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Abstract

random predictor measurement heterogeneity.

Background: When a predictor variable is measured in similar ways at the derivation and validation setting of a
prognostic prediction model, yet both differ from the intended use of the model in practice (i.e, “predictor
measurement heterogeneity”), performance of the model at implementation needs to be inferred. This study
proposed an analysis to quantify the impact of anticipated predictor measurement heterogeneity.

Methods: A simulation study was conducted to assess the impact of predictor measurement heterogeneity across
validation and implementation setting in time-to-event outcome data. The use of the quantitative prediction error
analysis was illustrated using an example of predicting the 6-year risk of developing type 2 diabetes with
heterogeneity in measurement of the predictor body mass index.

Results: In the simulation study, calibration-in-the-large of prediction models was poor and overall accuracy was
reduced in all scenarios of predictor measurement heterogeneity. Model discrimination decreased with increasing

Conclusions: Heterogeneity of predictor measurements across settings of validation and implementation reduced
predictive performance at implementation of prognostic models with a time-to-event outcome. When validating a
prognostic model, the targeted clinical setting needs to be considered and analyses can be conducted to quantify
the impact of anticipated predictor measurement heterogeneity on model performance at implementation.

Keywords: Prognostic model, Measurement heterogeneity, External validation, Calibration

Background

Clinical prediction models for prognosis aim to provide
predictions of an outcome for individuals who have not
been part of the modelling process [1-5]. The quantity
that a clinical prediction model targets is defined by spe-
cifying the outcome, (candidate) predictors, population,
setting, time of prediction, and prediction horizon as
specifically as possible [6]. When the research setting
does not correspond to the intended setting of
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application in clinical practice [7, 8] or when modelling
strategies are inappropriate [9, 10], the predictive per-
formance of a prognostic model may be suboptimal at
implementation.

One reason for suboptimal predictive performance of
a model at implementation are differences in predictor
measurement procedures between model development
and implementation in practice [7, 11]. When discrepan-
cies in predictor measurement procedures impact the
performance of a clinical prediction model, this is re-
ferred to as predictor measurement heterogeneity [12].
The impact of predictor measurement heterogeneity on
predictive performance at external validation has been
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quantified for models of binary outcome data [11-14]
and illustrated in empirical datasets for logistic regres-
sion diagnostic prediction models [11, 15]. However, the
step towards model implementation in a target popula-
tion has not been studied yet. The impact of predictor
measurement heterogeneity in time-to-event data has
not received adequate attention either.

Previous studies on predictor measurement heterogen-
eity defined heterogeneous predictor measurements
using measurement error models [16, 17] by varying the
degree of measurement error across settings of deriv-
ation and validation [11, 12, 15]. Measurement error in
predictor variables in regression analysis is known to re-
sult in biased estimates of regression coefficients [17,
18]. For instance, non-differential random measurement
error in a continuous predictor attenuates the regression
coefficient for that variable. However, a prediction model
that includes a predictor measured with error can still
yield valid predictions in the setting it was derived in.
Predictions based on error-prone measurements can also
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be correct in external settings, i.e., at validation or im-
plementation, provided that the degree of error in the
predictor measurement is similar to that of the deriv-
ation setting. When the measurement of the predictor is
subject to different amounts of error compared to the
derivation setting, this could hamper the transportability
of the model.

Methods to correct for measurement error can be
used to obtain prediction models with unbiased esti-
mates of regression coefficients when predictors are
measured with error [17-20]. However, since measure-
ment error correction is not often performed in predic-
tion studies [21] and practically infeasible at
implementation, we focus on the impact of differences
in degree of measurement error across settings on pre-
dictive performance of models that are uncorrected for
measurement error in (one of) the predictors.

In the current study, we suggest an approach to antici-
pate the impact of predictor measurement heterogeneity
on a prognostic model when it is implemented in clinical
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Fig. 1 An overview of the derivation, validation, and implementation setting of a prognostic model, highlighting considerations regarding
predictor measurement heterogeneity. Note that “impact analysis” research is a phase between validation and implementation that is not
addressed in this diagram. A prediction target is defined by specifying the target population, setting, outcome, (candidate) predictors, time of
prediction, and prediction horizon as specifically as possible
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practice. We assess the impact of predictor measure-
ment heterogeneity in time-to-event outcome data using
large-sample simulations. We propose a quantitative
prediction error analysis for validation studies that can
be used to quantify the impact of anticipated predictor
measurement heterogeneity in one of the predictors.
This is illustrated using an example of a model predict-
ing the 6-year risk of developing type 2 diabetes.

Predictor measurement heterogeneity
For a prognostic model to provide correct predictions of
an outcome in a clinical setting, several phases of model
development should be considered, which is outlined in
Fig. 1 [5, 22-24]. Ideally, a prognostic model is derived
using data that correspond to the targeted implementa-
tion setting (derivation setting) [25, 26]. Predictive per-
formance is typically evaluated by measures of apparent
performance and measures of performance after internal
validation of the model, i.e., after correcting for opti-
mism about the performance [27, 28]. When the internal
predictive performance of the model is sufficient, its per-
formance can be investigated using external (validation)-
data [29, 30], preferably multiple times [31-33]
(validation setting). When predictive performance at ex-
ternal validation is sufficient, implementation of the
model in clinical practice could be considered (imple-
mentation setting), advisably after performing an impact
analysis [34, 35].

One aspect to consider in all phases of development of
a prognostic model is predictor measurement heterogen-
eity, indicated in the grey box in Fig. 1. Procedures to
collect and measure predictor data for derivation and
validation studies ideally correspond to the future imple-
mentation setting. When predictor measurement proce-
dures at derivation and/or validation deviate from the
predictor measurement procedure used in clinical prac-
tice, this can affect the predictive performance at
implementation.

Simulation study

We performed a simulation study to investigate the im-
pact of predictor measurement heterogeneity across val-
idation and implementation setting on out-of-sample
predictive performance of a survival model developed
and validated in time-to-event outcome data. We as-
sumed that all other possible sources of discrepancy in
predictive performance are not present, e.g., there are no
differences in outcome prevalence and treatment assign-
ment policy, there is no overfitting with respect to the
derivation data, and the prognostic model is correctly
specified in terms of functional form and included inter-
actions. We used (very) large samples (z = 1,000,000) to
minimize the role of random simulation error.
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Design of simulation study

Online Supplement 1 contains a detailed description of
the simulation study. The main aspects of the design of
the simulations study are described below and reported
according to previous recommendations [36].

Data-generating mechanism

We simulated derivation, validation, and implementation
datasets with 1,000,000 observations containing a continu-
ous predictor variable X from a standard normal distribu-
tion. A time-to-event outcome was simulated for each
subject so that outcomes followed a Cox-exponential
model, using methods described by Bender and colleagues
[37] (see Table 1 for simulation parameters). We gener-
ated datasets without censoring (median survival time ¢ =
6.6). Additionally, datasets with administrative censoring
after ¢ = 15 (74% event fraction, median survival time 6.6)
and with random censoring (69% event fraction, median
survival time ¢ = 5.6) were generated.

At implementation, a different measurement of pre-
dictor X was available, denoted W. Predictor measurement
heterogeneity across validation and implementation set-
ting was recreated using measurement error models, simi-
lar to [12]. The mean difference between X and W was
denoted y (additive systematic measurement heterogen-
eity), the linear association between X and W was denoted
0 (multiplicative systematic measurement heterogeneity),
and the variance introduced by random deviations from X
was denoted o, where non-zero values of o2 reflect that

Table 1 Simulation parameters

Parameter Value
Baseline hazard of an event 0.1
Conditional hazard ratio for association predictor X and 2
survival times
Time point of administrative censoring 15
Baseline hazard of censoring 0.01
Conditional hazard ratio for association between random 3
variable for censoring and censoring times
Mean of predictor X and random variable for censoring 0
Variance of predictor X and random variable for censoring 1
Predictor W at implementation*

U} -03to

03
¢ 051to02
O, 0to+2

*At implementation, a different measurement of predictor X was available,
denoted measurement W. The connection between X and W was defined
using the following measurement heterogeneity model: E(W) = ¢ + 6E(X)
+€, where €~N(0,02), and where y denotes an additive shift in W with
respect to X, 6 denotes a multiplicative linear association between W and X,
and o, denotes random deviations from X
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measurement W is less precise than X (random measure-
ment heterogeneity).

In total, 162 scenarios were evaluated (27 scenarios of
predictor measurement heterogeneity, for 2 different
models under 3 different censoring mechanisms).

Prediction target

The prediction target was defined as obtaining correct
predictions of the outcome risk at time point ¢ = 6.5
conditional on predictor measurement W measured at
the time of prediction (i.e., at £ = 0).

Methods

A parametric exponential survival model and a semi-
parametric Cox regression model were fitted in the der-
ivation dataset. Although a prognostic model is typically
internally validated before performing external validation
[1, 27], we did not perform an internal validation since
issues of overfitting were expected to be negligible due
to the large number of events relative to the number of
predictors. The prognostic model was externally vali-
dated at time ¢t = 6.5 (around median survival time)
under predictor measurement homogeneity in an inde-
pendent (validation) dataset. Predictor measurement
homogeneity refers to the situation in which predictors
are measured in the same way at derivation and valid-
ation. Furthermore, the predictive performance of the
prognostic model was investigated in various implemen-
tation settings under predictor measurement heterogen-
eity. Notably, the models were validated under predictor
measurement heterogeneity as-is, without correcting for
differences in measurement procedures. In each simula-
tion scenario, the different steps outlined here were per-
formed once.

Performance metrics

Predictive performance was evaluated at ¢ = 6.5, i.e,, ap-
proximately at the median survival time. Calibration of
the model on average, or “calibration in the large” [38,
39], was evaluated by the ratio of the observed marginal
survival at ¢t = 6.5 (obtained through a Kaplan-Meier
curve) versus the predicted marginal survival at ¢ = 6.5
(obtained by averaging predicted survival at t = 6.5 of
each observation), denoted the observed/expected ratio
(O/E ratio). Discrimination was evaluated by the
cumulative-dynamic time-dependent area under the re-
ceiver operating characteristic curve AUC(f) [40-42].
Overall accuracy was evaluated by the index of predic-
tion accuracy at t = 6.5, IPA(f), which equals a Brier
score [43] at ¢ = 6.5 that is benchmarked to a null model
ignoring all patient specific information and simply pre-
dicts the empirical prevalence to each patient [44]. A
perfect model has an IPA of 1, a non-informative model
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has an IPA of 0 and a negative IPA indicates a harmful
model.

Software

The simulation study was performed using R statistical
software version 3.6.3 [45]. The simulation code is avail-
able from https://github.com/KLuijken/PMH_Survival.

Results of simulation study

Predictor measurement heterogeneity affected predictive
performance at implementation. In all scenarios of pre-
dictor measurement heterogeneity, the prognostic
models were miscalibrated in the large (range O/E ratio
0.89 to 1.19, compared to 1.00 under predictor measure-
ment homogeneity), and overall accuracy was reduced
(range IPA(6.5) — 0.17 to 0.17, compared to 0.17 under
predictor measurement homogeneity). The AUC(6.5)
(range 0.58 to 0.74, compared to 0.74 under predictor
measurement homogeneity) was particularly affected by
random predictor measurement heterogeneity. We
present results for the Cox regression model under no
censoring only. The impact on the measures of predict-
ive performance under administrative and uninformative
(random) censoring and for the parametric exponential
survival model was similar (data in Online Supplement
1, Section 3).

As measurement procedure W contained more ran-
dom variability compared to X, ie., a case of random
measurement heterogeneity, o, = 0 at validation and o, >
0 at implementation, the O/E ratio moved slightly under
1 (Fig. 2A). The AUC(6.5) and IPA(6.5) decreased as
random measurement heterogeneity increased.

Additive systematic measurement heterogeneity, i.e., {
= 0 at validation and ¢ = 0 at implementation, affected
the calibration-in-the-large coefficient at implementa-
tion, but minimally affected the AUC(6.5), and IPA(6.5)
at implementation (Fig. 2B). When measurement pro-
cedure W at implementation provided a systematically
higher value of the predictor compared to measurement
procedure X at validation, ie., Yy > O, this resulted in
overestimation of the average outcome incidence at im-
plementation, and the O/E ratio < 1.

Multiplicative systematic measurement heterogeneity,
i, 8 = 1 at validation and 6 # 1 at implementation,
yielded an O/E ratio < 1 in case 8 > 1 (Fig. 2C). Multi-
plicative systematic measurement heterogeneity minim-
ally affected the AUC(6.5) in absence of additive
systematic and random measurement heterogeneity. As
0 was further from 1, the IPA(6.5) at implementation de-
creased, indicating lower overall accuracy.

Combined random, additive systematic, and/or multi-
plicative systematic predictor measurement heterogen-
eity sometimes reinforced or cancelled out effects on
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Fig. 2 Measures of predictive performance under predictor measurement heterogeneity between validation and implementation setting. Results
shown for random predictor measurement only (A), additive systematic predictor measurement only (B), and multiplicative systematic predictor
measurement heterogeneity only (C). The vertical dashed line indicates predictor measurement homogeneity between validation and
implementation setting. The x-axes show measurement heterogeneity parameters describing the predictor measurement at implementation
relative to the predictor measurement at validation, where o, denotes random deviations from the measurement at validation, | denotes an
additive shift with respect to the measurement at validation, and 6 denotes a systematic multiplicative association with the measurement at
validation. Note that additional simulation scenarios were run to smooth the plots

predictive performance (see Online Supplement 1, Sec-
tion 3).

lllustration of quantitative prediction error
analysis

We describe an analysis that quantifies the impact of an-
ticipated predictor measurement heterogeneity between
the validation and implementation setting. The analysis
is illustrated by validation of a prognostic model predict-
ing the 6-year risk of developing type 2 diabetes. The
section “Motivating example” describes validation and
updating of the model in an example validation dataset.
The hypothetical step to implementation is described in
the section “Quantifying the impact of anticipated pre-
dictor measurement heterogeneity between validation
and implementation setting” by means of a seven-step
quantitative prediction error analysis (Table 2). The pro-
posed analysis can be performed to assess the impact of
anticipated heterogeneity in measurement of one of the
predictors  across  settings of validation and

implementation. A detailed description including ana-
lysis code can be found in Online Supplement 2.

Motivating example
Zhang and colleagues derived a prognostic model for the
6-year risk of developing type 2 diabetes from the pre-
dictors age, body mass index (BMI), triglyceride, and
fasting plasma glucose at the time of prediction [46]. In
the derivation study (n = 11,564), the incidence density
rate was 9.57/1000 person years (659 events in total)
[46]. Performance of the prediction model was measured
in terms of the area under the receiver operating charac-
teristic curve (not further specified), which was equal to
0.77 (95% CI, 0.76 to 0.78). As a small remark, the re-
ported regression coefficient of fasting plasma glucose
did not equal the logarithm of the corresponding hazard
ratio, which we assumed was a typo. We used the re-
ported regression coefficient in model validation, as this
was the focus in the main text of Zhang and colleagues.
The example dataset for validation was a publicly
available dataset containing information about 15,464
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Table 2 Quantitative prediction error analysis to quantify the
impact of anticipated predictor measurement heterogeneity at
implementation of a prognostic model in clinical practice
(details in section “Quantifying the impact of anticipated
predictor measurement heterogeneity between validation and
implementation setting” of the main text)

1. State the prediction target.

2. Report whether predictor measurement procedures in the validation
setting correspond to those at implementation.

3. Identify one predictor that is expected to be measured using a
different procedure in the implementation setting than in the validation
setting.

4. Define a model for the relation between the measurement in the
validation study and its equivalent in the implementation setting.

5. Perform a literature search to establish a range for the size of the
possible parameters of predictor measurement heterogeneity.

6. Simulate the scenarios of anticipated measurement heterogeneity to
assess the possible impact on predictive performance.

7. Report the impact of anticipated predictor measurement
heterogeneity on predictive performance at implementation in clinical
practice.

individuals who participated in a medical examination
program at the Murakami Memorial Hospital from 2004
to 2015, made available alongside a study by Okamura
and colleagues [47]. We considered the validation sam-
ple to be similar to the derivation setting (see Online
Supplement 2 for a more detailed comparison of the
derivation and validation setting). BMI was reported to
be measured at medical examination; we assumed it was
computed from scale and measuring-tape measurements
and thus assumed no predictor measurement heterogen-
eity across derivation and validation setting. We cen-
sored follow-up after 6 years and assumed censoring
before that time was non-informative. The incidence
density rate was 2.84/1000 person years (192 events in
total), event times ranged from 285 to 2191 days, and
censoring times ranged from 164 to 2192 days.

We evaluated predictive performance at 6 years using
the performance measures described in our simulation
study. At validation, the calibration-in-the-large O/E ra-
tio was 0.47 (95% CI, 0.41 to 0.54), indicating that pre-
dicted risks were overestimated on average. The AUC(6
years) was 0.89 (95% CI, 0.85 to 0.89), indicating good
discriminatory performance of the model. The IPA(6
years) was 0.02 (95% CI, 0.01 to 0.03), indicating low
overall accuracy of the model.

Given the suboptimal calibration of the model and
the difference in outcome incidence between deriv-
ation and validation setting, we updated the model by
recalibrating the baseline survival for being diabetes
free using an offset for the linear predictor [48].
Predictive performance of the model after updating
was as follows: the calibration-in-the-large O/E ratio was
1.02 (95% CI, 0.90 to 1.18), the AUC(6 years) was 0.87
(95% CI, 0.85 to 0.89), and the IPA(6 years) was 0.04 (95%
CIL, 0.04 to 0.05).

Page 6 of 11

Quantifying the impact of anticipated predictor
measurement heterogeneity between validation and
implementation setting

Seven steps are described to perform a quantitative pre-
diction error analysis in a prognostic model validation
study to assess the impact of anticipated heterogeneity
in measurement (Table 2). For the example described
above, we anticipate that BMI will be calculated based
on measurement of self-reported height and weight at
implementation, instead of tape and scale measures at
validation.

First, the prediction target is stated. In this example,
the prediction target would be the 6-year risk of devel-
oping type 2 diabetes in Asian adults presenting for pre-
ventive medical examination by measurements of age,
BM], triglyceride, and fasting plasma glucose at the time
of prediction. Incident diabetes is defined as HbAlc >
6.5% (48 mmol/mol) in two test results, measured using
a standardized method [49]. Age is measured in years,
BMI is calculated from self-reported weight and height,
triglyceride is measured according to standards of the
National Institute of Standards and Technology [50],
and fasting plasma glucose is measured using a stan-
dardized method [51, 52]. Details on procedures to
measure HbAlc, triglyceride, and fasting plasma glucose
are omitted here for brevity, but are ideally described in
more detail in an empirical study [7]. Treatment assign-
ment policy was assumed to be similar in the research
settings compared to the target clinical setting and inter-
ventions such as diet were not modeled explicitly (i.e.,
ignore-treatment strategy [53]).

Second, it is described whether predictor measurement
procedures in the validation setting correspond to those
that will be used at implementation. Measurements of
age, triglyceride, and fasting plasma glucose roughly cor-
respond to the target predictor measurement proce-
dures. However, the validation study measured BMI
during medical examination of a patient, which differs
from self-reported measurements defined in the predic-
tion target.

Third, a predictor is identified that is expected to be
measured differently (e.g., using a different procedure) in
the implementation setting compared to the validation
setting. In the example, measurement heterogeneity was
expected to be largest for the predictor BMI.

Fourth, a model for the relation between the measure-
ment of BMI in the validation study, BMI,,;, and in the
implementation setting, BMI,,,,,, is defined, e.g.,:

BMl,,, = ¢ + OBMI, 4 + €,

where ¢ ~ N'(0,02), and y = 0 indicates that measure-
ments of BMI in the implementation setting are system-
atically additively shifted with respect to BMI in the
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validation study, 6 = 1 indicates measurements of BMI
in the implementation setting are systematically multi-
plicatively altered with respect to BMI in the validation
study, and o, > 0 indicates measurements of BMI in the
implementation setting contain more random variation
relative to BMI in the validation study.

Fifth, the range is specified for the parameter values of
the model for the anticipated predictor measurement
heterogeneity, as defined in Step 4. A literature search
was performed to identify studies describing measure-
ment error in BMIL Informed by studies comparing mea-
sured and self-reported BMI values [54—58], the range of
measurement error parameters was specified as - 1 to 0
for y, 0.9 to 1 for 6, and 0 to 1.5 for o.. In general, we
advise to use terms like “measurement error,” “validation
study,” and the measurement procedures to search for
relevant literature. Of note, the term “validation study”
has a different meaning in prediction literature com-
pared to measurement error literature. In prediction
modelling research, a validation study refers to a study
that evaluates the predictive performance of an existing
prediction model. In measurement error literature, a val-
idation study refers to a study that investigates the rela-
tion between a perfect (error-free) measurement and its
(error-prone) proxy measurement, usually in a subset of
individuals included in the study [17]. In the current
study, we thus far used the term “validation study” ac-
cording to the prediction literature.

Sixth, the scenarios of anticipated measurement hetero-
geneity can be investigated using statistical simulations to
assess the possible impact on predictive performance.
Briefly, we plugged the values found in Step 5 into the
model specified in Step 4 to generate measurements of
BMI that can be anticipated in the implementation setting
in participants otherwise similar to the validation sample.
We evaluated the O/E ratio for calibration in the large,
AUC(6 years), and IPA(6 years) under the scenarios of
measurement heterogeneity in BMI (see Online Supple-
ment 2) and plotted the outcomes (Fig. 3).

Seventh, the impact of anticipated predictor measure-
ment heterogeneity on predictive performance in the im-
plementation setting can be reported in a validation
study, accompanied by a description of Steps 1-6. Figure
3 illustrates the range of the O/E ratio at 6 years, AUC(6
years), and IPA(6 years) under the anticipated measure-
ment heterogeneity of BMI across validation and imple-
mentation setting. The findings suggest that model
discrimination and overall accuracy are likely minimally
affected by the change in measurement of BMI. How-
ever, with increasing differences in BMI measurement,
model miscalibration increases and predicted risks are
more likely to be overestimated on average.

Possible consequences of this finding may be either to
recommend collecting data on BMI using scale and
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measuring-tape measures when the model is used in
clinical practice to predict 6-year risk of developing dia-
betes or to update the current prediction model using
self-reported measures of BMI before implementing it in
clinical practice. In the current example, it is likely not
worthwhile to perform another study in which data on
BMI is collected using self-reported measures rather
than measuring BMI using a scale and measuring tape
to update the coefficient for BMI. One reason for this is
that it is unlikely that clinical decisions will change when
the 6-year risk prediction of developing diabetes is over-
estimated, in particular because the average predicted
risk is around 1% and predicted risks are overestimated
around 1.5 times compared to observed risks in extreme
cases of predictor measurement heterogeneity of BMI.

Discussion

Our simulations indicated that predictor measurement
heterogeneity across the validation and implementation
setting of a prognostic model can substantially affect
predictive performance at implementation. We illus-
trated how a quantitative prediction error analysis can
be applied in validation studies to quantify the impact of
anticipated dissimilar predictor measurements in the
clinical target setting on predictive performance. Based
on this analysis, a validation study can inform readers
about the degree to which anticipated predictor meas-
urement heterogeneity affects predictive performance
when the model is implemented in clinical practice.

The rationale for the quantitative prediction error ana-
lysis was analogous to the quantitative bias analysis
framework by Lash and colleagues, which can be applied
to estimate the direction, magnitude, and uncertainty
from systematic errors affecting studies of causal infer-
ence [59, 60]. While Lash and colleagues encourage re-
searchers to address multiple sources of bias [59], we
focused on a single source of heterogeneity across set-
tings that can affect performance of a clinical prediction
model. We focused on non-differential systematic and
random measurement heterogeneity in a single pre-
dictor, where the clinical implementation setting con-
tained more measurement variance compared to the
validation setting. Future work could extend these quan-
titative prediction analyses to non-differential measure-
ment heterogeneity, to situations where the clinical
implementation setting contains less measurement vari-
ance compared to the validation setting—for instance
through methods analogous to the simulation-
extrapolation method (SIMEX) [61, 62]—and to models
that take into account correlations of measurement het-
erogeneity structures when multiple predictors are ex-
pected to be measured heterogeneously across validation
and implementation setting. Additionally, other sources
of heterogeneity across settings that can affect
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(See figure on previous page.)

Fig. 3 Impact of anticipated heterogeneity in measurement of the predictor body mass index on measures of predictive performance at
implementation of a model to predict the 6-year risk of developing diabetes type 2. The dotted line indicates predictive performance under
predictor measurement homogeneity. Dark grey indicates the impact within the range of specified predictor measurement heterogeneity and
light grey indicates the range of 95% Cls from 500 bootstrap resamples. Random predictor measurement heterogeneity is presented on the x-
axis, and performance measures are marginalized over scenarios of additive and multiplicative systematic predictor measurement heterogeneity

performance of a clinical prediction model can be added
to the quantitative prediction error analysis, such as het-
erogeneity in event rate, heterogeneity in outcome meas-
urement procedures, and heterogeneity in treatment-
assignment policies during follow-up.

The example of predicting the risk of developing type
2 diabetes illustrated the impact anticipated measure-
ment heterogeneity in the predictor BMI. Notably, the
magnitude of the impact of anticipated measurement
heterogeneity depends on whether the linear predictor is
centered to the validation data. While many functional-
ities in R statistical software [45] center the linear pre-
dictor by default, centering is likely uncommon in
clinical practice and obviously decreases the impact of
predictor measurement heterogeneity on predictive per-
formance. A limitation of our example is that measure-
ment heterogeneity was only considered in a single
predictor, whereas the predictor fasting plasma glucose
can potentially be measured heterogeneously across set-
tings as well, in particular because fasting instructions
and adherence to instructions may differ across settings.
Taking this into account requires consideration of the
duration of fasting relative to the timing of the plasma
glucose measurement [21]. Modelling the functional
form of fasting plasma glucose or another (circadian)
fluctuating hormone or biomarker over time to assess
the impact in heterogeneity of measurement timings
across time would be an interesting topic for future
research.

As a limitation to our study, the simulations lacked a
comparison of predictive performance under predictor
measurement heterogeneity of models that were vali-
dated as-is to models that were corrected for measure-
ment error in the predictions. We focused on
implementation of models as-is because this is com-
monly done in practice, but that comparison would have
provided additional insights on predictive performance
under predictor measurement heterogeneity and could
be the topic of future research. Additionally, implemen-
tation of the quantitative prediction error analysis may
be hampered because literature informing the choice of
measurement error parameters (Step 5) may be limited.
When no information is available about predictor meas-
urement structures in an implementation setting of
interest, it might be helpful to set up a (measurement
heterogeneity) validation study to estimate the predictor
measurement heterogeneity parameters directly [17].

This may be an alternative approach to anticipate the
performance of a prognostic model in a particular set-
ting that is likely less cumbersome than conducting a

prediction validation study in the implementation
setting.
Conclusions

Heterogeneity of predictor measurements across settings
of validation and implementation had a substantial influ-
ence on predictive performance at implementation of
prognostic models with a time-to-event outcome. Data
for derivation and validation of prognostic models are
collected ideally using procedures that match the target
clinical setting (i.e., how and where the model will be
implemented in clinical practice). When this is infeas-
ible, a quantitative prediction error analysis provides an
analytical approach to quantify the anticipated impact of
the discrepancies between available research data and
clinical practice.
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