
Draft Genome Sequences of 11 Lactobacillus jensenii Strains
Isolated from the Female Bladder

Catherine Putonti,a,b,c,d Ayesha Ahmad,a Genevieve Baddoo,b Jessica Diaz,e Michele Do,b Noreen Gallian,b

Collin Lorentzen,a Heena Mohammed,b Jodi Murphy,e Adetokunbo Olu-Ajeigbe,a Taylor Yang,b Taylor Miller-Ensminger,a

Nicole Stark,b Laura Maskeri,a John Van Dusen,b Alan J. Wolfed

aBioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
bDepartment of Biology, Loyola University Chicago, Chicago, Illinois, USA
cDepartment of Computer Science, Loyola University Chicago, Chicago, Illinois, USA
dDepartment of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
eDepartment of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA

ABSTRACT Lactobacillus jensenii, a protective bacterium in the vaginal microbiota,
is also a member of the female urinary tract community. Here, we report 11 genome
sequences of L. jensenii strains isolated from catheterized urine from women. This ef-
fort greatly increases our knowledge of the genetic diversity of this species within
the bladder.

Lactobacillus jensenii is one of the many Lactobacillus species that dominates the
healthy female genital tract (1) and one of three Lactobacillus species found in both

the vaginal and bladder microbiota (2). Prior studies have found that L. jensenii has a
bactericidal effect that prevents viral infection and the colonization of bacteria in the
female vagina and bladder, including that by the uropathogen Escherichia coli (3).
Despite the important role of L. jensenii in these two microbiota, only two strains to
date have been characterized from the bladder (2). In an effort to more fully charac-
terize this commensal bacterium, we have isolated numerous strains of L. jensenii from
catheterized urine and voided urine samples from women (4–8) and recently se-
quenced a subset of this collection.

Catheterized urine samples collected from women as part of prior institutional
review board (IRB)-approved studies (4–8) were cultured using the enhanced quanti-
tative urine culture (EQUC) method (8) and stored at – 80°C. From these samples, 11 L.
jensenii strains, identified by matrix-assisted laser desorption ionization–time of flight
(MALDI-TOF) mass spectrometry, were selected for whole-genome sequencing. Each
strain was first streaked on a Columbia colistin-nalidixic acid (CNA) agar with 5% sheep
blood plate (catalog number 221353; BD) and incubated at 35°C in 5% CO2 for 48 hours.
A single colony was selected and grown in MRS liquid medium at 35°C in 5% CO2 for
48 hours. DNA was extracted using the Qiagen DNeasy UltraClean microbial kit and
quantified using a Qubit fluorometer. DNA libraries were created using the Nextera XT
library prep kit and sequenced using the MiSeq reagent kit v2, producing, on average,
742,756 pairs of 250-bp reads. Raw reads were trimmed using Sickle v1.33 (https://
github.com/najoshi/sickle) and assembled using SPAdes v3.13.0 (9) with the “only-
assembler” option for k � 55, 77, 99, and 127. CheckM v1.0.12 (10) was used to evaluate
the genome assembly completeness and contamination. Genome coverage was calcu-
lated using BBMap v38.47 (https://sourceforge.net/projects/bbmap/). The NCBI Prokary-
otic Genome Annotation Pipeline (PGAP) v4.8 (11) was used to annotate the genome
sequences. CRISPR arrays were identified using CRISPRCasFinder v1.1.1 (12). Unless
previously noted, default parameters were used for each software tool.
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Table 1 lists the genome assembly statistics for the 11 bladder L. jensenii strains. The
average GC content is 34.4%, similar to that of other strains for the species in GenBank.
Annotations identified an average of 1,554 coding sequences (CDS) (Table 1). The
strains vary in their number of rRNA operons and tRNAs. Strains UMB7846 and
UMB8354 presented the greatest challenges during assembly, with N50 values that were
significantly smaller than those of the other strains. This difficulty has been previously
noted for the genus and is due to its numerous short repeats (13). Nonetheless,
genome completeness, as predicted by CheckM, was 98.4% and 99.9%, respectively.
The genome assembly for L. jensenii UMB1303 was found to encode only 17 tRNAs. This
is significantly fewer than those encoded by the other bladder L. jensenii genomes and
genomes from vaginal L. jensenii strains and thus warrants further investigation. CRISPR
arrays were identified in five of the strains, UMB0034, UMB1165, UMB7846, UMB8354,
and UMB8489. Only two other L. jensenii strains, SNUV360 (GenBank accession number
CP018809) and JV-V16 (GenBank accession number CM000953), have CRISPR arrays
recorded in the CRISPR-Cas database (12).

Prior to this study, only two L. jensenii strains from the bladder had been sequenced
(2). Thus, the addition here of 11 genomes greatly increases our knowledge of the
genetic diversity of this beneficial member of the bladder microbiota.

Data availability. This whole-genome shotgun (WGS) project has been deposited in
GenBank, and the accession numbers for each genome assembly are listed in Table 1.
The versions described in this paper are the first versions. Raw sequence data are
publicly available for the 11 L. jensenii strains in the SRA; the accession numbers are
listed in Table 1.
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