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Abstract: Takotsubo cardiomyopathy or Takotsubo Syndrome (TTS) is a reversible left ventricular
dysfunction syndrome that is increasingly being recognized. Recent advances in nuclear imaging
have allowed us to study TTS in greater detail. We searched the PubMed and Medline databases and
identified 53 publications with 221 patients reporting nuclear imaging findings in TTS. The age of
the patients ranged from 17 to 87 years and were predominantly women (88.2%). The TTS variant
was apical (typical) in 170 (76.9%), mid-ventricular in 23 (10.4%), and basal (reverse TTS) in 2 (0.9%).
Cardiac perfusion was assessed using 99mTc sestamibi (MIBI) SPECT, 99mTc tetrofosmin SPECT, 201Tl
SPECT, 82Rb PET, 201Tl SPECT, and 13N ammonia PET. Additional studies used were 123I MIBG
SPECT, 123I BMIPP SPECT, 18F FDG PET, 67Ga citrate, and 11C hydroxy-ephedrine. A perfusion defect
was seen in 69 (31.2%), and an inverse perfusion–metabolism mismatch (normal or near-normal
perfusion with absent myocardial metabolic activity) was seen in 183 (82.8%) patients. Nuclear
imaging has a significant role in evaluating, diagnosing, and prognosticating patients with TTS. As
nuclear imaging technology evolves, we will surely gain more insights into this fascinating disorder.

Keywords: Takotsubo cardiomyopathy; nuclear imaging; nuclear cardiology

1. Introduction

Takotsubo cardiomyopathy, or Takotsubo Syndrome (TTS), is a reversible left ventricu-
lar dysfunction syndrome that was described over two decades ago. In its most common
variant, the left ventricle (LV) resembles a Japanese octopus (tako) trapping pot (tsubo),
from which it gets the name. Although most of the initial reports of TTS were from Japan, it
is now reported in almost every country. It is estimated that 1–2% of all patients presenting
with acute coronary syndrome have TTS [1].

TTS is a transient cardiac syndrome, and patients present with chest pain, EKG
abnormalities, and elevated cardiac enzymes, often in the setting of acute stress. Although
TTS is reversible, complications such as arrhythmia, pump failure, outflow tract obstruction,
cardiac rupture, and embolization can cause morbidity and mortality. The Revised Mayo
Clinic Criteria is widely used for diagnosing TTS and requires the presence of transient
LV systolic dysfunction, absence of obstructive coronary disease, new EKG abnormalities
or modest elevation in troponin, and absence of pheochromocytoma or myocarditis [1].
Although the mechanisms underlying this syndrome are not fully known, a link to sudden
stressors and high-catecholamine states has been established.
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Over the last decade, nuclear imaging techniques have seen tremendous development
and application. Nuclear imaging techniques have allowed us to study in detail several
diseases, including TTS, to appreciate its pathophysiology, improve diagnostic accuracy,
and provide prognostic information. This narrative review aims to summarize the current
literature on the use of nuclear imaging in TTS.

2. Materials and Methods

We searched the PubMed and Medline databases to identify studies. Search terms
included “Takotsubo Cardiomyopathy (MeSH term)”, “nuclear imaging,” and names of
individual tracer compounds. References of manuscripts from the initial search were used
to find additional manuscripts. Studies published in English, including adults with TTS
who underwent nuclear imaging, were eligible to be included in this review. We searched
the listed databases from inception to May 2022. Articles that did not have the patient’s
details, opinions, comments, letters, and articles not published in English were excluded
from the analysis. Two independent clinicians reviewed all articles.

3. Results

From a total of 5590 papers that were assessed for eligibility, we excluded 888 com-
ments, 161 editorials, 1439 letters, 656 reviews, and 2 guidelines. We excluded an additional
2391 papers which did not have data on nuclear imaging. A total of 53 papers with
221 patients were included in the final review (Table 1). The age of the patients ranged from
17 to 87 years and were predominantly women (88.2%). The TTS variant was apical (typical)
in 170 (76.9%), mid-ventricular in 23 (10.4%), and basal (reverse TTS) in 2 (0.9%). Most
patients had a single region of involvement. Cardiac perfusion was assessed at admission
for all patients using 99mTc sestamibi (MIBI) SPECT, 99mTc tetrofosmin SPECT, 201Tl SPECT,
82Rb PET, and 13N ammonia PET (Figure 1). Additional studies employed were 123I MIBG
SPECT, 123I BMIPP SPECT, 18F FDG PET, 67Ga citrate, and 11C hydroxy-ephedrine. The
most common studies performed in each category were 99mTc sestamibi (MIBI) SPECT
and 123I MIBG SPECT, respectively. The tracers used for perfusion and additional studies
depended on the facility’s choice. A perfusion defect was seen in 69 (31.2%), and an inverse
perfusion–metabolism mismatch (normal or near-normal perfusion with absent myocardial
metabolic activity) was seen in 183 (82.8%) patients. No adverse events were reported due
to radiotracer injection.



Life 2022, 12, 1476 3 of 16

Table 1. Studies reporting nuclear imaging findings in Takotsubo cardiomyopathy.

Sl. No. Author Number of
Patients

Age in Years,
Sex Perfusion Study Perfusion

Defect
Additional

Tracer Study

Reduced
Uptake of

Additional
Tracer

Perfusion-
Metabolic
Mismatch

Region
Maximally
Involved

Reversal of
Imaging
Findings

1 Anderson et al. [2] 16 Not reported
99mTc sestamibi (MIBI)
SPECT: 6, 201Tl SPECT:

2, 82Rb PET: 8

+ in 11/16
(68.7%) Not performed NR NA

Apex in 9/11
abnormal

studies
NR

2 Yao et al. [3] 1 75, M
99mTc sestamibi (MIBI)

SPECT + 18F FDG PET ++ NR Apex NR

3 Albert et al. [4] 1 77, F 82Rb PET + 18F FDG PET +++ + Apex NR

4 Ito et al. [5] 1 62, F
99mTc tetrofosmin

SPECT NR
123I BMIPP

SPECT NR + Midventricular
circumference NR

5 Sestini et al. [6] 22 70 +/− 11, F:21,
M:1

99mTc sestamibi (MIBI)
SPECT

++ in 17/22
(77.2%)

123I MIBG
SPECT ++ + Apex

In few who
underwent

follow-up scans

6 Crimizade et al. [7] 1 84, F
99mTc tetrofosmin

SPECT ++
123I MIBG

SPECT, 18F FDG
PET

++ - Apex Yes, after
1 month

7 Nagai et al. [8] 1 74, F 201Tl SPECT -
123I BMIPP

SPECT ++ + Mid-ventricle NR

8 Humbert et al. [9] 1 41, F Not performed NA
123I MIBG

SPECT ++ NA Basal NR

9 Messas et al. [10] 1 72, F
99mTc tetrofosmin

SPECT -
123I MIBG

SPECT ++ + Apex NR

10 Harris et al. [11] 1 45, F
99mTc sestamibi (MIBI)

SPECT +
123I MIBG

SPECT ++ + Apex Yes, after
6 weeks

11 Matsuo et al. [12] 16 72 +/− 3, 50% F
99mTc sestamibi (MIBI)

SPECT or 99mTc
tetrofosmin SPECT

++
123I BMIPP

SPECT ++ + Apex NR

12 Ghadri et al. [13] 1 80, F 13N ammonia PET ++ 18F FDG PET ++ - Apex Yes, after
3 months

13 Ikutomi et al. [14] 1 64. F
99mTc sestamibi (MIBI)

SPECT -
123I MIBG

SPECT ++ + Apex NR

14 Ibrahim et al. [15] 1 70, F Not performed NA 18F FDG PET ++ NA Apex NR

15 Arao et al. [16] 1 83, F Not performed NA
123I MIBG

SPECT ++ NA Mid-ventricle NR
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Table 1. Cont.

Sl. No. Author Number of
Patients

Age in Years,
Sex Perfusion Study Perfusion

Defect
Additional

Tracer Study

Reduced
Uptake of

Additional
Tracer

Perfusion-
Metabolic
Mismatch

Region
Maximally
Involved

Reversal of
Imaging
Findings

16 Miyachi et al. [17] 1 85, F
99mTc sestamibi (MIBI)

SPECT +

123I BMIPP
SPECT, 18F FDG

PET (fasting
protocol)

++ + Apex NR

17 Chrapko et al. [18] 1 46, F
99mTc sestamibi (MIBI)

SPECT -
123I MIBG

SPECT ++ + Apex NR

18 Arias et al. [19] 1 77, F
99mTc sestamibi (MIBI)

SPECT ++ Not performed NR NA Apex NR

19 Bonnemeier
et al. [20] 37 68.6 +/− 11,

97% F
99mTc sestamibi (MIBI)

SPECT -
18F FDG PET,

123I MIBG
++ + Apex (27), Mid-

ventricle(10) NR

20 Cimarelli et al. [21] 18 67 +/− 22.6,
72% F

99mTc tetrofosmin
SPECT, 201Tl SPECT -

18F FDG PET,
123I MIBG

+++ +
Apex (13),

Mid-ventricle
(5)

Yes, after
6 months in

those who had
follow- up scans

21 Skovgaard et al. [22] 1 72, F
99mTc sestamibi (MIBI)

SPECT ++
18F FDG PET,

123I MIBG
++ + Apex Yes, after

3 months

22 Soares-Filho
et al. [23] 1 66, F Not performed NA

123I MIBG
SPECT ++ NA Apex NR

23 Prasad et al. [24] 1 54, F 13N ammonia PET -
11C hydroxy-

ephedrine
++ + Mid-ventricle NR

24 Ishibashi et al. [25] 1 66, M 201Tl SPECT +
123I BMIPP

SPECT +++ + Apex NR

25 Davis et al. [26] 1 49, M
99mTc sestamibi (MIBI)

SPECT ++ Not performed NR NA Basal (reverse
TTC) NR

26 Morel et al. [27] 17 72.5 +/− 9,
100% F

201Tl SPECT, 99mTc
tetrofosmin SPECT -

18F FDG PET,
123I MIBG

SPECT
++ + Apex Yes, in few

patients

27 Izumi et al. [28] 1 73, F 201Tl SPECT +
123I MIBG

SPECT ++ + Apex NR

28 Burgdorf et al. [29] 2 45,41; Both F
99mTc sestamibi (MIBI)

SPECT -
18F FDG PET,

123I MIBG
SPECT

+ NR Apex NR
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Table 1. Cont.

Sl. No. Author Number of
Patients

Age in Years,
Sex Perfusion Study Perfusion

Defect
Additional

Tracer Study

Reduced
Uptake of

Additional
Tracer

Perfusion-
Metabolic
Mismatch

Region
Maximally
Involved

Reversal of
Imaging
Findings

29 Moriya et al. [30] 1 67, F Not performed NA

123I BMIPP
SPECT,

123I-MIBG
SPECT

++ NA Mid-ventrice No, at 6 months

30 Uchida et al. [31] 9 74 +/− 9.9;
77% F

201Tl SPECT, 99mTc
sestamibi (MIBI)

SPECT
++

123I BMIPP
SPECT, 123I

MIBG SPECT
++ + Apex

Yes, fully in one
group, partially

in the other

31 Feola et al. [32] 3 65, 74, 87; All F 13N ammonia PET + 18F FDG PET ++ + Apex Yes, after
3 months

32 Izumi et al. [28] 1 73, F 201Tl SPECT +
123I MIBG

SPECT ++ + Apex NR

33 Cimarelli et al. [33] 2 85, 67; Both F
99mTc tetrofosmin

SPECT -
18F FDG PET,

123I MIBG
SPECT

++ +
Apex (1),

Mid-ventricular
(1)

NR

34 De Boeck et al. [34] 1 73, F
99mTc tetrofosmin

SPECT ++ 18F FDG PET +++ - Apex Yes, after
2 weeks

35 Burgdorf et al. [35] 10 67 +/− 4; 90% F
99mTc sestamibi (MIBI)

SPECT +
123I MIBG

SPECT +++ + Apex NR

36 Yoshida et al. [36] 15 72 +/− 7; 80% F 201Tl SPECT ++ 18F FDG PET ++ + Apex NR

37 Takeoka et al. [37] 2 73, 56, Both F 201Tl SPECT -
123I MIBG

SPECT ++ + Apex NR

38 Alexanderson
et al. [38] 1 65, F

99mTc sestamibi (MIBI)
SPECT ++ Not performed NR NA Apex Yes, after

one month

39 Rendl et al. [39] 1 67, F
99mTc tetrofosmin

SPECT + 18F FDG PET +++ + Apex Yes, after
27 days

40 Scholte et al. [40] 1 64, F Not performed NA
123I MIBG

SPECT ++ NA Apex NR

41 Bybee et al. [41] 4 60, 66, 82, 75;
All F

13N ammonia PET ++ 18F FDG PET ++ + in 50% Apex NR

42 Pessoa et al. [42] 5 67 +/− 14, All F Not performed NA
67Ga citrate, 123I

MIBG SPECT ++ + Apex NR

43 Feola et al. [43] 1 65, F 13N ammonia PET - 18F FDG PET ++ + Apex Yes
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Table 1. Cont.

Sl. No. Author Number of
Patients

Age in Years,
Sex Perfusion Study Perfusion

Defect
Additional

Tracer Study

Reduced
Uptake of

Additional
Tracer

Perfusion-
Metabolic
Mismatch

Region
Maximally
Involved

Reversal of
Imaging
Findings

44 Sakuragi et al. [44] 1 59, F 201Tl SPECT +
123I BMIPP
SPECT, 123I

MIBG SPECT
++ + Apex NR

45 Fukui et al. [45] 1 84, F
99mTc sestamibi (MIBI)

SPECT -
123I BMIPP

SPECT ++ + Apex Partial, after
3 months

46 Obunai et al. [46] 1 52, F 82Rb PET ++ 18F FDG PET ++ + Apex Yes

47 Ohwada et al. [47] 3 17, 25, 33; All F 201Tl SPECT -
123I BMIPP
SPECT, 123I

MIBG SPECT
++ + Apex NR

48 Suzuki et al. [48] 1 64, M 201Tl SPECT -
123I BMIPP

SPECT ++ + Apex NR

49 Miyazaki et al. [49] 1 79, F 201Tl SPECT ++
123I MIBG

SPECT ++ - Apex Yes, after
3 months

50 Nishikawa et al. [50] 1 84, F
99mTc tetrofosmin

SPECT ++
123I BMIPP
SPECT, 123I

MIBG SPECT
++ - Apex Partial, after

14 days

51 Hadase et al. [51] 1 82, F
99mTc sestamibi (MIBI)

SPECT ++ Not performed NR NA Apex NR

52 Moriya et al. [30] 1 69, M Not performed NA
123I BMIPP
SPECT, 123I

MIBG SPECT
++ NA Apex Partial, after

3 months

53 Owa et al. [52] 4 70, 66, 53, 69;
All F

201Tl SPECT +
123I MIBG

SPECT, 123I
BMIPP SPECT

++ + Apex Partial

NR: Not reported, NA: Not applicable, +: Mild reduction in additional tracer uptake, ++: Moderate to severe reduction in additional tracer uptake, +++: Absent additional tracer uptake.
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4. Discussion

Takotsubo cardiomyopathy, or Takotsubo syndrome (TTS), was first described in Japan
in 1990 and was so named because of the resemblance of the heart to a traditional Japanese
octopus trapping pot. Since its initial description, the syndrome has been diagnosed world-
wide in several settings, including the intensive care unit. With the COVID-19 pandemic,
Takotsubo cardiomyopathy has been described both as a complication of COVID-19 infec-
tion and as a consequence of the emotional stress associated with social distancing [53].
It is estimated that 1–2% of all patients presenting with an initial diagnosis of acute coro-
nary syndrome have TTS [1]. With further medical advances, particularly in diagnostic
cardiology, the recognition and hence the incidence of TTS is bound to increase.

With the turn of the century, nuclear imaging has seen rapid advances and increased
application in several disciplines. With our ability to engineer targeted tracer compounds
and improvement in imaging techniques, we can study the pathogenesis of several diseases
in detail, including TTS. Various nuclear imaging techniques have been used to study
TTS, including perfusion and metabolic studies. Not only are we able to obtain a global
understanding of cardiac metabolic patterns, but also granular patterns including the
uptake of individual metabolites such as glucose and fatty acids. We can also image the
sympathetic innervation of the heart and identify defects in the same. With all these
techniques, we now have a better understanding of TTS. To the best of our knowledge, this
is the most exhaustive review of nuclear imaging in TTS to date, with 221 patients. We
aim to provide a comprehensive update on the application of nuclear imaging in TTS, the
new insights gained on its pathophysiology, and possible applications of this technology in
the future.

The pathophysiology of TTS is not fully understood, but several postulated hypothe-
ses exist. It is reasonably clear that there is a relationship between TTS and increased
levels of stress and catecholamine levels. There are reports of increased incidence of TTS
after natural calamities. One such observation was made during the Niigata earthquake



Life 2022, 12, 1476 8 of 16

when the incidence of TTS increased 24 times higher than baseline near the earthquake’s
epicenter [54]. In the following paragraphs, we will discuss the evidence supporting the
current hypothesis regarding its pathophysiology and observations suggesting that TTS
may be more complicated and heterogeneous than previously thought.

4.1. The Role of Increased Sympathetic Drive

Increased sympathetic drive and catecholamine levels are central to the pathophysiol-
ogy of TTS. Catecholamines induce an increase in intracellular Ca2+, which is thought the
be the cause of myocardial damage [55]. Another contributing factor may be myocardial is-
chemia due to microvascular dysfunction. Catecholamine-induced oxygen deprivation and
hypo-perfusion at onset could produce a long-term dysfunction of sympathetic neurons.
Almost one-third of the cases we reviewed showed evidence of perfusion defect on nuclear
imaging. Furthermore, the ‘inverse-mismatch pattern’ between perfusion and metabolism,
which was seen in most cases, suggests that the metabolic dysfunction contributes more
to the pathophysiology of TTS than hypo-perfusion itself. High epinephrine concentra-
tions trigger a switch in intracellular signal trafficking in ventricular cardiomyocytes from
stimulatory Gs protein to inhibitory Gi protein signaling via the β2-adrenoceptor. This, in
turn, protects against the pro-apoptotic effects of intense β1-adrenoceptor activation [56].
However, this change also causes a negative inotropic effect.

In addition, it has also been assumed that the increased apical density and sensitivity
of the β2 receptor to epinephrine may cause a prolonged downregulation of the β2 receptor
and impaired uptake-1 function. This causes relatively high levels of epinephrine and
norepinephrine in the synaptic cleft resulting in the slow recovery of these receptors and
transporters compared to more basally located β2 receptors [57].

Differences in the regional distribution of cardiac innervation and local adrenoceptor
density may be the major determinants behind the distinct patterns of TTS. In a canine
model, β2-adrenergic receptor density increased from the basal toward the apical region [58].
The increased β-receptor density in the apical myocardium in post-menopausal women
could explain the predominance of the apical pattern in this group. Similarly, the presenta-
tion of reverse TTS in younger patients may be due to the abundance of adrenoreceptors
and sympathetic nerve endings at the base of the heart in this population [59].

4.2. Evaluation of Cardiac Sympathetic Innervation
123I-MIBG imaging (both planar and SPECT) is a vital tool to evaluate sympathetic

innervation of the heart. Planar 123I-MIBG cardiac images are analyzed by computing
the heart-to-mediastinal (H/M) ratio on both early and late images and the washout rate
(WO) of the tracer from the myocardium between early and late acquisitions. In addition,
regional tracer uptake is qualitatively assessed on SPECT images using a 5-point score in a
17-segment model. A reduced late H/M ratio (H/Mlate) and an increased WO are associated
with a poor prognosis, whereas the role of SPECT analysis is still under investigation. In
2016, Christensen and colleagues demonstrated that 123I MIBG images in TTS showed a
lower late (4-h) heart-to-mediastinum ratio (H/Mlate) (2.00 +/− 0.38) and a higher washout
rate (WR) (45 +/− 12%) in the subacute state of TTC, both when compared with follow-up
(H/Mlate: 2.42 +/− 0.45; p = 0.0004; WR: 33 +/− 14%; p = 0.0004) and when compared
with the control group in the subacute state (H/Mlate: 2.34 +/− 0.60, p = 0.035; WR:
33 +/− 19%, p = 0.026) [60]. This difference did not persist during follow-up. Moreover,
plasma epinephrine levels were elevated in patients with TTS at presentation and remained
relatively elevated on follow-up compared to the control group. The low H/Mlate and high
WR on MIBG imaging in the acute state of TTS may be due to the blocking effect of high
circulating levels of epinephrine on norepinephrine reuptake [60].

In a case of inverted TTS reported by Humbert et al., 123I-MIBG SPECT showed re-
duced uptake at the basal region, indicating a concordance between hypokinetic segment
and region of decreased 123I-MIBG uptake [9]. Sestini and colleagues demonstrated adren-
ergic dysfunction at the apex in TTS patients that persisted even after apparent recovery [6].
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At presentation, a reduced 123I-MIBG uptake was found in 21 patients (95%) on early and all
patients on late images. This persisted in 50% of patients at three years of follow-up. Given
that sympathetic fibers are more susceptible to hypoxia and acidosis, it is plausible that the
initial insult destroys the sympathetic fibers before the myocardium is lost. This finding
is significant because the denervated myocardium is supersensitive to catecholamines
resulting in a higher risk of arrhythmia [61].

Assessing the sympathetic innervation with 123I-MIBG may have prognostic implica-
tions. Investigators from the Kindai University Hospital, Japan, retrospectively identified
90 patients with TTS who were divided into two groups based on the timing of LV function
improvement: <1 month (S) group and >1 (L) month group [62]. The sympathetic nervous
system activity assessed using 123I MIBG scintigraphy showed lower H/Mlate (2.09 vs.
2.45, p = 0.01) and higher WO (33.9 vs. 26.4, p = 0.02) in the L group compared with the S
group. There were more in-hospital complications in the L group (56% vs. 33.3%, p = 0.03),
including higher rates of heart failure (45% vs. 23%, p = 0.03) and in-hospital death (8.0%
vs. 0%, p = 0.03). These findings suggest that higher sympathetic nervous system activity is
associated with a poor prognosis in patients with TTS, and 123I MIBG can be used as a risk
stratification tool.

There may also be sex-dependent differences in the cardiac sympathetic outflow. Ret-
rospective analysis of cardiac 18F Dihydroxyphenylalanine (DOPA) uptake in 133 patients
showed significantly higher uptake in women (1.33 ± 0.21 vs. 1.18 ± 0.24, p < 0.001) [63].
The difference was most pronounced in the LV apex (1.30 ± 0.24 in women vs. 1.13 ± 0.25
in men, p < 0.001) and in individuals >55 years of age (1.39 ± 0.25 in women vs. 1.09 ± 0.24
in men, p < 0.001). Although this analysis was not carried out in patients with TTS, using
123I MIBG scintigraphy in this context provides clues as to why older women are more
susceptible to TTS.

4.3. Role of Perfusion Abnormalities and Its Assessment in TTS

The role of perfusion abnormalities in TTS is a matter of debate as both increased
and decreased perfusion have been described by radionucleotide perfusion studies (RPS).
Anderson et al. analyzed the Intermountain Healthcare electronic medical records which
contained 16 patients with TTS who had RPS [2]. The tracers used were 82Rb PET/CT in
eight, 99mTc sestamibi SPECT in six, and 201Tl SPECT in two. Perfusion defects were seen
in 11 (68.7%) patients with TTS and commonly involved the apical or antero-septal-apical
left ventricle, despite having patent coronaries. This proportion was much higher than our
pooled data, identifying perfusion abnormalities in only one-third of the patients. It is also
important to note that the defects do not correspond to any particular arterial territory—a
defining feature of TTS that suggest microcirculatory dysfunction rather than epicardial
coronary pathology.

While most studies demonstrated reduced perfusion in TTS by RPS, the results of
a survey by Christensen et al. reported the opposite [64]. This group of investigators
studied 25 patients with TTS using coronary angiography (CAG), echocardiography, car-
diac magnetic resonance imaging (CMR), and 13N ammonia/82Rb PET in both the acute
state and follow-up. In 17 patients, flow in the basal region was increased in the acute
state (1.5 ± 0.1 vs. 1.2 ± 0.1 mL/g/minRPP−corrected, p < 0.01), whereas mid-ventricular
(1.7 ± 0.1 vs. 1.6 ± 0.1 mL/g/minRPP−corrected, p = 0.21) and apical (1.4 ± 0.1 vs.
1.5 ± 0.1 mL/g/minRPP−corrected, p = 0.36) flow was unchanged between acute and
follow-up, and within normal range. Similar findings were also reported in several case
reports. (Table 1) It is plausible that the basal hyper-perfusion is a physiological compensa-
tion to meet the increased metabolic demand as basal contractility increases to compensate
for the failing heart.

Quantifying the perfusion abnormality is important for prognostication, as demon-
strated by Kobylecka et al. who used 99mTc sestamibi gated SPECT/CT to assess myocardial
perfusion [65]. Patients with a mean summed rest score (SRS) of four or more had lower
left ventricular ejection fraction, perfusion defect size, total perfusion defect, number of
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akinetic segments in echocardiography, and number of segments with perfusion defect.
The investigators also noted that the applied attenuation correction algorithms using CT
images did not change the final result of myocardial perfusion imaging, indicating that the
CT component of the SPECT/CT study is not required for TTS diagnosis. However, others
with a different opinion support the use of hybrid cardiac SPECT/CT in TTS as it allows
better assessment of coronary artery distribution and myocardial damage [66].

In summary, perfusion abnormalities may be a consequence of TTS rather than the
primary cause. However, these studies highlight the role of microvascular dysfunction in
the acute phase of TTS. Although not diagnostic, nuclear perfusion imaging does provide
prognostic information in the acute phase of TTS.

4.4. Altered Myocardial Metabolism in TTS

Obunai and colleagues were among the earliest to describe altered myocardial metabolism
in TTS [46]. In a case report published in 2005, they described profoundly reduced 18F-FDG PET
uptake in the ballooned apical wall with relatively normal perfusion in TTS-a pattern similar to
myocardial stunning. What is intriguing about this case, and many others reported later, was
the degree of metabolic abnormality which is out of proportion to the perfusion defect—the
so-called “reverse (or inverse) perfusion-metabolism mismatch” pattern [32,41,43]. Moreover,
the metabolism of fatty acids was also disproportionately affected [67]. Notably, perfusion was
reduced in many cases, despite having normal epicardial coronaries. However, the degree of
the metabolic defect was almost always more significant than the perfusion abnormality.

Similar findings were observed in a prospective study of 18 patients by Kobylecka
and colleagues [68]. No regional perfusion abnormalities were seen in 10 patients, while
eight had mild perfusion defects. Even after prolonged fasting, heterogenous 18F FDG
uptake was seen in 10 patients, and selective apical 18F FDG accumulation was seen in eight
patients. In TTS, cardiomyocytes may switch from free fatty acid metabolism to anaerobic
glycolysis after the initial insult. Altered metabolism at the LV apex was also appreciated
when the total defect score (TDS) of 123I BMIPP and perfusion were semi-quantitatively
determined using SPECT [12]. In this study which had 16 patients with TTS, 123I BMIPP
abnormalities were exclusively observed in the apical area. As mentioned before, high
epinephrine concentrations trigger a switch in intracellular signal trafficking in ventricular
cardiomyocytes from stimulatory Gs protein to inhibitory Gi protein signaling. This may
lead to downstream signaling that changes myocardial metabolism, perhaps as a protective
mechanism. These changes can be detected and followed up with nuclear imaging studies.

In this context, the interaction of hyperglycemia and TTS also deserves mention. Its
role in prognosis and infarct size has been evaluated in obstructive coronary artery disease
and MINOCA [69]. Hyperglycemia may act as a metabolic trigger that unbalances the
sympathetic response by altering signal transduction pathways. The HIGH-GLUCOTAKO
investigators compared 28 TTS patients with hyperglycemia with 48 who were normo-
glycemic [70]. Norepinephrine levels along with 123I MIBG cardiac scintigraphy with late
heart-to-mediastinum ratio (H/Mlate) and washout rate (WR) were used to assess sympa-
thetic activity, in a subset of patients. The data showed a direct correlation between blood
glucose levels and norepinephrine levels at admission (R2 = 0.39, p = 0.001). In the subset
of TTS patients who underwent 123I MIBG cardiac scintigraphy, those with hyperglycemia
had lower H/Mlate values at both the acute phase (p < 0.001) and follow-up (p < 0.001).
Reduction in blood glucose correlated well with changes in H/Mlate after 24 months of
follow-up (R2 = 0.38; p = 0.021). Significantly higher mortality (25 vs. 8.3%; p < 0.05)
and HF events (21.4 vs. 8.3%; p = 0.001) were seen in the TTS group with hyperglycemia
during follow-up.

4.5. Assessment of Neurobiological Activity

There is emerging evidence about the role of the neuro-humeral axis and the sympa-
thetic stress response in cardiovascular disease. Suzuki et al. demonstrated significantly
increased blood flow in the hippocampus, brainstem, and basal ganglia, and significantly
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decreased blood flow in the prefrontal cortex in the acute phase of TTS using 99m-Tc ethyl
cysteinate dimer SPECT [71]. A longitudinal study of 293 patients showed that amygdalar
activity (AmygA) measured by 18F FDG PET/CT had a significant bearing on the risk of
cardiovascular disease events (standardized HR 1·59, 95% CI: 1·27–1·98; p < 0.0001) [72]
A dysfunctional limbic system causing overactivation of the sympathetic nervous system
leading to excessive catecholamine release is a proposed mechanism of TTS, which was
studied using functional magnetic resonance imaging (fMRI) [73]. To test the hypothesis
that heightened AmygA precedes the development of TTS and that those with the highest
AmygA develop the syndrome earliest, Radfar et al. retrospectively identified 104 patients
who had undergone 18F FDG PET/CT imaging (41 of whom subsequently developed TTS,
and 63 matched controls) [74]. It was observed that patients who developed TTS had
a higher baseline AmygA (p = 0.038), which also predicted TTS risk after adjusting for
confounders (standardized hazard ratio: 1.643, 95% CI: 1.19–2.27; p = 0.003). Additionally,
on average, individuals with the highest AmygA levels developed TTS two years earlier
than those with lower levels (p = 0.028). Similar findings were reported in a prospective
study conducted by independent investigators, albeit in a smaller sample size [75]. These
findings provide strong evidence for the role of the neuro-humeral axis in TTS. Moreover,
it may be possible to predict an individual’s susceptibility to developing TTS using nuclear
imaging of the amygdala.

4.6. Knowledge Gaps in Our Understanding of TTS and New Questions from Nuclear
Imaging Studies

While nuclear imaging studies have helped us better understand TTS’s pathophysiol-
ogy, some observations raise more questions. There are several case reports of patients with
TTS whose nuclear imaging findings contradict our current pathogenesis model. One such
case is a 67-year-old heart-transplant patient who developed TTS [76]. The patient, who had
heart transplantation for ischemic cardiomyopathy ten years prior, presented with heart
failure. He received a definitive diagnosis of TTS after a comprehensive workup which
included dual-isotope SPECT using 201Tl chloride and 123I BMIPP. Heart transplantation
leads to extrinsic cardiac denervation due to surgical interruption of sympathetic and
parasympathetic nerve fibers, and reinnervation may not always occur [77]. The extent of
cardiac innervation after heart transplantation can be studied by early and late myocardial
uptakes of MIBG, which reflects the distribution of the presynaptic nervous system and
neuronal function. In this patient, the serial heart-to-mediastinal ratio level of 123I MIBG
showed no significant increase on serial follow-up indicating absence of reinnervation.
This case demonstrates that TTS could develop in a denervated heart, although another
possibility is limited reinnervation, below the threshold of detection of the MIBG scan. It
is also possible that the transplanted heart is hypersensitive to circulating catecholamines
due to the up-regulation of β-adrenergic receptors, increasing susceptibility to TTS.

There have also been case reports of several variants of TTS in the same patient [78,79].
These cases contradict the hypothesis that the distribution of β receptors in the myocardium
dictates the TTS variant. Other modifying factors may also determine the region of in-
volvement [80]. At present, it is unclear whether the distribution of β receptors in the
myocardium evolves during an individual’s lifetime. These observations indicate that TTS
is a much more complex disorder than previously thought. TTS may be a combination of
several heterogeneous conditions with multiple pathophysiology pathways, leading to a
common phenotype. We can only hope that the answer to these questions will become
more transparent with more focused future research.

4.7. Future Directions

Nuclear imaging has a significant role in evaluating, diagnosing, and prognosticating
patients with TTS. At present, neither the Revised Mayo Clinic Criteria nor the criteria
by the Takotsubo Cardiomyopathy Study Group (TCSG) incorporate nuclear imaging
into the diagnostic algorithm for TTS [1,81]. Given the consistent presence of the ‘inverse-
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mismatch’ pattern of perfusion and metabolism in TTS, one could argue for modifying these
diagnostic criteria to include nuclear imaging. If future studies show sufficient sensitivity
and specificity for nuclear imaging in diagnosing TTS, one could potentially avoid invasive
procedures such as angiography for its diagnosis. Moreover, as several studies have
demonstrated, nuclear imaging studies provide excellent prognostic information in TTS.
These arguments favor incorporating nuclear imaging studies into the TTS diagnostic
algorithm. Finally, using nuclear imaging to evaluate neurobiological activity may help
predict a person’s lifetime risk of TTS. This information could potentially be used to modify
behavior and avoid situations that may precipitate TTS. As technology evolves further, and
we are able to custom-design tracers targeting specific receptors in the myocardium, we
will surely gain more insights into this fascinating disorder.

4.8. Limitations

Our review, although comprehensive, had several limitations. Firstly, only case reports,
case series, and observational studies were included in this review. Additionally, the sample
size of the observational studies was small. There was no uniform method of reporting
results and imaging features, and most studies did not give additional information, such as
coronary angiography or echocardiography findings. The use of stress studies was also
unclear in the majority of the cases. Well-designed randomized controlled trials would
better answer the questions that we have about the role of nuclear imaging in TTS. Until
then, our best data are being collated from observational studies and anecdotal evidence.

5. Conclusions

TTS is a condition characterized by transient ventricular dysfunction. Nuclear imaging
of TTS reveals perfusion defects in a minority of patients and metabolic defects in a
majority. These defects do not conform to a unique epicardial coronary territory. Moreover,
the metabolic defect is almost always out of proportion to the perfusion defect leading
to a characteristic ‘inverse-mismatch’ pattern. Nuclear imaging offers the possibility to
separately study myocardial perfusion, sympathetic innervation, glucose metabolism, fatty
acid metabolism, and myocardial inflammation. In the future, nuclear imaging techniques
may be adopted for risk prediction, stratification, and prognostication of TTS. However,
more research is needed before nuclear imaging becomes mainstream in evaluating TTS.
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