary
1, the maximum of this curve estimates the sNB of a risk
score if calibrated at R. The vertical distance between the
maximum of the curve and the observed sNB of the risk
score estimates the loss in sNB from miscalibration at R.

In light of sampling variability, it may be unclear
whether a risk model is ‘‘close’’ to the maximum. Follow-
ing Friedman et al.,29 we suggest a ‘‘1-standard error’’
rule to decide if the estimated sNB of a risk model is near
the maximum. Each plot in Figure 1 includes a dotted
horizontal line 1 standard error below the maximum.
(The standard error for the maximum of the curve is
derived via the delta method; see Supplementary Mate-
rial A.)

In both Figures 1A and 1B, the original risk model
has notably lower dsNB than the maximum possible value.
In Figure 1A, the estimated sNB of the risk model is close
to the maximum possible value after recalibration via
standard logistic recalibration. In contrast, standard
logistic recalibration makes little difference in Figure 1B.
Alternative methods of recalibration, such as those we
propose, may be worthwhile to pursue in situations such
as in Figure 1B.

Weighted Logistic Recalibration for Improved
Clinical Utility

We propose a weighted variant of Cox’s logistic recali-
bration to prioritize calibration near the risk threshold,
which corollary 1 implies should maximize sNB. The

weighted recalibration intercept a�0 and slope a�1 are esti-
mated by maximizing the weighted likelihood

L(a�0,a
�
1jYi, Zi)=

Yn

i= 1

p(Zi)
wiYi(1� p(Zi)

wi(1�Yi ), ð3Þ

where p(Zi)=
1

1+ e
�(a�

0
+a�

1
Zi )
. We propose the weight

function

wi =
exp � (o(Si)�R)2

l

� �
: o(Si) 2 ½Rl,Ru�

d : o(Si) 62 ½Rl,Ru�
,

(
ð4Þ

where o(Si) is a smoothed observed event rate, obtained
via LOESS regression of Yi on the risk scores Si. Nota-
tion reflects the dependence of observed event rates on
the risk model Si. o(Si) are presented on the vertical axis
of the calibration plot. l and d are tuning parameters
and control the degree of differential weighting of obser-
vations. As l increases, all weights tend to 1, and the
weighted recalibration method approaches standard
logistic recalibration. The parameter d prescribes how
much weight is assigned to observations outside a critical
risk interval ½Rl,Ru�, where clinicians may be additionally
concerned about good calibration. d is bounded below
by 0 and bounded above by the infimum of the weights
within the interval.

The weight function (4) encompasses 2 useful forms.
The first has the form of an exponential decay weight
(Figure 2A). Under this weighting scheme, observations
with event rates at or near the risk threshold have the
largest contribution to the likelihood, which decays
exponentially moving away from R. The second form
(Figure 2B) approximates a step function and is useful to
prioritize calibration over a range of risks instead of a
single risk threshold. In the ASCVD example, additional
guidelines and current practices in cardiology indicate
that 5% to 10% is an interval of critical risks that may
affect clinical decisions. For settings in which good cali-
bration is important for the interval ½Rl,Ru�, l can be set
to a large value so that weights within the interval are all
close to 1 (e.g., l � 10), and only specification of d is
needed. For settings in which good calibration at the risk
threshold R is most important, the exponential decay
form can be used, and only specification of l is needed.
Supplementary Material B provides guidance for obtain-
ing weights, including tuning parameter selection using a
cross-validation procedure.

These weighting schemes down-weight, to a greater or
lesser degree, observations with smoothed event rate
(o(Si)) away from the risk threshold. In a sense, we use
less data to achieve a more targeted calibration, and
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therefore, there is a tradeoff between the improved cali-
bration at or near the risk threshold (and therefore also
sNB) and the precision of results (more variability in â0

and â1). When using this method, we recommend report-
ing the effective sample proportion. Since all weights are
between 0 and 1, the effective sample proportion can be
calculated as the average weight, Eff = 1

n

Pn
i= 1 wi: In

standard logistic recalibration, all wi[1, and the effective
sample proportion is 1.

Constrained Logistic Recalibration

In our second approach to recalibration, we propose esti-
mating the recalibration intercept and slope by maximiz-
ing the logistic likelihood over a restricted parameter
space. The restricted space only includes recalibration
parameters a0 and a1 that produce a recalibrated risk
model with high sNB. The concepts in the ‘‘Graphically
Assessing Potential Net Benefit under Recalibration’’ sec-
tion make this possible, because we are able to estimate
the maximum possible sNB among all possible relcalibra-
tions of S.

Given a risk score S, risk threshold R, and recalibra-
tion parameters a0 and a1, the plug-in estimator of the
standardized net benefit of the recalibrated risk model is

dsNB(a0,a1)=
1

nY

XnY

i= 1

1
ea0 +a1Zi

1+ ea0 +a1Zi
. R

� �
�

1� p̂

p̂

R

1� R

1

n�Y

Xn�Y

i= 1

1
ea0 +a1Zi

1+ ea0 +a1Zii
. R

� �
, ð5Þ

where nY and n�Y are the number of cases and controls,
respectively, in the sample of data available for recalibra-
tion. We propose estimating recalibration parameters
~a=(a0,a1) via the following constrained maximization
problem.

(a�0,a
�
1)= argmax

(a0,a1)2R3R
+

1

n

Xn

i= 1

Yi(a0 +a1Zi)� log 1+ ea0 +a1Zi
� �� 	

subject to dsNB(a0,a1) � dsNBmax � ŝ(dsNBmax),

ð6Þ

where dsNBmax is the estimated maximum achievable sNB

among all risk scores of the form

S�i =
ea0 +a1Zi

1+ ea0 +a1Zi
:

That is, we propose estimating ~a by maximizing the like-
lihood of the logistic model over a constrained parameter

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A

Event Rate

W
ei

gh
t

λ= 1
λ= 0.1
λ= 0.01
R = 0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B

Event Rate

W
ei

gh
t

δ= 0.5  λ= 10
R = 0.2
Rl=0.1
Ru=0.3

Figure 2. Example of weight functions used in the weighting scheme. The horizontal axis shows the event rate, and the vertical
axis gives the weight. (A) Exponential decay weight with ½Rl,Ru�[½0, 1� (and therefore no need to specify d) and l= 1, 0:1, and
0:01. This weight may be appropriate when good calibration at the risk threshold is of primary interest. (B) Weight function
approximating a step function with l= 10, d= 0:5, and specified risk interval ½10%, 30%� around R= 20%. This weighting
scheme may be appropriate when good calibration over an interval of risk is of interest in addition to good calibration at R.
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space. For fixed harm-benefit ratio R
1�R

, dsNBmax is found
by varying decision threshold r (see the ‘‘Graphically
Assessing Potential Net Benefit under Recalibration’’
section). That is, we solve the 1-dimensional optimiza-
tion problem

dsNBmax(S)= max
r2½0, 1�

dTPRr(S)�
1� p̂

p̂

R

1� R
dFPRr(S)


 �
:

Acknowledging that there is uncertainty in dsNBmax, we
use a 1-standard-error type of rule in the inequality con-
straint. Such rules are often used when tuning penalized
regression methods.29 The constrained parameter space
includes all ~a that produce a risk model with dsNB within
1 standard error of dsNBmax. Supplementary Material A
provides an estimate of this standard error.

The constrained logistic recalibration solution differs
from the standard logistic recalibration solution when
the latter is outside the constrained parameter space.
These are exactly the instances in which there is evidence
that standard logistic recalibration is inadequate in terms
of the clinical utility of the recalibrated risk model. In
situations lacking such evidence, the constrained and
standard logistic recalibration solutions will be the same.

Results

Simulation Results

In this section, we compare weighted and constrained
logistic recalibration to standard logistic recalibration
using simulated data. We present 4 different simulation
examples representing different types of miscalibration.
For all examples, we use the risk threshold R= 0:3. For
the weighted approach, an exponential and step weight
function are used, with risk interval ½Rl,Ru�= ½0:25, 0:35�.
For brevity, results for the step function appear in Sup-
plementary Material C. Tuning parameters are selected
using 25 replications of 5-fold cross-validation.

Recalibration parameters are estimated from data sets
of size 500, 1000, 5000, and 10,000. We use a large inde-
pendent validation data set of size 106 to evaluate the
true (rather than estimated) risk model performance
before and after recalibration. Table 6 in Supplementary
Material C summarizes results for each example with
500 repeated simulations.

We simulate the data as follows. First, true risks (pi)
are generated from a mixture Beta distribution, com-
prised of 3 subdistributions. The subdistributions are
defined by the tendency to have low, medium, or high
true risks. Beta hyperparameters and mixing proportions
vary by example. Outcomes Yi are generated from

a Bern(pi) distribution. The overall event rate is
E½Yi�=E½E½Yijpi��=E½pi�=

P3
m= 1 b3

a3

a3 +b3
, where am

and bm are the Beta hyperparameters for 3 different sub-
populations, and bm is the mixing proportion for subpo-
pulation m. Finally, we induce miscalibration by
applying a piecewise polynomial function to the true risk
model. We vary the type of miscalibration to capture dif-
ferent scenarios. Full details for each scenario are pro-
vided in Supplementary Material C.

We present 4 types of miscalibration: underestimation
of risk scores near the risk threshold and overestimation
elsewhere (example 1); underestimation of risks for all
risk scores (example 2); overestimation of risk scores
near the risk threshold and underestimation far from the
risk threshold (example 3); and overestimation of risks
for all risk scores (example 4). Table 1 shows the sNB of
the original and recalibrated risk models for all examples
and sample sizes. Figure 3 shows calibration curves for
all examples and sample size of N = 5000. Calibration
plots for other sample sizes and additional simulation
results are in Supplementary Material C.

In example 1, the original risk model underestimates
risk at the risk threshold. The calibration curves in Fig-
ure 3A show good calibration at the risk threshold under
the weighted and constrained approaches. In contrast,

Table 1 Summary of Simulation Resultsa

Sample Size Original Standard Weighted Constrained

Example 1
500 0.430 0.446 0.446 0.458
1000 0.430 0.445 0.445 0.481
5000 0.430 0.455 0.503 0.504
10,000 0.430 0.457 0.499 0.501

Example 2
500 0.475 0.510 0.513 0.524
1000 0.475 0.491 0.491 0.491
5000 0.475 0.511 0.523 0.524
10,000 0.475 0.511 0.521 0.525

Example 3
500 0.440 0.459 0.461 0.475
1000 0.440 0.440 0.457 0.476
5000 0.440 0.458 0.484 0.488
10,000 0.440 0.449 0.502 0.503

Example 4
500 0.282 0.417 0.418 0.417
1000 0.282 0.417 0.417 0.417
5000 0.282 0.413 0.421 0.435
10,000 0.282 0.422 0.430 0.431

asNB of original risk score, and after standard, weighted, and

constrained recalibration. All sNB calculations are obtained from a

large set of independent data (N = 106) to show the true performance

of each risk model.
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Example 4
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Figure 3 Calibration curves and the distributions of risk scores for examples 1 to 4 and sample size N = 5000. Calibration curves
for the original, standard recalibrated, weighted recalibrated, and constrained recalibrated risk models are shown for each
example. The histogram shows the distribution of risk scores before any recalibration. Dotted lines indicate the clinically
important risk threshold, R= 0:3. The dashed is the identity line.
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after standard recalibration, risks continue to be under-
estimated at the risk threshold. Weighted and con-
strained logistic recalibration increase sNB by 0.042 and
0.044 compared with standard logistic recalibration.
However, gains are smaller for smaller sample sizes, par-
ticularly for the weighted approach. The smaller gains in
sNB under the weighted approach can be attributed to
the tuning parameter selected via the cross-validation
procedure. When sample size is inadequate to support
targeted recalibration, the weighted approach is designed
to approximate standard logistic recalibration via the
tuning parameter selection using the proposed cross-
validation approach.

Next, we consider an example in which risks are
underestimated across all predicted risks. The calibration
curves shown in Figure 3B show slight improvement
in calibration at the risk threshold for the weighted
approach compared with standard logistic recalibration
when N = 5000. Both weighted and constrained logistic
recalibration yield a recalibrated risk model with larger
sNB compared with standard logistic recalibration for all
sample sizes except n= 1000. Weighted recalibration
and constrained logistic recalibration produce similar
sNB, with slightly higher sNB for the constrained
approach. For the smallest sample size, n= 500, the con-
strained logistic recalibration approach has over 0.01

higher sNB compared with standard recalibration, while
the weighted approach offers smaller improvement.

In this example, when the sample size is small, there
are too little data near the risk threshold to support the
weighted approach. Therefore, weighted recalibration
approaches standard logistic recalibration. Similarly,
when N = 500, the constrained logistic recalibration is
the same as standard logistic recalibration because there
is relatively large uncertainty in dsNBmax, and the con-
straint space includes the standard logistic recalibration
solution.

In example 3 (Figure 3C), risks are overestimated at
the risk threshold and underestimated for very high and
low predicted risks. Both the weighted and constrained
recalibration methods produce a recalibrated risk model
with higher sNB than standard logistic recalibration. As
the sample size decreases, the sNB for weighted recalibra-
tion is similar to that for standard logistic recalibration,
while the constrained recalibration approach has sus-
tained increases in sNB compared with standard logistic
recalibration. Weighted and constrained logistic recali-
bration sacrifice calibration away from the risk threshold
to achieve better calibration near the risk threshold.
These methods were designed to make this tradeoff, since
miscalibration away from the risk threshold does not
affect clinical decisions.30

Finally, in example 4, standard, weighted, and con-
strained logistic recalibration all have similar sNB when
recalibration parameters are estimated in smaller data
sets. For larger sample sizes, the sNB of the constrained
approach is larger than all other methods, while the
weighted method still offers higher sNB than standard
logistic recalibration. For sample sizes N = 500 and
N = 1000, the estimated recalibration parameters under
the weighted approach closely approximate those from
standard recalibration (Table 5 in Supplementary Mate-
rial C).

Recalibration of the ACC-AHA-ASCVD Risk Model

MESA is a large, prospective, nationwide, multiethnic
cohort study of cardiovascular disease (CVD) in men
and women free of CVD at enrollment.31 Demographic
and clinical data were collected at baseline, and partici-
pants were monitored for more than 10 y for cardiovas-
cular clinical events. Recalibrating the ACC-AHA-
ASCVD risk model using the MESA cohort and priori-
tizing good calibration at the treatment threshold of
7.5% could improve the clinical utility of the risk tool
for the population. Figure 4 shows the estimated poten-
tial sNB of the ACC-AHA-ASCVD risk model. After
standard logistic recalibration, the estimated sNB is near
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Potential sNB Under Recalibration

Threshold (r) for Decision Rule
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Max(sNB) = 0.185 Original
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1 Standard Error

Figure 4 Potential gains in sNB under recalibration of the
American College of Cardiology (ACC)–American Heart
Association (AHA)–atherosclerotic cardiovascular disease
(ASCVD) model for all Multi-Ethnic Study of Atherosclerosis
participants eligible for risk score application (N = 4830). The
plot indicates the potential for recalibration to achieve higher
clinical utility than the original risk model since its estimated
sNB is more than 1 standard error lower than the estimated
maximum sNB. Standard logistic recalibration produces a risk
model with near maximum dsNB, so results do not support
pursuing specialized methods of recalibration.
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the maximum, suggesting that alternative recalibration
methods may not be worthwhile.

MESA is an ethnically diverse cohort, and there is
interest in evaluating and correcting miscalibration of the
ACC-AHA-ASCVD risk score within different sub-
groups defined by sex and/or ethnicity.2 Applying the
graphical tool to different subgroups in MESA, we found
potential for improvement for the Black male cohort
(Figure 5). The 10-y event rate of CVD in Black men
(within age range and low-density lipoprotein range, and
diabetes free, N = 538) was 7.1%. The average estimated
10-y risk of CVD from the ACC-AHA-ASCVD risk
score was 12.5%, indicating overestimation of risks.

We applied standard, weighted, and constrained logis-
tic recalibration to the ACC-AHA-ASCVD risk score in
the Black, male MESA cohort. Table 2 shows the esti-
mated recalibration parameters â, standardized net bene-
fit (and its components), event rate in the risk interval,
and proportion treated. We used bootstrap methods to
correct for optimistic bias in estimating sNB.8 The esti-
mated maximum achievable sNB under recalibration for
this sample was 0.362, with estimated standard error
0.102. Therefore, the lower bound used to to define the
constrained parameter space was dsNB(~a)= 0:260. Both
weighted and constrained recalibration offered improve-
ments in sNB over standard recalibration. Figure 6 shows
similar calibration between the three methods at the risk
threshold.

We acknowledge wide confidence intervals in these
results. The small sample size and resulting uncertainty
make it difficult to draw definitive conclusions about
improved clinical utility. However, despite the small
sample size, both the graphical device and optimism-
corrected estimates of sNB suggest the proposed methods
are advantageous.

Discussion

We presented methods for risk model recalibration that
aim to optimize a risk model’s clinical utility for making
risk-based decisions. Box 1 compares the 2 proposed
methods, which are both generalizations of standard
logistic recalibration. Moreover, both methods can be
expected to approximate or reproduce standard logistic
recalibration when it produces good calibration at the
critical risk threshold. We consider this feature a strength
of these approaches.

We additionally proposed a graphical device to help
researchers assess the potential for recalibration to
improve the clinical utility of a risk model. For a
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Figure 5 Potential gains in sNB under recalibration of the
American College of Cardiology (ACC)–American Heart
Association (AHA)–atherosclerotic cardiovascular disease
(ASCVD) risk model for Black males eligible for risk score
application (N = 538). The plot indicates the potential to
achieve higher clinical utility than the original risk model or
the risk model after standard logistic recalibration since the
estimated sNB of those risk models is more than 1 standard
error lower than the estimated maximum sNB.

Table 2 Comparison of Recalibration Methods in the MESA Black, Male Cohort for RAW = 0.01a

Measure Original Standard Weighted Constrained

(â0, â1) — (–0.911, 0.856) (0.088, 1.271) (–0.699, 0.960)
Effective Sample Proportion % — 100 70 100dsNB (95% CI) 0.175 (–0.082, 0.432) 0.179 (–0.068, 0.426) 0.304 (0.023, 0.586) 0.274 (–0.018, 0.473)
Optimism corrected dsNB (95% CI) — 0.165 (–0.082, 0.411) 0.295 (0.013, 0.577) 0.211 (–0.034 0.457)
Optimism corrected dTPR 0.868 0.550 0.759 0.582
Optimism corrected dFPR 0.650 0.350 0.430 0.355

aFor weighted recalibration, an indicator weight is used where a constant weight is applied to observations within the clinically defined risk

interval [2.5%, 10%], and a smaller constant weight is applied to observations outside that interval. Optimism-bias correction for dsNB and

confidence intervals estimated via bootstrap method with 500 replications.
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predefined risk model, we also provided methods to esti-
mate its maximum possible net benefit and its variance.
These results enable researchers to evaluate whether
specialized methods of recalibration, such as the 2
we propose, are likely to be advantageous. Both meth-
ods and the graphical tools are in the R package
ClinicalUtilityRecal.32

As discussed, this work assumes all conditions
required for net benefit metrics to be meaningful. We
also emphasize that we do not think recalibration should
be an automatic response to observing miscalibration.
Miscalibration can indicate issues, such as measurement
or population heterogeneity, that might be resolved in
other ways. When possible, identifying the source of mis-
calibration can provide researchers with a better under-
standing of avenues for correction, as well as indications
of complex changes in populations. Moreover, if there
are adequate data to develop a new risk model, refitting
may be preferred over recalibration. Other work has
compared standard logistic recalibration to refitting
methods.33–35 However, even when refitting is possible,
investigators might prefer recalibration to maintain a
connection with the original model. In this article, we
presume a context in which investigators have decided
that recalibration is their best course of action.

Standard logistic recalibration is a parsimonious
method to address miscalibration. In settings where the
miscalibration pattern at the risk threshold is similar to
the pattern for the bulk of the data (e.g., systematic
under- or overestimation) or settings where there is
under- or overfitting, standard logistic recalibration may
adequately improve calibration at the risk threshold. In
settings where standard logistic recalibration does not
adequately correct miscalibration at the risk threshold,
alternative recalibration methods are useful to ensure
risk-guided clinical decisions are made appropriately.
However, it may be unappealing to use methods that
increase the number of recalibration parameters esti-
mated, particularly if this leads to overfitting. Our
methods leverage the parsimony of standard logistic
recalibration while allowing researchers to focus on the
regions where good calibration matters most. Further-
more, we note that our methods could naturally be
applied with other families of recalibration functions,
such as the 3-parameter family proposed by Kull et al.36

The methods we propose are not intrinsically tied to the
logistic recalibration family.

Statistical software may return elements of statistical
inference (standard errors, confidence intervals, P values)
when estimating the recalibration intercept and slope.
These elements might be useful when the model is fit to
detect miscalibration, but we do not find them to be use-
ful for the actual process of recalibration. Instead, there
are 2 instances in which elements of statistical inference
play a key role in our proposed methods. First, we pro-
pose a 1-standard-error rule for assessing the potential
for recalibration to improve clinical utility using our pro-
posed graphical device. Second, we suggest that investi-
gators use a 1-standard-error rule when implementing
constrained logistic recalibration.

Weighted logistic recalibration requires tuning para-
meters to specify the weighting scheme. We envision
using the weighting scheme in 1 of 2 special forms, each
requiring a single tuning parameter. The computational
burden of cross-validation is a disadvantage of the
weighted method. When there are few events, heavy
down-weighting may be undesirable. In these instances,
the cross-validation procedure paired with a 1-standard-
error rule will indicate that the data do not support the
weighted approach, and weighted logistic recalibration
will approximate standard logistic recalibration. In gen-
eral, we recommend reporting the effective sample pro-
portion to gauge the impact of weighting.

As risk prediction becomes more ubiquitous with the
increase in both data availability and more sophisticated
prediction methods, opportunities to observe miscalibra-
tion are also more common. A recent article describes
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Figure 6 Calibration curves for the original risk score as well as
standard, weighted, and constrained recalibrated risk score in
the Multi-Ethnic Study of Atherosclerosis Black, male cohort.
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and classifies reasons for ‘‘data set drift’’ and implica-
tions for the performance of artificial intelligence sys-
tems.5 A risk model’s miscalibration has been called
‘‘clinically harmful’’ if it reduces the net benefit of using
the risk model below that of the uniform treatment poli-
cies (treat all and treat none).25 However, Kerr et al.37

give an example in which the net benefit of a miscali-
brated risk model is higher than both uniform treatment
policies, but addressing the miscalibration could substan-
tially improve the model’s net benefit to the relevant
population. This is a situation in which we consider mis-
calibration to be clinically harmful. It is important to
assess calibration even if a risk model outperforms treat-
all and treat-none rules. Investigators should consider
recalibrating a risk model whenever there is evidence that
its clinical utility could be meaningfully improved.
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