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Skeletal muscle contusion is one of the most common muscle injuries in sports medicine
and traumatology. Bone marrow mesenchymal stem cell (BMSC) transplantation has
been proposed as a promising strategy to promote skeletal muscle regeneration.
However, the roles and underlying mechanisms of BMSCs in the regulation of skeletal
muscle regeneration are still not completely clear. Here, we investigated the role of
BMSC transplantation after muscle contusion. BMSCs were immediately transplanted
into gastrocnemius muscles (GMs) following direct contusion. Comprehensive
morphological and genetic analyses were performed after BMSC transplantation.
BMSC transplantation exacerbated muscle fibrosis and inflammation, as evidenced
by increased leukocyte and macrophage infiltration, increased inflammatory cytokines
and chemokines, and increased matrix metalloproteinases. BMSC transplantation
also increased muscle oxidative stress. Overall, BMSC transplantation aggravated
inflammation, oxidative stress and fibrosis and impaired skeletal muscle regeneration.
These results, shed new light on the role of BMSCs in regenerative medicine and indicate
that caution is needed in the application of BMSCs for muscle injury.

Keywords: bone marrow mesenchymal stem cells, skeletal muscle, regeneration, inflammation, oxidative
stress, fibrosis

INTRODUCTION

Severe skeletal muscle injuries are commonly observed inclinics of sports medicine and
traumatology (Liu et al., 2018). However, there are no effective strategies for treating skeletal muscle
injuries. Conservative treatment, such as “rest, ice, compression and elevation” are insufficient
for muscle injury repair (Natsu et al., 2004), and muscle fibrosis and dysfunction are commonly

Abbreviations: BMSCs, Bone marrow mesenchymal stem cells; CCL2, Chemokine (C-C motif) ligand 2; CCL5, Chemokine
(C-C motif) ligand 5; CCR2, C-C chemokine receptor type 2; CXCR4, C-X-C chemokine receptor type 4; Fn14, fibroblast
growth factor-inducible protein 14; GMs, gastrocnemius muscles; H&E, Hematoxylin and Eosin; IFN-γ, Interferon
gamma; IL-1β, Interleukin 1 beta; IL-6, Interleukin 6; MMP-1, Metalloproteinase-1; MMP-2, Metalloproteinase-2; MMP-
9, Metalloproteinase-9; MMP-10, Metalloproteinase-10; MMP-14, Metalloproteinase-14; PBS, phosphate buffer solution;
RT-PCR, Real-Time Polymerase Chain Reaction; TGF-β, Transforming growth factor beta; TWEAK, TNF-related weak
inducer of apoptosis.
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observed after severe muscle injury, such as contusion, in patients
following a conservative treatment protocol (Xiao et al., 2016b).

Recently, stem cell transplantation has been proposed as a
promising treatment for various muscle diseases, such as skeletal
muscle injury (Aldahmash et al., 2012; Farjah et al., 2018). Muscle
satellite cells are generally used as a source of skeletal muscle stem
cells to treat muscle injury or muscle dystrophy (Bashir et al.,
2014). However, skeletal satellite cells are relatively rare in skeletal
muscle tissue, and they often lose their myogenic potential after
in vitro expansion (Sassoli et al., 2012). BMSCs have higher
proliferative potential and pluripotency and lower rates of donor
site morbidity than common satellite cells (Winkler et al., 2009).

Bone marrow mesenchymal stem cells can also effectively
differentiate into skeletal muscle cells both in vivo and in vitro
(Galli et al., 2014). Several studies have demonstrated that
transplantation of mesenchymal stem cells derived from bone
marrow promotes muscle regeneration and accelerates the
functional recovery of injured skeletal muscle (Winkler et al.,
2008; von Roth et al., 2012b, 2013). However, the mechanism
responsible for the beneficial effects on in skeletal muscle
regeneration after transplantation of BMSCs remains to be
investigated. Moreover, BMSCs have been used to treat muscle
atrophy (Geng et al., 2009), toxicant injection-induced muscle
injury (Dezawa et al., 2005; de la Garza-Rodea et al., 2011),
traumatic muscle injury (Merritt et al., 2010), crush trauma
(Winkler et al., 2012), and laceration (Natsu et al., 2004). Here,
we investigated the role of BMSCs in regulating skeletal muscle
regeneration after contusion.

MATERIALS AND METHODS

Animals
Eighty-eight male C57BL/6J mice weighing 18.1–21.3 g at
7 weeks of age were obtained from Shanghai Jiesijie Laboratory
Animal Co., Ltd. After acclimatization to the local environment
for 1 week, the mice were divided into the following three
groups: normal control mice without muscle injury (group
1), muscle contusion mice treated with vehicle (group 2),
and muscle contusion mice treated with BMSCs (group 3).
The animals were housed at a constant temperature of
25◦C with free access to pellet food and water. The study
was approved by the Ethics Review Committee for Animal
Experimentation of the Shanghai University of Sport, Shanghai,
China (reference number 2016006).

Isolation and Culture of BMSCs
Tibia and femur bones were harvested from male C57BL/6J male
mice. Bone marrow was flushed from the tibia and femur bones
with DMEM complete medium. Cells were cultured without
disturbance for 24 h, were washed to remove non-adherent cells,
and were supplied with fresh DMEM complete medium, with
medium renewal every 3 days (Leroux et al., 2010; Su et al., 2014).

Generation of Mouse Hind Limb Injury
The mice were anesthetized with 400 mg/kg chloral hydrate
administered intraperitoneally. The hind limb contusion was

operatively induced as previously described with a simple
pendulum device. Briefly, the hind limb was positioned by
extending the knee and plantarflexing the ankle to 90◦. A 16.8 g
(diameter, 15.9 mm) stainless steel ball was dropped from a
height of 125 cm through a tube (interior diameter of the tube,
16 mm) onto an impactor with a surface of 28.26 mm2, resting
on the middle of the gastrocnemius muscle (GM) of the mice.
The muscle contusion created by this method was a high-energy
blunt injury that created a large hematoma, which was followed
by muscle regeneration, a healing process that is very similar to
that observed in humans (Liu et al., 2016, 2018; Xiao et al., 2016a).

BMSCs Intramuscular Injection
Bone marrow mesenchymal stem cells were collected, washed
twice in PBS, and resuspended in PBS. Either 1 × 106 BMSCs
or PBS was injected into the injured muscle. Cell injections
were performed with a 27-gauge needle immediately after muscle
injury by direct intramuscular injection into the middle point
of the gastrocnemius muscle. The GMs were harvested from
the mice 3, 6, 12, and 24 days after the treatment for further
analyses (Leroux et al., 2010).

Flow Cytometry
Flow cytometry was performed on a CytomicsTM FC 500
System (Beckman Coulter) using a blue laser (488 nm). The
culture medium was removed, and BMSCs were washed twice
resuspended in PBS at a concentration of 1x105 cells/mL,
and stained with the following monoclonal antibodies: CD29-
phycoerythrin (PE), CD44 (PE), at a concentration of 0.2 mg/mL,
CD11b (FITC) and CD45 (FITC), at a concentration of
0.5 mg/mL, and isotype controls for FITC and PE (both from
Biolegend, San Diego, CA, United States). Cells were incubated
in the dark for 30 min at room temperature. The cells were
washed with 2 mL of PBS and resuspended in 300 µL of PBS
for image acquisition. A minimum of 10,000 events were counted
for each analysis.

Hematoxylin and Eosin (H&E) Staining
Skeletal muscle sections (8 µm) were cut from the mid-
belly region of the gastrocnemius muscle and stained with
H&E to evaluate the general morphology of the skeletal
muscle regeneration.

Masson’s Trichrome Staining
Masson’s trichrome staining was used to measure the area
of fibrotic tissue in the injured skeletal muscle. The collagen
fibers were stained blue, the nuclei were stained black, and the
background was stained red. After this staining procedure, the
ratio of the fibrotic area to the total cross-sectional area was
calculated to estimate fibrosis formation using ImageJ 1.44 (NIH,
Bethesda, MD, United States).

Real-Time Polymerase Chain Reaction
The total RNA of the skeletal muscle was isolated using a
modified guanidinium isothiocyanate-CsCl method (Liu et al.,
2018). RNA was reverse transcribed into cDNA using a
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commercially available kit (RevertaidTM First Strand cDNA
Synthesis Kit, Thermo Scientific). Quantitative PCR was
carried out in triplicate via reactions utilizing 10 µL of
2 × Maxima SYBR Green/ROX qPCR Master mix (Vazyme),
1 µL of cDNA, nuclease-free water and 300 nM of each
primer (Table 1).

Statistical Analysis
The data were presented as the mean ± SD and analyzed using
SPSS 20.0. The mean values of the genetic data were compared
using repeated-measure analysis. Post hoc multiple comparisons
were performed using the Bonferroni test. The data of the
scar tissue area were compared using an independent samples
t-test. Differences between values were considered statistically
significant when P-values were less than 0.05.

RESULTS

The Characterization and Cell Surface
Antigens of BMSCs
The cultured BMSCs were fibroblast-like cells and the BMSCs
formed homogenous colonies. Most of the BMSCs were had
clear cellular boundaries (Figure 1A). FC analysis showed
that BMSCs had high expression levels of CD29, CD44, Sca-
1 and low expression of CD11b and CD45 (Figures 1B–I).
The general morphological characteristics and the expression of
relevant cell surface markers were consistent with the criteria
used to define mesenchymal stem cells by the International

Society for Cellular Therapy (ISCT) (Dominici et al., 2006;
Carvalho et al., 2008).

Transplantation of BMSCs Impaired
Skeletal Muscle Regeneration
We found that the BMSC treated mice showed irregular lumps
in their GMs, while irregular lumps were absent in the vehicle-
treated group. In addition, the gastrocnemius muscle mass of
the BMSCs treated mice was significantly larger than that of
the gastrocnemius muscle collected from the vehicle-treated
mice (Figures 2A–F).

Hematoxylin and eosin staining was performed to evaluate
whether BMSC transplantation improved skeletal muscle
regeneration after injury. H&E staining showed that the GMs
from the BMSCs treated mice 3 and 6 days after injury had
significantly less central-nucleated regenerating muscle fibers
and significantly more infiltrated leukocytes compared with
the GMs collected from the corresponding vehicle treated
mice. In addition, H&E staining showed that the GMs from
BMSC-treated muscle does not exhibit improved morphology
of the injured skeletal muscle. Rather, the BMSC treatment
may have impaired muscle regeneration after contusion, as
there were fewer central-nucleated regenerating myofibers
and more inflammatory cells in the BMSC-treated group
compared with the vehicle group 3 and 6 days after muscle injury
(Figures 3A–D). In addition, at 12 and 24 days post-injury,
the damaged area in the vehicle group had been replaced
mostly by intact skeletal muscle fibers, whereas numerous
necrotic myofibers dominated the injured muscle regions of the
BMSC-treated mice (Figures 3E–H).

TABLE 1 | Primers used for qRT-PCR.

Target gene Forward primer sequences Reverse primer sequences

CD68 5′-CAAAGCTTCTGCTGTGGAAAT-3′ 5′-GACTGGTCACGGTTGCAAG-3′

F4/80 5′-AACATGCAACCTGCCACAAC-3′ 5′-TTCACAGGATTCGTCCAGGC-3′

TNF-α 5′-CTTCTGTCTACTGAACTTCGGG-3′ 5′-CACTTGGTGGTTTGCTACGAC-3′

INF-γ 5′-GCTTTGCAGCTCTTCCTCAT -3′ 5′-GTC ACC ATCCTTTTGCCAGT -3′

IL-1β 5′-TGACGTTCCCATTAGACAACTG -3′ 5′-CCGTCTTTCATTACACAGGACA-3′

TGF-β 5′-TGCGCTTGCAGAGATTAAAA-3′ 5′-CGTCAAAAGACAGCCACTCA-3′

IL-6 5′-GAACAACGATGATGCACTTGC-3′ 5′-CTTCATGTACTCCAGGTAGCTATGGT-3′

Col1a1 5′-GAGCGGAGAGTACTGGATCG-3′ 5′-GCTTCTTTTCCTTGGGGTTC-3′

Col3a1 5′-GTCCACGAGGTGACAAAGGT-3′ 5′-GATGCCCACTTGTTCCATCT-3′

MMP-1 5′-AGTTGACAGGCTCCGAGAAA-3′ 5′-CACATCAGGCACTCCACATC-3′

MMP-2 5′-ACCCTGGGAGAAGGACAAGT-3′ 5′-ATCACTGCGACCAGTGTCTG-3′

MMP-9 5′-CGTCGTGATCCCCACTTACT-3′ 5′-AACACACAGGGTTTGCCTTC-3′

MMP-10 5′-GAGTGTGGATTCTGCCATTGA-3′ 5′-TCTCCGTGTTCTCCAACTGC-3′

MMP-14 5′-CCTGGCTCATGCCTACTTCC-3′ 5′-GCACAGCCACCAAGAAGATG-3′

CCL2 5′-GCTCAGCCAGATGCAGTTAAC-3′ 5′- CTCTCTCTTGAGCTTGGTGAC-3′

CCR2 5′-GAAAAGCCAACTCCTTCATCAG-3′ 5′-TCTAAGCACACCACTTCCTCTG-3′

CCL5 5′-CATATGGCTCGGACACCA-3′ 5′-ACACACTTGGCGGTTCCT-3′

CXCR4 5′- CAAGGCCCTCAAGACGACAG-3′ 5′- CCCCCAAAAGGATGAAGGAG-3′

TWEAK 5′-GCTCCCAAAGCCCCTACTTAT-3′ 5′-AGGTCCAGCCCATCTCAGT-3′

Fn14 5′-GGCGCTCTTAGTCTGGTCCT-3′ 5′-TGGATCAGTGCCACACCTG-3′

gp91phox 5′-CCAGTGAAGATGTGTTCAGCT-3′ 5′-GCACAGCCAGTAGAAGTAGAT-3′

GAPDH 5′-ACTCCACTCACGGCAAATTC-3′ 5′-TCTCCATGGTGGTGAAGACA-3′
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Transplantation of BMSCs Aggravated
the Fibrosis of Contused Muscles
The BMSC-treated skeletal muscle showed significantly more
fibrosis than the vehicle group 24 days after the contusion injury
(7.23 ± 2.26 vs. 50.73 ± 15.5, p < 0.01) (Figure 4). Moreover,
we used RT-PCR to test the expression of collagen I and III. As
expected, the examination revealed that BMSC transplantation
significantly increased the expression of collagen I mRNA levels
at 3, 6, 12, and 24 days post-injury (p < 0.01) compared with the
collagen I mRNA levels of the vehicle group (Figure 5A). The
expression of collagen III mRNA in the BMSCs-treated group
also increased significantly 3, 12, and 24 days after the contusion
injury compared with the collagen III mRNA levels of the vehicle
group (Figure 5B).

Transplantation of BMSCs Increased the
Expression of Specific Markers of
Macrophages in Contused Muscles
F4/80 a mouse macrophage-specific membrane marker (Starkey
et al., 1987). The RT-PCR data showed that F4/80 mRNA
increased significantly at the early stage of regeneration,
especially in the first 6 days (Figure 6A). In addition, the

expression of F4/80 mRNA increased in the BMSC-treated
group at 3, 6, 12, and 24 days post-injury (P < 0.05). BMSC
transplantation increased the expression of CD68, a macrophage-
specific endosomal protein (da Silva and Gordon, 1999), at
12 days (p < 0.01) and 24 days (p < 0.01) after muscle
contusion compared with the CD68 expression of the vehicle
group (Figure 6B).

Transplantation of BMSCs Increased the
Expression of Inflammatory Cytokines in
Contused Muscles
Real-time polymerase chain reaction demonstrated that
the expression levels pro-inflammatory cytokines (such
as TNF-α, IL-1β, IFN-γ, IL-6, and TGF-β) significantly
increased in the early stage of regeneration. With the
exception of IL-6, the mRNA levels of these pro-inflammatory
cytokines returned to normal 24 days post-injury. BMSC
treatment significantly exacerbated the increases in these
pro-inflammatory cytokines (such as TNF-α, IL-1β, IFN-γ,
IL-6, and TGF-β), indicating that BMSC transplantation
enhanced the inflammatory response in skeletal muscle
regeneration (Figure 7).

FIGURE 1 | The characterization of BMSCs. (A) Cultured bone marrow mesenchymal stem cells, after three passages (scale bar: 100 µm). (B–I) Flow cytometry
(FC) analysis for cell surface antigens. The morphology (fibroblast-like cell) and cell-surface marker (CD29, CD44, Sca-1 High and CD11b, CD45 Low) of the cultured
BMSCs were compliant with the standards of mesenchymal stem cells.
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FIGURE 2 | Macroscopic appearances of GMs after BMSCs were treated. (A) Vehicle treated GMs at 24 days post-injury; (B) BMSCs treated GMs at 24 days
post-injury; (C) Vehicle treated and fascia stripped GMs at 24 days post-injury; (D) BMSCs treated and fascia stripped GMs at 24 days post-injury; (E) harvested
GMs with vehicle treated at 24 days post-injury; (F) Harvested GMs with BMSCs treated at 24 days post-injury; Irregular lumps were found in the BMSCs treated
mice other than the vehicle treated mice.

Transplantation of BMSCs Increased the
Expression of Chemokines in Contused
Muscles
To understand the mechanism underlying the increased
leukocyte infiltration after BMSC transplantation, we further
analyzed skeletal muscle chemokines. Compared with the control
group, the injured skeletal muscle showed increased content
of CCL2, CCR2, CCL5, CXCR4, TWEAK, and Fn14 at the
early stage of regeneration. With the exception of CCL5, the
above chemokines returned to normal at 24 days post-injury.
Compared with vehicle treated groups, the BMSC-treated group
exhibited significantly enhanced expressions of CCL2 (297.85-
fold, p = 0.001), CCR2 (20.51-fold, p = 0.001), CCL5 (76.16-fold,
p = 0.001), CXCR4 (14.14-fold, p = 0.001), TWEAK (2.39-
fold, p = 0.001) and Fn14 (38.85-fold, p = 0.001) in injured
gastrocnemius muscle at 24 days post-injury (Figures 8A–F).

Transplantation of BMSCs Increased the
Expression of Matrix Metalloproteinase
in Injured Skeletal Muscles
The skeletal muscle injury caused significant increases in
muscle MMP-1 (31.43-fold), MMP-2 (5.03-fold), MMP-9 (21.62-
fold), MMP-10 (23.87-fold), and MMP-14 (20.66-fold) 6 days

after injury, which returned to normal at 24 days post-
injury. The transplantation of BMSCs resulted in significantly
greater increases in MMP-1, MMP-2, MMP-9, MMP-10,
and MMP-14 at 12 and 24 days (p < 0.01) post-injury
(Figures 9A–E).

Transplantation of BMSCs Increased the
Expression of NADPH Oxidases in
Injured Skeletal Muscles
Gp91phox is a key subunit of NADPH oxidases and often used
as a marker of NADPH oxidases (Xiao et al., 2013). RT-PCR data
showed that gp91phox mRNA levels were significantly increased
at 3, 6, and 12 days post-injury. Compared with the vehicle
treated groups, transplantation of BMSCs resulted in a significant
increase in gp91phox at 3 days (1.98-fold, p = 0.001), 6 days
(2.35-fold, p = 0.001), 12 days (4.98-fold, p = 0.001) and 24 days
(34.17-fold, p = 0.001) post-injury (Figure 8).

DISCUSSION

Skeletal muscle contusion is a common muscle injury in humans,
which is particularly common in sport activities and high speed
vehicle accidents. It is important to develop effective methods to
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FIGURE 3 | Transplantation of BMSCs impaired skeletal muscle regeneration.
Control, uninjured skeletal muscle; Vehicle, vehicle treated group after muscle
contusion; BMSCs, BMSCs treated group after muscle contusion. Scale bars,
50 µm;→ centronucleated muscle fiber;⇒ inflammatory cells.
(A–H) Different time after skeletal muscle injury. There were more inflammatory
cells, necrotic myofibers and less central-nucleated regenerated myofibers as
compared with the vehicle treated mice, and BMSCs transplation impair
muscle regeneration.

treat muscle injuries (Liu et al., 2016). Although muscles have
a strong regenerative ability, the severity of the injury (such as
contusion) might prevent complete regeneration. BMSCs have
been intensively studied in the past decade as a promising therapy
for many diseases. BMSCs transplantation has been proposed as a
treatment for skeletal muscle injury. Although no agreement has
been reached on the clinical applications of BMSCs, some reports
have generated high expectations for this kind of therapeutic
approach (Carvalho et al., 2008). Several studies have found the
application of BMSCs to treat muscle injury, although the exact
mechanisms leading to this process remain to be elucidated.

The original aim of this study was to investigate the
role of BMSC transplantation in muscle regeneration after
contusion. We found that BMSC transplantation impaired
skeletal muscle regeneration.

Macroscopic appearances and H&E staining revealed that
BMSCs treated mice showed irregular lumps, and numerous
necrotic myofibers dominated the injured muscle regions after
contusion. Furthermore, the Masson’s trichrome staining results
showed that the BMSC-treated mice exhibited significantly
more fibrosis than the vehicle treated mice 24 days after the
contusion injury (Figure 4). As is the case in most tissues,
the major ECM muscle protein was collagen, of which the
type I and type III isoforms dominated (Lieber and Ward,
2013). Fibrosis was demonstrated by large increases in collagen
I and III in the muscle ECM (Huebner et al., 2008). Consistent
with the Masson’s trichrome staining results, levels of collagen
I and III increased significantly in the BMSC-treated group
compared with the vehicle group. Taken together, these findings
suggest that transplantation of BMSCs impairs skeletal muscle
regeneration and aggravates muscle fibrosis after contusion.
Our results suggest that BMSC transplantation is a double-
edged sword in injured skeletal muscle and that inappropriate
transplantation impairs skeletal muscle regeneration. This
viewpoint has been tested in other disease models, such as lung
injury (Yao et al., 2018), and various cancers (Norozi et al., 2016;
Lee and Hong, 2017) including leukemic (Low et al., 2015) and
hepatocarcinoma (Zong et al., 2018).

To explore the mechanism related to BMSC transplantation
that impairs skeletal muscle regeneration, we tested the
expression of specific markers of macrophages. Macrophages
play complex roles in injured skeletal muscle and are involved
in muscle fibrosis (Kharraz et al., 2013; Novak et al., 2014;
Wang et al., 2014; Tonkin et al., 2015; Xiao et al., 2016a). Our
previous studies and other studies have suggested that increased
macrophage recruitment or macrophage depletion impairs
skeletal muscle regeneration (Shen et al., 2008; Wang et al., 2014;
Liu et al., 2016; Xiao et al., 2016a). Interestingly, we found that
F4/80 and CD68, markers of macrophages, increased significantly
12 days (p < 0.01) and 24 days (p < 0.01) after contusion
in the BMSCs treated group as compared with the vehicle
treated group. Secondly, we found that BMSCs transplantation
increased the expression of inflammatory cytokines (such as
TNF-α, IL-1β, IFN-γ, IL-6 and TGF-β) in the later stage
of skeletal muscle regeneration (Figure 7). Indeed, disease
microenvironments have profound impacts on transplanted
MSC sinmediating and modulating their therapeutic effects
(Sui et al., 2017). Inflammatory cytokines (especially TGF-β)
modulate MSC proliferation and myofibroblast differentiation.
For example, in a study by Desai et al. (2014), adipose-
derived mesenchymal stem cells (ADSCs) treated with TGF-
β developed a myofibroblastic phenotype with increases in
a-smooth muscle actin (a-SMA), a myofibroblast marker, and
the ECM proteins type I collagen and fibronectin. di Bonzo
et al. (2008) found that the differentiation of transplanted
BMSCs, particularly under conditions of chronic injury, into
pro-fibrogenic potential cells significantly contributed to liver
fibrosis. In addition, Kim et al. (2014) found that normal human
prostate-derived mesenchymal stem cells (MSCs) exposed to
TGF-β1 can differentiate into myofibroblasts. Myofibroblasts
are the primary extracellular matrix (ECM)-secreting cells
during wound healing and fibrosis, and are largely responsible
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FIGURE 4 | Representative images of fibrosis formation in injured GMs. (A) Control muscle; (B) Vehicle treated group (24 days post-injury); (C) BMSCs treated group
(24 days post-injury); (D) Quantification of the scar tissue area in injured GMs. Scale bars = 50 µm. Data are means ± S.D., n = 6. ∗∗ Significant difference from S24,
∗∗P < 0.01. The BMSCs treated mice showed more fibrosis than the vehicle treated mice at 24 days post-injury.

FIGURE 5 | The effects of BMSCs treatment on the expression of collagen. (A) The expression of mRNA of Col1a1. (B) The expression of mRNA of Col3a1. Vehicle,
muscle contusion and vehicle treated group; BMSCs, muscle contusion and BMSCs treated group. Data are means ± S.D., n = 8; a Significant difference from
Control, P < 0.05; aaP < 0.01. bSignificant difference from control, P < 0.05; bbP < 0.01. cSignificant difference from the same time points of group vehicle,
cP < 0.05; ccP < 0.01. The transplantation of BMSCs significantly increased the expression of collagen I and III mRNA as compared with the vehicle treated mice
after muscle contusion.

for scar tissue formation as the wound matures (Klingberg
et al., 2013). Furthermore, in our previous study, we found
that levels of pro-inflammatory cytokines (such as IL-1β, Il-
6 and MCP-1) and MPO (a specific markers of neutrophils)
were significantly increased at 6 h post-injury (Xiao et al.,
2016b). Levels of the pro-inflammatory cytokines TGF-β, TNF-
α and myostain were significantly increased 12 h post-injury
(Xiao et al., 2016a). Taken together, these findings may
suggest that pro-inflammatory microenvironments may induce
BMSCs differentiation into myofibroblasts and impair skeletal
muscle regeneration.

Moreover, we investigated muscle chemokines. The data
showed that the expression pattern of chemokines, like
inflammatory cytokines, increased significantly in the BMSCs
treated mice in the later stage of muscle regeneration (Figure 8).
CC chemokines are mainly involved in the recruitment
of monocytes/macrophages, eosinophils, basophils, and
lymphocytes, whereas CXC chemokines attract neutrophils
to sites of injury (Boyd et al., 2006; Contreras-Shannon et al.,
2007). In addition to their chemotactic effects on leukocytes,
multiple chemokines have broader functions, such as influencing
collagen production and proliferation of hematopoietic precursor
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FIGURE 6 | The effects of BMSCs treatment on the expression of macrophages. Vehicle, muscle contusion and vehicle treated group; BMSCs, muscle contusion
and BMSCs treated group. (A) The expression of F4/80 mRNA after skeletal muscle injury. (B) The expression of CD68 mRNA after skeletal muscle injury. Data are
means ± S.D., n = 8; aSignificant difference from control, P < 0.05; aaP < 0.01. b Significant difference from control, P < 0.05; bbP < 0.01. cSignificant difference
from the same time points of group vehicle, cP < 0.05; ccP < 0.01. F4/80, the specific marker of macrophage membrane; CD68, the specific marker of
macrophages. Specific marker of macrophage (F4/80 and CD68) were significantly increase in the BMSCs treated mice as compared with the vehicle treatd mice in
the later stage (12–24 days) of muscle regeneration.

FIGURE 7 | The effects of BMSCs treatment on the expression of inflammatory cytokines. Vehicle, muscle contusion and Vehicle treated group; BMSCs, muscle
contusion and BMSCs-treated group. (A–E) The expression of inflammatory cytokines after skeletal muscle injury. Data are means ± S.D., n = 8; aSignificant
difference from control, P < 0.05; aaP < 0.01. b Significant difference from control, P < 0.05; bbP < 0.01. cSignificant difference from the same time points of group
vehicle, cP < 0.05; ccP < 0.01. BMSCs transplantation enhanced the inflammatory response in skeletal muscle regeneration.

cells (Warren et al., 2004). In previous studies, we showed that
there was a high expression of chemokines in injured skeletal
muscle with severe fibrosis (Xiao et al., 2016a). This result
was similar to the outcome observed in the contused skeletal
muscle of the BMSC treatment group. It has been suggested that
BMSC transplantation impairs muscle regeneration and multiple
chemokines may be involved.

In addition, we tested the expression of matrix
metalloproteinases (MMPs), which are zinc-dependent
endopeptidases that play an important role in the digestion
of the ECM, inflammation and fibrosis in pathophysiological
conditions (Kumar et al., 2010; Davis et al., 2013). Compared
with the vehicle group, the transcription levels of MMPs were
significantly upregulated in the BMSC-treated group after
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FIGURE 8 | The effects of BMSCs treatment on the expression of chemokines. Vehicle, muscle contusion and vehicle treated group; BMSCs, muscle contusion and
BMSCs treated group. (A–F) The expression of chemokines after skeletal muscle injury. Data are means ± S.D., n = 8; aSignificant difference from control, P < 0.05;
aaP < 0.01. bSignificant difference from control, P < 0.05; bbP < 0.01. cSignificant difference from the same time points of group vehicle, cP < 0.05; ccP < 0.01.
BMSCs transplantation significantly enhanced the expression of CCL2, CCR2, CCL5, CXCR4, TWEAK, and Fn14 in injured gastrocnemius muscle.

contusion (Figure 9). Interestingly, this phenomenon is similar
to the process involved in other muscle disease models, such
as dystrophic muscle. In dystrophic muscle of mdx mice,
MMPs are significantly upregulated, whereas tissue inhibitors
of MMPs are down regulated (Kumar et al., 2010). Deletion
or inhibition of MMPs was found to dramatically improve
muscle structure and function, as well as reduce muscle injury,
inflammation and fiber necrosis in the muscle of mdx mice (Li
et al., 2009; Hindi et al., 2013). In addition, BMSCs cocultured
with C2C12 cells or their conditioned medium (MSC-CM)
upregulated MMP-2 and MMP-9 expression (Sassoli et al.,
2014). Moreover, we found that the increase in MMP (MMP-1,
MMP-2, MMP-9, MMP-10 and MMP-14) levels for the BMSCs
treated injury group is delayed compared to the MMP increase
in the vehicle treated group. High MMPs expression impair
muscle regeneration, and inhibition of MMPs using batimastat
contributes muscle regeneration (Kumar et al., 2010; Ogura
et al., 2014). These results suggest that MMPs may be involved in
delayed skeletal muscle regeneration after BMSC transplantation.
However, further studies need to explore the interaction between
MMPs and MSCs and the mechanism involved in skeletal
muscle regeneration.

Next, we investigated gp91phox (formerly known as Nox2),
which is a key membrane-bound subunit of NADPH oxidase
and is used as a marker of NADPH oxidase (Ghaly and
Marsh, 2010; Xiao et al., 2012; Liu et al., 2018). It has been
acknowledged that NADPH oxidase is a primary source of
ROS generation, and the consequential of oxidative stress in
various tissues (Chan et al., 2009). Recently, Rabani et al. (2018)
found that when BMSCs cocultured with macrophages, BMSC-
induced ROS production in macrophages is dependent on the
activation of gp91phox. In this study, the expression of gp91phox
increased significantly after muscle contusion and returned to
normal at 24 days post-injury. However, BMSC transplantation
significantly upregulated the expression of gp91phox after injury
compared with the gp91phox expression in the vehicle group
(p < 0.01) (Figure 10). Similar results were seen in other
disease models. Compared to wild mice, gp91phox levels were
significantly increased in the tibialis anterior muscles of mdx
mice (Whitehead et al., 2010). Likewise, pharmacologically
induced liver fibrosis was attenuated in gp91phox-deficient mice
(Novitskiy et al., 2006). Moreover, administration of apocynin
(the NADPH oxidase inhibitor) suppressed the development
of renal fibrosis hypertensive rats (Zhao et al., 2008). These
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FIGURE 9 | The effects of BMSCs treatment on the expression of matrix metalloproteinase. Vehicle, muscle contusion and vehicle treated group; BMSCs, muscle
contusion and BMSCs treated group. (A–E) The expression of MMPs after skeletal muscle injury. Data are means ± S.D., n = 8; aSignificant difference from control,
P < 0.05; aaP < 0.01. bSignificant difference from control, P < 0.05; bbP < 0.01. cSignificant difference from the same time points of group vehicle, cP < 0.05;
ccP < 0.01. Transplantation of BMSCs resulted in significant more increases of MMPs in injured gastrocnemius muscle.

results indicate that BMSC transplantation impairs muscle
regeneration and that NADPH oxidase may play an important
role in this process.

FIGURE 10 | The effects of BMSCs treatment on the expression of
gp91phox. Vehicle, muscle contusion and vehicle treated group; BMSCs,
muscle contusion and BMSCs treated group. Data are means ± S.D., n = 8;
aSignificant difference from control, P < 0.05; aaP < 0.01. bSignificant
difference from control, P < 0.05; bbP < 0.01. cSignificant difference from the
same time points of group vehicle, cP < 0.05; ccP < 0.01. BMSCs
transplantation significantly enhanced the expression gp91phox in injured
gastrocnemius muscle.

These results may be different from the results of other
studies, that found that mesenchymal stem cells [BMSCs (von
Roth et al., 2012a; Winkler et al., 2012), adipose MSCs,
embryonic stem cells (Ninagawa et al., 2013), umbilical cord
MSCs (Grabowska et al., 2013) and skeletal muscle MSCs (Meligy
et al., 2012)] contribute to muscle regeneration and improve
muscle force after injury. However, in other disease models
[such as lung injury (Yao et al., 2018) and various cancers
(Norozi et al., 2016; Lee and Hong, 2017), including leukemia
(Low et al., 2015), and hepatocarcinoma (Zong et al., 2018)],
BMSC transplantation aggravated the disease condition that
was regulated by disease microenvironments. In this study, we
first found BMSC transplantation impaired muscle regeneration
after muscle contusion.

CONCLUSION

Our results suggest that BMSC transplantation induced
impaired skeletal muscle regeneration and that macrophages,
inflammatory cytokines, chemokines, matrix metalloproteinases
and oxidative stress-related enzymes may be involved
in the process. These findings shed new light on the
role of BMSC in regenerative medicine and indicate
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that caution is needed in the application of BMSCs
for muscle injury.
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