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Primary bone cancers (PBC) belong to the family of mesenchymal tumors classified based on their cellular
origin, extracellular matrix, genetic regulation, and epigenetic modification. The three major PBC types,
Ewing sarcoma, osteosarcoma, and chondrosarcoma, are frequently aggressive tumors, highly metastatic,
and typically occur in children and young adults. Despite their distinct origins and pathogenesis, these
sarcoma subtypes rely upon common signaling pathways to promote tumor progression, metastasis,
and survival. The IGF/PI3K/mTOR and AXL/YAP/TAZ pathways, in particular, have gained significant
attention recently given their ties to oncogenesis, cell fate and differentiation, metastasis, and drug resis-
tance. Naturally, these pathways – and their protein constituents – have caught the eye of the pharma-
ceutical industry, and a wide array of small molecule inhibitors and antibody drug-conjugates have
emerged. Here, we review how the IGF/PI3K/mTOR and AXL/YAP/TAZ pathways promote PBC and high-
light the drug candidates under clinical trial investigation.
� 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Osteosarcoma (OS) and Ewing sarcoma (ES) are the most fre-
quently occurring malignant primary bone cancers (PBC) of child-
hood and adolescence[1]. Chondrosarcoma (CS) tends to occur
later in the 4th-7th decades. Standard treatment with chemother-
apy, radiation, and surgery has variable success across these tumor
types, but the cure rate for those with metastatic or relapsed dis-
ease has changed little over the last five decades[2].

Fortunately, molecular characterization of these tumors has
revealed potential pathways for drug intervention. Though IGF-1
regulates osteogenesis and bone homeostasis in normal bones
[3,4], it also instigates an aberrant IGF/PI3K/mTOR pathway signal-
ing cascade in PBC[5]. Downstream of IGF-1R, PI3K activation has
been shown in several solid tumors to affect cell metabolism, cell
survival, proliferation, and protein synthesis [6,7]. Due to the fre-
quent activation of the IGF/PI3K/mTOR pathway in PBC and other
solid tumors, which intersects a range of mechanical and chemical
signaling mechanisms in cancer, this pathway has been identified
as an attractive target in OS, ES, and CS[8–10]. Though IGF-1R-
targeted therapies have been the subject of many clinical trials
for sarcoma, with or without mTOR inhibitors [11,12], their impact
on cell differentiation, plasticity, and drug resistance mechanisms
remain largely unexplored. The high inter-patient heterogeneity
among PBC patients also suggests the need for response biomark-
ers to select and steer patients toward the agents most likely to
provide clinical benefit [13,14].

The dysregulated AXL-ABL2-YAP/TAZ feedback loop – com-
prised of Yes-associated protein 1 (YAP), transcriptional
coactivator with PDZ-binding motif (TAZ), and the oncogenic
receptor tyrosine kinase (RTK) AXL – have been observed in ES
and OS. Activation of YAP, TAZ, and AXL can induce cell prolifera-
tion, resistance to biologically targeted therapy, and metastasis of
bone sarcoma [7,15–19]. The importance of this pathway in
tumorigenesis has naturally led scientists to investigate whether
its protein constituents are druggable targets in bone sarcomas
[19]. Interestingly, Dupont et al. showed that YAP and TAZ also reg-
ulate biomechanical signals independent of the Hippo pathway,
which in turn have striking effects on cell fate determination, stem
cell properties, and proliferation rates. [20] Colocalization of
nuclear YAP and TAZ in mesenchymal stem cells (MSCs) correlates
with the environment’s tensegrity. An increased propensity toward
osteogenic lineage commitment is induced through high tenseg-
rity. In contrast, less stiff environments favor an adipogenic pheno-
type and cytosolic YAP/TAZ expression[21]. In human OS cell lines,
knockdown of AXL leads to decreased proliferation and increased
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apoptosis[22]. In addition, the clinical activity of cabozantinib, an
inhibitor of AXL and other kinases, has been recently reported in
phase 2 clinical trials for patients with OS and ES[23].

Though other pathways almost certainly contribute to bone sar-
comagenesis, this review focuses exclusively on two important
ones, IGF/PI3K/mTOR and AXL/YAP/TAZ, that have immediate clin-
ical relevance given the exponential rise of new investigational
agents that have reached the clinic.
2. Clinical description

PBCs are included in the broader category of sarcomas and cor-
respond to 0.2% of diagnosed cancers, which are primarily com-
posed of osteosarcoma (OS), Ewing sarcoma (ES), and
chondrosarcoma (CS) [24]. These malignant bone tumors are clin-
ically aggressive and often need extensive multi-modality treat-
ment. Despite their low incidence, PBCs are associated with
excessive morbidity and mortality, greatly affecting the children
and young adult population[25]. The lack of specific symptoms at
disease onset can delay the diagnosis and allow time for local
tumor invasion and distant metastasis to bone and lung. Though
the 5-year survival rate for those presenting with localized OS
and ES reaches 50–70%, only 20–30% of those presenting with lung
or bone metastases at diagnosis survive[26]. While slower grow-
ing, CS is notoriously resistant to chemotherapy and often recurs
locally[27].

2.1. Osteosarcoma

OS is the most common PBC that usually affects children and
adolescents[25]. The etiology of OS is complex and may occur
due to widespread chromosomal errors or specific gene mutation
in p53, RB1, or the RECQL4 genes that, respectively, cause Li-
Fraumeni syndrome, hereditary retinoblastoma, and Rothmund-
Thomas syndrome[28]. Interestingly, whole-genome sequencing
data suggests that one-third of primary OSs – compared with just
2%–3% of other cancer types – have high mutation burdens thought
to result from chromothripsis[29]. The phenomenon of chromoth-
ripsis (i.e., shattered DNA) occurs when one or more chromosomes
are broken into many pieces and then chaotically rejoined [29,30].
Since the resulting DNA damage is unpredictable, one frequently
observes marked inter-patient genetic and phenotypic heterogene-
ity [29,30].

From a clinical perspective, the World health organization clas-
sifies OS subtypes by their location relative to the bone cortex and
by their grade (high, intermediate, or low). High-grade OS can
occur in any bone, but usually it originates near the distal femur
(43%) or proximal tibia (23%). These bones experience rapid cell
division during the adolescent growth spurt, though it remains to
be determined if the stimulatory signals during puberty contribute
to tumorigenesis[31]. The main prognostic factor in OS is the pres-
ence or absence of metastatic disease. Though beyond the scope of
this review, treatment often relies upon chemotherapy (mainly cis-
platin, doxorubicin, methotrexate, or ifosfamide) and surgery[28].
Complementing traditional chemotherapy, several molecularly
and pathway-targeted therapies have been developed, including
immune modulators [32,33], bone signaling regulators, receptor
activator of nuclear factor k-B ligand blockade [34,35], and recep-
tor or non-receptor tyrosine kinases inhibitors [14,31,36–37].

2.2. Ewing sarcoma

ES can occur in the bone (mainly in the pelvis, femur, tibia, and
ribs) or soft tissue sites (e.g., thoracic wall, gluteal muscle, cervical
muscles, and pleura cavities). The cell of origin remains unknown,
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but many suspect this sarcoma subtype emerges from neural crest
cells or mesoderm-derived mesenchymal stem cells[38–40].
Phenotypically, ES is characterized by a small round cell appear-
ance, positive expression of the surface marker CD99[41], and
chromosomal translocation of the EWSR1 gene to ETS family
genes[42]. This fusion protein acts as an oncogenic transcription
factor that controls ES progression. 70–80% of patients with local-
ized ES, and �30% for those with metastatic disease, survive. All
patients receive chemotherapy, which typically consists of vin-
cristine, doxorubicin, cyclophosphamide alternated with ifos-
famide and etoposide [38,43]. When practical, surgery is
preferred, though unresectable tumors in the spine or pelvis can
successfully be treated with radiation.

Several next-generation EWSR1-FLI1 targeted therapeutics are
in preclinical development, with at least one compound (TK-216)
that has entered phase clinical testing in patients (NCT02657005)
[44]. In addition, several other genes were also reported to
promote the recurrence and progression of ES, such as VEGF, IGF-
1, CAV1, GLI1, RB, and p53, which might be used as therapeutic tar-
gets for ES. Several proteins appear to enable resistance to IGF-1R/
mTOR-directed treatment, including IRS1, PI3K, STAT3, YAP-1, and
TAZ[7].
2.3. Chondrosarcoma

CS is a malignant tumor of bone characterized by cartilage
matrix production and a diverse histopathological and clinical
behavior[45]. The exact etiology of CS is not known. There may
be a genetic or chromosomal component that predisposes certain
individuals to this type of PBC. However, the somatic mutations
of isocitrate dehydrogenase (IDH) genes that encode for proteins
catalyzing the oxidative decarboxylation of isocitrate, producing
aKG and CO2 in the Krebs cycle [46,47], are present in 50% of pri-
mary conventional CS [48,49]. The CS is subclassified in primary
central, secondary peripheral, and periosteal (aka juxtacortical)
suptypes [14,50]. The most common primary location is the pelvis,
followed by the femur, humerus, and ribs[51]. Conventional CS is a
low or intermediate grade (90%), characterized by a slow clinical
course and low metastatic potential.

In contrast, the high-grade CS (10%) is associated with high
metastatic potential and poor prognosis [48,52]. Among patients
with primary CS of bone and metastasis at presentation, low tumor
grade, surgical treatment, tumor size <10 cm, and first primary
tumor predict prolonged survival[53]. CS is characterized by a
resistance to chemo- and radiotherapies mainly due to a high
ECM deposition and low neovascularization, which blocks drug dif-
fusion and activity[54]. The IDH1/2 mutations in CS make the
development of IDH targeted therapy a promising treatment
option, and there are several ongoing clinical trials in Phase I/II
assessing the clinical activity of IDH blockades (NCT02273739,
NCT02481154/NCT02073994, and NCT02496741).
3. IGF1/PI3K/mTOR pathway

Insulin-like growth factor 1 (IGF-1) is important for several dif-
ferent growth and differentiation processes of normal bone physi-
ology through endocrine mechanisms[55]. IGF-1 receptor (IGF-1R)
blockade in chondrocytes, osteoblasts, and osteocytes has shown
that IGF-1 signaling is required for controlling cell proliferation
and differentiation.

IGF1/PI3K/mTOR pathway activation begins when IGF-1 binds
to IGF1R, prompting phosphorylation at several tyrosine residues
in the kinase domain (e.g., 1131, 1135, 1136) or membrane domain
(e.g., tyrosine 950). IGF-1R phosphorylation, in turn, activates
downstream substrates, such as insulin receptor substrate (IRS)
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and Shc[56]. IRS1 activates phosphatidylinositol 3 kinase (PI3K)
[57] and the extracellular signal-regulated kinase (ERK)/mitogen-
activated protein kinase (MAPK) network by binding to Shc and
Grb2 (Fig. 1) [14,58–59]. PI3K phosphorylates phosphatidylinositol
4,5 bisphosphate, which leads to phosphatidylinositol 3,4,5,
trisphosphate. Ultimately, serine/threonine kinase (PDK1) is
recruited and AKT is partially activated at threonine-308 (Fig. 1).
Full AKT activation is accomplished by Ser-473 phosphorylation
by mTORC [28,60]. At the terminal end of this cascade, the mam-
malian target of rapamycin (mTOR) regulates several processes
critical for cell proliferation and protein synthesis.

mTOR subsists in two distinct entities, mTORC1 and mTORC2, a
serine/threonine tyrosine kinase that regulates normal cell growth,
development, metabolism, and angiogenesis. In response to nutri-
ents and growth factor receptor signals, the downstream effectors
(p70S6K and 4E-BP1) profoundly affect cellular growth, prolifera-
tion, and protein synthesis (translation) [8]. mTORC1 is sensitive
to rapamycin and other so-called rapalogs (e.g., temsirolimus,
everolimus, ridaforolimus, or rapamycin) [8]. mTORC2, which is
not sensitive to rapamycin, can enhance AKT activity [61,62].

The IGF/PI3K/mTOR pathway is linked to the pathogenesis and
progression of PBC [63,64]. Comparing PBCs with normal bone cells
at the gene expression levels validated a loss of all the intracellular
IGF inhibitors, IGFBPs [7,14,65]. This pathway actively modulates
cell migration, cell cycle progression, EMT, and tumor growth in
preclinical models of PBCs [7,14,66]. Increased IGF1/IGF1R expres-
sion has been demonstrated in OS, ES, and CS patients’ tumors, and
it was associated with a poor prognosis [14,67–68]. Despite this
evidence, IGF-1R blockade in PBC cell lines with mAb against
IGF/IGF1R was rarely successful when used as monotherapy
[7,69]. Activation of the downstream PI3K/Akt pathway has also
been demonstrated in OS and CS cells, though again, single-agent
targeting was generally unsuccessful [10,70]. More encouraging
Fig. 1. Activation of the IGF/PI3K/mTOR
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results were achieved in combination studies, and partial
responses were shown in PBC cases treated with dual IGF1R/mTOR
blockade [12,14].
4. Therapeutic opportunities targeting the IGF/PI3K/mTOR
pathway in PBC

The IGF/PI3K/mTOR pathway can be therapeutically targeted
conceptually at three different levels: 1) blocking its proximal
components (either IGF ligands or IGF-1R using antagonistic
humanized monoclonal antibodies), 2) impeding its mid con-
stituents at either PI3K or AKT using small molecules tyrosine
kinase inhibitors, and 3) blocking its distal mTOR components
using rapamycin and its analogs. Given the prominent role this
pathway has on vital cellular processes, feedback loops abound
and quickly counter the therapeutic effect of most drugs. For that
reason, it is increasingly common to see combination strategies
employed in the preclinical and clinical setting to block the IGF/
PI3K/mTOR pathway at two or more levels in an attempt to miti-
gate acquired drug resistance [7,14].
4.1. IGF ligand inhibitors

IGF ligand-blockade demonstrated a complementary therapeu-
tic approach that overcame the upregulation of insulin receptors as
a mechanism of resistance to IGF-1R neutralization. Humanized
monoclonal antibodies against IGF-1 and IGF-2 have been devel-
oped by Medimmune (MEDI-573, dusigitumab) and Boehringer
Ingelheim (BI836845, xentuzumab). Both antibodies bind and neu-
tralize IGF-1 and IGF-2, thereby preventing activation of IGF-1R
and IR-a while avoiding unwanted effects upon insulin[71]. These
ligand-directed antibodies were generally well tolerated within
and AXL/YAP/TAZ pathways in PBC.
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phase 1 trials in patients with solid tumors. To date, the sole clin-
ical experience treating PBC patients with ligand-targeted drugs
includes a ES patient who received a subtherapeutic dose of
MEDI-573 while enrolled in an early dose cohort[72]. Xentuzumab,
which also binds and neutralizes murine IGFs, has shown strong
preclinical activity in ES. Despite this, both IGF ligand inhibitors
(dusigitumab and xentuzumab) have been discontinued due to
poor activity in common cancer types.

4.2. IGF-1R blockade

The IGF-1R pathway has been studied extensively in PBCs
[7,65–66]. IGF-1R antagonists have generally consisted of antibod-
ies or small molecule TKIs, as summarized in Table 1 [73–75]. To
date, six mAbs had been investigated in clinical trials: R1507 (roba-
tumumab, Roche), cixutumumab (IMC-A12, ImClone), SCH-717454
(19D12, Schering-Plough), MK-0646 (dalotuzumab, Merck),
AMG479 (Ganitumab, Amgen), figitumumab (CP-751-871, Pfizer).
Single-agent activity ranged between 9 and 14%, and most
responses lasted <2 months [73,75–76]. Small molecule IGF-1R
antagonists, including NVP-AEW541, BMS-536924, GSK-183870A,
and OSI-906 showed promising preclinical activity. However,
cross-reactivity to the insulin receptor led to unacceptable toxic-
ity[77–80], and these compounds were subsequently abandoned.
Table 2.

4.3. IRS-1 inhibitors

The IGF-1R/PI3K/mTOR pathway has been the target of preclin-
ical studies for OS PBC[87] and has a vital role in various mitogenic
and antiapoptotic signaling through other components like insulin
receptor substrates 1 and 2 (IRS1/2), which play central roles in
cancer cell proliferation, resistance to anticancer drugs, and tumor
metastasis[88–90]. A selective inhibitor of IRS1/2, NT157 was eval-
uated as a dose-dependent inhibitor of growth in several OS cell
lines by downregulating the expression of IRS1/2 and principal
downstream mediators of the IGF pathway. NT157 affected the
OS cell migratory ability. In addition, the same IRS1/2 inhibitor
Table 1
IGF-1R blockade strategies in ES and OS.

IGF-1R Blockade Phase Company

Monoclonal Antibodies SCH-717454 II Schering-Plough
Figitumumab (CP-751871) I-II Pfizer
Cixutumumab (IMC-A12) I-II ImClone
Dalotuzumab (MK-0646) II Merck
Teprotumumab (R1507) II Roche
Ganitumab (AMG-479) II Amgen

TKIs Linsitinib (OSI-906) II Astellas Pharma
BSM-754807 Preclinical BMS
BMS-554417 Preclinical BMS
NVP-AEW541 Preclinical Novartis
GSK1904529A Preclinical GSK

ORR: overall response rate; SD: stable disease; CR: complete response; PR: partial respo

Table 2
PI3K blockade strategies in PBCs.

PI3K
Blockade

Name Phase Company MOA on PBC

PI3Ka Alpelisib (BYL719) Preclinical Novartis Cell migration inhibiti
Tumor progression inh

Pan-PI3K BKM120 Buparlisib Preclinical Novartis Inhibition of Cell proli
LY294002 Preclinical Eli Lilly Inhibition of Cell proli
Copanlisib (BAY80-
6946)

I/II Bayer Inhibition of cell survi
Ongoing trial to invest
OS, ES (NCT03458728)

4

was combined with mTOR and PI3K/mTOR inhibitors, and signifi-
cant synergistic effects were obtained[87]. This IRS1/2 inhibitor
is not yet been tested clinically.

4.4. PI3Ks inhibitors

These targets are downstream of the IGF-1R/IR but also of other
RTKs. Their effective targeting can eliminate the activation of
downstream signaling, reduce cell proliferation and survival that
are inducted by other RTKs, and downgrade cell activation caused
by PI3K mutations. Impaired PI3K signaling can trigger compen-
satory alterations at the cellular and whole-body level, the latter
occurring via drug-induced hyperglycemia and hyperinsulinemia
that activates IR-A[91]

There are two broad types of PI3K inhibitors, the pan-PI3K and
the isoform-specific inhibitors. Pan-PI3K inhibitor has been
reported to inhibit autophagy and enhance OS cell apoptosis
[92,93]. Despite the effective inhibition of the PI3K pathway and
PBC tumor growth in PBC preclinical studies, these pan-inhibitors
may never be fully developed as clinical therapeutic drugs because
of their poor pharmacokinetic parameters, including low solubility,
instability, and excessive toxicity. However, the development of
isoform-specific inhibitors of PI3K p110 a,b,d or ccatalytic subunits
have emerged and might offer the opportunity to lower these side
effects, thus granting their tolerability. For example, alpelisib, a
specific PI3Ka inhibitor that blocks the ATP site, is proposed to
reduce cell proliferation and block tumor bone formation in mur-
ine preclinical models of OS[94]. Another PI3Ka inhibitor,
BKM120, can decrease OS cell invasion and survival[95].

4.5. mTOR inhibitors

As a central hub of cell biology, mTOR profoundly affects whole-
organism carbohydrate physiology. mTORC1 and mTORC2 con-
tribute to tumorigenesis differently [99,100] and elicit unique
behaviors when targeted. The rapamycin analogs ridaforolimus,
everolimus, and temsirolimus, which inhibit mTORC1, were first
approved to treat renal malignancies[101].
Clinical activities (ORR & SD)

PRs seen in ES patients, Phase II in relapsed OS & ES[81]
ES (14% CR + PR & 24% SD) [82]
Phase II with ES (PD: 66.7%) [83]
Phase I- dose escalations in 1 ES that had a mixed response[84]
Several PRs in ES (11, CR/PR) [75] & OS (PR: 2, SD: 10, PD: 26) [85] patients
ES (6% CR + PR & 49% SD) [86]
ES (16 patients; no CR/PR) (NCT02546544)
No Clinical testing
No Clinical testing
No Clinical testing
No Clinical testing

nse; PD: progressive disease; ES: Ewing sarcoma; OS: osteosarcoma.

on
ibition[94]
feration inhibits activation of Akt[96]
feration[97]
val[98].
igate the safety and feasibility in pediatric patients with recurrent or refractory
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A downstream target of the IGF/PI3K/mTOR pathway, activated
S6 kinase is readily detectable in PBC specimens. In a subgroup
analysis, ridaforolimus led to a non-statistically significant
improvement PFS for bone tumors (HR 0.70, 95% CI upper limit >1);
this study was not adequately powered for subgroup analyses
[102]. Everolimus has demonstrated some activity in osteosar-
coma; within a pediatric phase 1 study, one of two enrolled
osteosarcoma patients showed prolonged stable disease for several
courses[103]. Several drug combinations, rapamycin with
cyclophosphamide and temsirolimus with cixutumumab, failed
to demonstrate significant activity in OS [12,104]. Ten CS patients
were treated with a sirolimus/cyclophosphamide combination,
which was well tolerated and had modest clinical activity[105].
Temsirolimus may also potentiate the cytotoxicity of liposomal
doxorubicin[106]. Last, neoadjuvant everolimus has been tried in
CS (NCT02008019) was suspended due to limited activity.

4.6. Cotargeting IGF/PI3K/mTOR pathway

Given the limited or short-lived antineoplastic response
observed when individual proteins are targeted, many have
hypothesized that effective blockade of the IGF/PI3K/mTOR will
require co-targeting two or more proteins concurrently to avoid
counter-productive feedback loop activation. Preclinical data indi-
cate that the combination of mTOR with IGF-1R blockade results in
greater Akt downregulation and enhanced antiproliferative effects
[7]. This therapeutic approach guided the design of numerous early
phase clinical trials assessing mTORC1 and IGF-1R blockade in sar-
coma patients [14,107–109]. Dual IGF-1R/mTOR therapies were
generally more successful than monotherapy and were reasonably
well tolerated compared to traditional cytotoxic chemotherapy
[11,14].

While single-agent IGF-1R targeted monoclonal antibodies
delivered a clear activity signal, neither the response rate (10–
14%) nor response duration (2 months) offers enough clinical ben-
efit to expand into the next clinical trial[75]. During the last dec-
ade, our research team has demonstrated that combined IGF-1R/
mTOR-targeted therapy was synergistic, with a 29% response rate
and, significantly, with a standard response duration enduring
more than one year[11]. Later, other trials developed by Schwartz
et al. and COG (Children’s Oncology Group) were unsuccessful
when trying to replicate these promising results, principally
because the mTOR dose was decreased in a sizable fraction for
patients due to mucositis or hepatotoxicity [104,110]. Since those
studies were conducted, investigators have become adept at palli-
ating mucositis and other mTOR-associated symptoms and thereby
have extended the safety profile of mTOR combinations [111,112].

Harmonizing these clinical experiences, our lab and others
throughout the country have made considerable advances shaping
how to efficiently cotarget the IGF-1/PI3K/mTOR pathway to signif-
icantly succeed in managing PBC clinically. Despite exhibiting little
single-agent activity, our results suggest mTOR suppression is cen-
tral to meaningful clinical action. Of critical importance, because
mTOR inhibition quickly upregulates IRS-1 and PI3K (due to dere-
pression of the p70S6K ? IRS-1 feedback loop) [113–116], it is
imperative to simultaneously block the proximal portion of the
IGF-1/PI3K/mTOR pathway (Fig. 1).

In our experience, this can be achieved by co-targeting mTOR
together with the IGF-1/IGF-2 ligands (plus the hybrid IR-a/IGF-
1R), IGF-1R, or PI3K. As shown in our preclinical studies, IGF-1R
targeting in animal models leads to compensatory changes in
Smad3, STAT3, and other proteins that can be explored for addi-
tional synergy[7]. In the clinic, data from one ES patient who had
responded to therapy and then progressed 14 months later on
IGF-1R/mTOR-based therapy revealed similar compensatory
changes[7]. Preliminary data using alpelisib (a p110a-selective
5

PI3K inhibitor) in ES patient-derived tumor explants (PDX) models
suggest a xentuzumab/alpelisib two-drug combination might also
be effective. They could serve to expand future clinical trial options
if neutralizing antibody programs are revived.

Though antagonists of IGF, IGF-1R, IRS-1, and mTOR have lar-
gely been abandoned as a single-agent treatment for PBC, PI3K
inhibitors remain under clinical investigation. Alpelisib has been
FDA-approved for specific PI3K-mutant breast cancer subtypes.
Pan-PI3K inhibitors, such as copanlisib with a broader affinity for
the p110-a p110-d catalytic PI3K subunit, have received approval
for lymphoma subtypes. To date, PI3K inhibitors have not been
studied in PBC. If and when they are, Hopkins et al. have suggested
in other cancers that their antineoplastic effect can be magnified
by reducing hyperinsulinemia via adherence to a ketogenic diet
[117]. Whether that strategy proves beneficial in PBC remains to
be determined.
5. AXL-YAP/TAZ positive feedback loop

5.1. The Hippo and YAP/TAZ pathway is conserved across species.

YAP (encoded by Yes-associated protein 1) [118–119] and TAZ
(encoded byWWTR1) [118–120] are transcriptional activators that
regulate cell proliferation, survival, and differentiation [121,122].
The biological response is directly tied to the location of YAP/TAZ
in the cell. For instance, activation leads to the shuttling of YAP/
TAZ into the nucleus, and suppression of YAP/TAZ maintains its
presence in the cytoplasm. When YAP and TAZ were first discov-
ered, the biological function was unclear. Later, key insights
regarding YAP and TAZ function were inferred from the effects of
Yorkie, a homolog within the Drosophila Hippo signaling path-
way[123].

The Hippo signaling pathway is a conserved cascade regulating
the growth and size of tissues, involving the translocation of Yor-
kie, the YAP/TAZ homolog, between the cytoplasm and nucleus.
When Hippo signaling is inactivated in Drosophila, it causes
enlargement of larval tissue and tumor initiation, indicating the
Hippo signaling pathway is a key tumor suppressor[124]. Similar
findings emerged in mammalian cells, where YAP/TAZ was shown
to regulate organ size[125] and tumor progression. The Hippo sig-
naling pathway is mediated through the kinases MST1/2 and
LATS1/2 in mammals. When activated, MST1/2 kinases form a
complex with SAV1 to phosphorylate and activate LATS1/2. Subse-
quently, LATS1/2 phosphorylates YAP and TAZ, marking them for
ubiquitination and subsequent degradation[124]. Since the
nuclear-localized YAP/TAZ paralogs act as transcription factors,
upstream Hippo signaling can inhibit cell proliferation.

Conversely, Hippo inactivation promotes YAP/TAZ nuclear shut-
tling. Notably, because YAP/TAZ lack DNA-binding domains them-
selves, they must first complex with one of several TEA-binding
domains (TEAD) to exert their diverse epigenetic effects. As dis-
cussed shortly, obligate binding to TEAD1 or other TEAD proteins
has created a therapeutic opportunity to target TEAD as a potential
antineoplastic agent.
5.2. Diverse regulation of YAP/TAZ via mechanotransduction

Though canonical YAP/TAZ activation was first linked to Hippo
mutations, Hippo downregulation can have similar effects. Nota-
bly, key findings from the regenerative medicine field revealed that
YAP/TAZ activity is also critically dependent upon biomechanical
cues imparted on cells by their surroundings. In vivo, this mostly
occurs through cell-cell adhesion, mediated at the subcellular level
by adherens junctions (AJ), and cell-ECM associated focal adhe-
sions (FA) that rely upon integrin/ECM pairings[126]. Besides their
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role as structural anchors that preserve tissue shape and polarity,
AJ and FA serve as critical macro-molecular hubs that regulate
cytoskeletal architecture and recruit signaling proteins. Through
both direct and indirect interactions with the Hippo pathway,
cytoskeleton, FAK, and cadherin-catenin complexes, YAP/TAZs acts
as a cell’s molecular ‘rheostat’ of mechanotransduction.

Cadherin-catenin complexes, FAK-Src kinases, and cytoskeletal
tension influence Hippo signaling [127,128]. In normal cells and
tissues, cell-cell contact inhibition gradually reduces the rate of
proliferation[129]. Cadherins, such as E-cadherin, participate in
homophilic binding that initiates a cascade through b-catenin
and a-catenin, leading to the interaction with the Merlin and Kibra
complex. This complex activates MST1/2 initiating the canonical
Hippo signaling. Apical and basolateral cell polarity can regulate
the Hippo signaling pathway via AJs, tight junctions (TJ), and gap
junctions (GJ) [130]. When correctly engaged, AJs and TJs bind
and retain YAP and TAZ at the cell membrane, thereby preventing
their activity.

Cell shape and cytoskeletal dynamics also regulate YAP/TAZ
[131]. Mechanical cues and activation of RhoA promote increased
F-actin polymerization, which inhibits LATS1/2 and activates
YAP/TAZ. For example, when cells are placed on larger two-
dimensional surfaces or micropatterned culture substrates that
promote increased cytoskeletal tension, YAP/TAZ becomes acti-
vated. Conversely, rounded cells with low cytoskeletal tension
maintain YAP/TAZ within the cytoplasm in an inactive state. This
mechanism is influenced by the adhesive area, substrate stiffness,
cell density, and shear stress. Taken together, by modulating
YAP/TAZ activity, physical cues strongly influence cell prolifera-
tion, differentiation, and survival.

5.3. The critical role of YAP/TAZ in connective tissues and PBC

Given the impact of YAP/TAZ and TEAD[118–120] upon stem-
ness[132], cell migration[133], organ size[125], and epithelial-to-
mesenchymal transition (EMT) [119], it is not surprising that
YAP/TAZ plays a vital role in osteogenesis [134,135] and chondro-
genesis[136–138]. Human mesenchymal stem cells (hMSCs), when
grown on substrates of varying stiffnesses, adopted distinct cell
fates dictated by the specific stiffness. For instance, hMSCs on rigid
substrate differentiated toward an osteogenic cell fate while
hMSCs on soft substrate differentiated toward an adipocytic cell
fate[21].

YAP and TAZ are overexpressed and activated in several cancers
and are linked to sustained proliferation, cell survival, EMT[119],
and tumor progression. In OS, a recent study showed that 75% of
patient histology samples (n = 175) had high YAP expression, with
46% of patients demonstrating YAP nuclear localization[139]. YAP
nuclear localization and B1-integrin expression have been linked
to adverse metastatic events and worse prognosis [140,141]. Verte-
porfin, a small molecule TEAD inhibitor, impaired the growth and
migration of OS cell lines. ROCK2 silencing in the preclinical setting
had a similar effect[139]. While knockdown of YAP in OS cell lines
suppressed in vitro tumor cell proliferation, invasion, and tumor
formation in mice [142,143], the role of TAZ in these PBCs requires
further investigation. To that end, recent work showed that U2OS
and HOS human OS cell lines cultured under a migratory ability
had increased expression in TAZ and EMT-TFs, including N-
cadherin, vimentin, and SNAIL[144]. This EMT-TF phenotypic
induction was reversed through inhibition of TAZ[144]. Thus, YAP
and TAZ might play divergent roles in OS pathogenesis and
progression.

The precise role of YAP and TAZ in ES is less well understood. A
recent study comparing YAP expression between ES and normal
tissue demonstrated only a moderate increase in ES[145]. Another
study found an association of YAP/TAZ expression with disease
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progression. Knockdown of YAP led to decreased cell proliferation
in ES cell lines and decreased tumor growth in an ES xenograft
[146]. Further, in ES cell lines, YAP and TAZ regulated the expres-
sion of secreted ECM proteins proteoglycan four and tenascin C
downstream of CDC42 signaling[147]. Counterintuitively though,
in OS, tenascin C complexed to a9b1 integrin to foster metastasis
by blocking YAP nuclear translocation and target gene activation
[148]. Tenascin C also complexed to a5b1 integrin in ES promoted
metastasis by triggering YAP[149] and tyrosine phosphorylation
through SRC kinase[150].

Elevated YAP/TAZ expression has been reported in some CS. A
recent study showed that less than half of CS specimens harbored
activated YAP/TAZ[151]. While little is known of the role of YAP/
TAZ in CS, recent studies of chondrogenesis showed that TAZ-
deficient mice have impaired chondrogenic differentiation and
development[152]. In that regard, the dysregulation of YAP/TAZ
may contribute to pathogenesis and aggressiveness in CS[153]. In
addition, blockade of the YAP/TAZ-activating kinases SRC and
RAC was described to impede chondrosarcoma cells migration
[154], and nuclear accumulation of YAP as a consequence of LATS1
inactivation by protein arginine methyltransferase one was shown
as the worst prognostic factor in chondrosarcoma[155]. Finally,
downregulation of YAP/TAZ and LATS1 in chondrosarcoma cells
treated with BRD4 inhibitor, JQ1, led to cell cycle arrest, senes-
cence, and apoptosis[156]. It is likely that the function of YAP/
TAZ in the migration or metastasis of bone cancers at least partially
recapitulates their role during normal development of the respec-
tive tissues of the origin.
5.4. AXL and its impact upon YAP/TAZ

In addition to the YAP/TAZ transcriptional activators, the AXL
protein can profoundly affect cell viability, dedifferentiation, cell
fate, and metastasis in human bone sarcoma [19,157]. As a TAM
(Tyro3, AXL, and MER) RTK family member, AXL also regulates cell
survival, proliferation, migration, invasion, and angiogenesis[158–
166]. In carcinomas, including hepatocellular carcinoma[167] and
lung adenocarcinoma brain metastasis[168], AXL promotes
tumorigenesis. In addition to activating YAP/TAZ via ABL2 in some
cancers, AXL – along with CTGF, CYR61, and MYC1 – is also a down-
stream YAP/TAZ gene target [169,170]. In lung adenocarcinomas,
for instance, YAP was overexpressed and positively correlated with
AXL expression[171]. In vitro YAP knockdown significantly
reduced AXL expression[171].
6. Therapeutic opportunities targeting AXL, YAP, or TAZ in PBC

Though IGF, PI3K, and mTOR inhibitors have been extensively
tested as anticancer agents, drug candidates targeting the AXL/
YAP/TAZ pathway remain in their infancy; see clinical trial data
summarized in Table 3. In the preclinical setting, Fleuren et al.
showed for the first time that AXL is a potential novel and drug-
gable therapeutic target in ES[157]. They demonstrated that AXL
and Gas6 are abundantly expressed in ES tumors and that high
AXL protein expression is an independent prognostic marker of
poor overall survival[157]. They also blocked AXL function using
BGB324, which reduced ES cell viability and migration in all cell
lines in vitro[157]; however, there have not been any animal pre-
clinical efficacy studies of the AXL inhibitor, BGB324. Preclinical
acellularized lung (ACL) models have been used to investigate
how these proteins affect OS metastasis[19]. In that system, AXL
inhibition attenuated proliferation, migration, and metastatic
potential in vitro and in vivo.

In the clinic, the recently opened sarcoma-specific phase 1/2
trial testing BioAtla’s AXL-targeted therapy (NCT03425279) is cur-



Table 3
AXL blockade strategies in PBCs.

AXL Blockade Name Company Sarcoma type Phase Clinical Activities

Antibody-drug Conjugate BA3011 BioAtla, Inc. Osteosarcoma
Ewing Sarcoma

I-II No results. (NCT03425279)

TKIs Cabozantinib Exelixis Osteosarcoma
Ewing Sarcoma

II ES (26% PR + 49% SD)
OS (12% PR + 33% SD) (NCT02243605)[174]

Osteosarcoma II No results. (NCT05019703)
Osteosarcoma
Ewing Sarcoma

I No results. (NCT04661852)

Osteosarcoma II No results. (NCT02867592)

SD: stable disease; PR: partial response; ES: Ewing sarcoma; OS: osteosarcoma.
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rently enrolling patients with ES, OS, CS, and several other sarcoma
subtypes. Small molecule oral TEAD inhibitors such as IK-930 are
completing IND-enabling studies and are expected to reach the
clinic in early 2022. Several multi-targeted FDA-approved TKIs
known to antagonize AXL, such as cabozantinib, have shown
promising activity in ES and OS (NCT02867592) [23,172–173].
7. Crosstalk between IGF-1R/PI3K/mTOR pathway and AXL-YAP/
TAZ positive feedback loop

Our group has previously shown that mechanical stress and cul-
ture architecture can affect PBC drug sensitivity in vitro to
chemotherapy and IGF-1R/mTOR targeted therapy[175–177].
Increased mechanical stimulation through focal adhesions and
actin stress fibers interface with the IGF/PI3K/mTOR pathway and
AXL/YAP/TAZ feedback loop in at least two ways. First, FAK acti-
vates Akt through the canonical IGF/PI3K/mTOR pathway by stim-
ulating the activity of PI3K [178,179] (Fig. 1). Downstream, Akt
then negatively regulates MST1/2, leading to a downregulation of
the cytosolic YAP/TAZ and afterward boosted nuclear YAP[180].
Second, a substrate stiffness signal cascade is initiated by Rho
GTPases through its interaction with the distal AXL-YAP/TAZ feed-
back loop by suppressing LATS1/2 and directly inhibiting the phos-
phorylation and subsequent degradation of YAP and TAZ [20,181].
Nuclear YAP/TAZ then potentiate the IGF/PI3K/mTOR pathway
through a PTEN inhibition caused by miRNA-29[182]. Thus, the
mechanical cues can potentiate the IGF-1R/mTOR cascade either
by promoting the activity of PI3K through FAK-mediated signaling
or by inhibiting PTEN through nuclear YAP induction [20,178–182].
Additionally, recent gain-of-function screens identified connec-
tions between AXL-YAP/TAZ and the MAPK and PI3K signaling
pathways[183]. Further research is needed to determine whether
cotargeting the MAPK or PI3K pathways and AXL/YAP/TAZ will
prove synergistic as an anticancer strategy for treating patients
with high-risk PBCs.
8. Conclusion and future perspectives

Recent research investigating the molecular drivers of PBCs has
suggested that the IGF/PI3K/mTOR and AXL/YAP/TAZ pathways are
critically important. Nevertheless, despite strong antitumor activ-
ity in the preclinical setting, anticancer agents directed against
IGF-1R or mTOR have had limited clinical utility when used indi-
vidually. Optimal studies co-targeting the IGF/PI3K/mTOR pathway
at two or more levels within the pathway are still being explored to
prevent the activation of feedback loops that promote acquired
tumor drug resistance. Multi-targeted TKIs with partial AXL activ-
ity, like cabozantinib, have demonstrated early success in PBCs,
and confirmatory studies are ongoing. However, newer selective
inhibitors of AXL, YAP, or TAZ have just reached the clinic, and their
effect on PBCs remains to be seen.
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