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Abstract: Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disease characterized by
the swelling of multiple joints, pain and stiffness, and accelerated atherosclerosis. Sustained immune
response and chronic inflammation, which characterize RA, may induce endothelial activation,
damage and dysfunction. An equilibrium between endothelial damage and repair, together with the
preservation of endothelial integrity, is of crucial importance for the homeostasis of endothelium.
Endothelial Progenitor Cells (EPCs) represent a heterogenous cell population, characterized by the
ability to differentiate into mature endothelial cells (ECs), which contribute to vascular homeostasis,
neovascularization and endothelial repair. A modification of the number and function of EPCs
has been described in numerous chronic inflammatory and auto-immune conditions; however,
reports that focus on the number and functions of EPCs in RA are characterized by conflicting
results, and discrepancies exist among different studies. In the present review, the authors describe
EPCs’ role and response to RA-related endothelial modification, with the aim of illustrating current
evidence regarding the level of EPCs and their function in this disease, to summarize EPCs’ role as a
biomarker in cardiovascular comorbidities related to RA, and finally, to discuss the modulation of
EPCs secondary to RA therapy.

Keywords: rheumatoid arthritis; endothelial dysfunction; endothelial progenitor cells; endothelial
colony forming cells; myeloid angiogenic cells

1. Introduction

Rheumatoid Arthritis (RA) is a chronic inflammatory joint disease, with a prevalence
of about 1% worldwide [1]. The peak incidence is registered among subjects of 60 years of
age, and women are characterized by a higher risk of developing RA [2]. Pain, swelling
and stiffness of feet and hands joints represent the classic presentation of the diseases.
However, non-specific symptoms such as fatigue and fever may appear before classic
symptoms. Extra-articular manifestations and complications of RA include: nodules,
rheumatoid vasculitis, osteoporosis, vertebral fractures, progressive disability and a lower
quality of life. Compared to healthy controls, RA patients may have lower bone quality
and RA is considered a risk factor for vertebral fractures [3,4]. Patients with severe RA
disease have a 6.5-fold higher risk for the development of vertebral fractures compared
to age-matched controls, and the current use of steroids and disease-modifying anti-
rheumatic drugs (DMARDs) are inversely related to vertebral fractures [4]. Interstitial lung
disease, neurological disorders, atherosclerosis and cardiovascular disease are common
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comorbidities associated with RA [5]. While interstitial lung disease may both constitute a
manifestation of RA or a complication of RA therapies [6], treatment with targeted biologic
factors have been demonstrated to reduce cardiovascular risk [7].

The risk factors for RA are relatively unknown, however, a combination of genetic and
environmental factors, including smoking, viral infections, the gastro-intestinal microbiome
and periodontitis have been associated with the development of RA [1]. These factors are
promotors of the inflammatory response and induce a complex autoimmune process, char-
acterized by the presence of anticitrullinated protein antibodies, antibodies to rheumatoid
factor (RF), nuclear antigens and auto-antigens that cross-talk with bacterial or viral anti-
gens. The onset of RA is proceeded by a preclinical RA stage, wherein genetic factors such
as shared-epitope-positive HLA-DRB1 alleles, PTPN22 variant and environmental stressors
promote post-translational protein modifications such as citrullination or carbamylation,
and generate neo-epitopes of autologous proteins such as fibrinogen, fibronectin, collagen,
and vimentin. This process results in the loss of self-tolerance and the development of
autoantibodies against anticitrullinated protein antibodies, antibodies directed against
the Fc portion of immunoglobulins, and RF [8–10]. Consequently, the immune response
results in the activation and differentiation of T cells, release of IL-2, Il-6, Il-17, Il-21 and
INF-gamma and the activation of B-cells, which secret autoantibodies. An abnormal dif-
ferentiation of naive CD4+ T cells into highly proliferative and proinflammatory effector
cells, leads to tissue tolerance failure and early synovitis [11]. The defective transition of
the T- and B- cell population from naive to effector and memory states has been suggested
as the principal mechanism involved in the development of tissue tolerance [12,13]. Of
note, in experimental models of arthritis, in vitro generated collagen-II specific B cells
induced immune tolerance [14]. Additionally, Il-17, INF- γ and immune complexes acti-
vate macrophages, which release IL-1, IL-6 and TNF and activate fibroblasts. Fibroblast
activation and proliferation may adopt pro-inflammatory and tissue invasive functions by
releasing metalloproteinases (MMPs) and causing the differentiation of macrophages to
osteoclasts. In addition, the release of IL-11 by activated fibroblasts controls fibroblasts’
trafficking and production of IL-8 and VEGF, which results in angiogenesis and potentiates
neovascularization [15]. The evasion of the synovial membrane by macrophages and fibrob-
lasts leads to cartilage degradation and bone erosion. A sustained immune response, and
chronic inflammation, which characterize RA, may induce endothelial activation, damage
and dysfunction. Furthermore, the epithelial–mesenchymal transition has been associated
with RA, and IL-23 seems to intermediate the transition of alveolar epithelial cells (ATI) to
a mesenchymal phenotype through mTOR/S6 signaling [16]. ATII cells have an important
role in the regulation of innate immunity and inflammatory mediators such as transforming
growth factor β, which is increased in RA, \nd may modify the ATII secretory profile,
which in turn may directly activate fibroblasts migration and proliferation, resulting in
lung tissue remodeling and fibrosis development [17,18]. An equilibrium between en-
dothelial damage and repair, together with the preservation of endothelial integrity is of
crucial importance for the homeostasis of the endothelium. Endothelial Progenitor Cells
(EPCs) represent a heterogenous cell population, characterized by the ability to differen-
tiate into mature ECs, which contribute to vascular homeostasis, neovascularization and
endothelial repair. Modification in number and in the function of EPCs has been described
in physiological aging, in subjects with high cardiovascular risk, and in several chronic
inflammatory and auto-immune conditions, such as systemic lupus erythematosus [19–22].
Reports focused on the number and function of EPCs in RA are characterized by conflicting
results and discrepancies that exist among different studies. However, given the crucial
connection between EPCs, endothelial damage and chronic inflammation, a modification
of EPC function should be present in RA. In this review, we describe EPCs’ response to
endothelial modification in RA, with the aim to illustrate current evidences regarding
EPCs’ level and function in RA, summarize EPCs’ role as a biomarker in cardiovascular
comorbidities related to RA and finally, to discuss the modulation of EPCs secondary to
RA therapy.
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2. EPCs Classification and Their Role in Endothelial Repair

EPCs are broadly defined as a wide heterogeneous group of cells that are able to
differentiate into ECs and contribute to the formation of new blood vessels [23]. Despite
the significant progress made in this field, it is still difficult to standardize the identification
of EPCs and to correctly define their characteristics and properties. However, based
on their biological functions and phenotype, two distinct subtypes of EPCs have been
proposed, namely, myeloid angiogenic cells (MACs) and endothelial colony forming cells
(ECFCs) [24]. MACs are defined as cultured cells that are derived from peripheral blood
mononuclear cells grown under endothelial cell culture conditions, which are characterized
by the following surface cell markers: CD45+, CD14+, CD31+, and CD146−, CD133−, and
Tie2−. MACs do not have the capacity to differentiate to ECs, but promote angiogenesis
without its incorporation into the vascular lumen through a paracrine mechanism, based
on the activation of IL-8/VEGFR2/ERK signaling pathways, which results in endothelial
proliferation, migration and tube formation [25]. ECFCs derive from umbilical cord blood
or peripheral blood mononuclear cells and are characterized by CD31+, VE-Cadherin+,
von Willebrand factor+, CD146+, VEGFR2+, and CD45− and CD14− immunophenotype.
Functionally, they exhibit a proliferative capacity, intrinsic in vitro and in vivo tube-forming
capabilities, vascular network repair competencies and de novo blood vessels formation
capacity. Their vasculogenic properties are also linked to their role as paracrine mediators
via platelet-derived growth factor BB (PDGF-BB)/platelet-derived growth factor receptor
(PDGFR)-β signaling [26]. Initially, the release of inflammatory cytokines and angiogenic
factor, from the damaged endothelium wall, induces MAC and ECFC recruitment. MACs
paracrine signaling mechanisms further enhance the migration of circulating or vascular
wall ECFCs to the injury area, where they proliferate, differentiate into mature ECs and
restore the endothelial integrity of the vascular wall [27].

3. Endothelial Dysfunction in RA

An impairment of endothelial functions has been established as a key element in
the development of the atherosclerosis process and is recognized as an important fac-
tor related to cardiovascular risk in RA [28,29]. Likewise, altered endothelial reactivity
has been documented in RA patients without cardiovascular risk factors and prior to
atherosclerotic plaque detection, suggesting that endothelial impairment is related to a
specific RA-associated chronic inflammatory condition [30].

Normally functioning endothelium provides a separation between blood and tissues,
regulates blood flow, allows small molecules transport, and responds to signals implicated
in the inflammatory process [31]. Endothelial activation typically occurs in response
to inflammatory stimuli, and is characterized by an upregulation of the expression of
intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-
1) and E-selectin in endothelial cells (ECs). Both VCAM-1 and ICAM-1 are important
in leucocyte trafficking and their increased expression is associated with a number of
chronic inflammatory diseases, including RA, and the selective recruitment of EPCs to
inflamed joint tissue as mediated by VCAM-1 has been reported [32]. In addition, serum
concentrations of soluble ICAM-1, VCAM-1, correlated with markers of RA activity such
as the erythrocyte sedimentation rate and C reactive protein levels [33].

Endothelial dysfunction is usually defined as a defective synthesis and release of
endothelium-derived nitric oxide (NO), which promotes blood-vessel dilation [34]. En-
dothelial damage is characterized by the binding of immune complexes and autoantibodies
to the endothelium, which leads to increased anti-fibrinolytic activity, excessive coagulation,
vasoconstriction and atherosclerosis development.
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Endothelial nitric oxide synthase (eNOS), regulates NO synthesis through the con-
version of L-arginine to NO in the presence of tetrahydrobiopterin (BH4). The production
of NO by endothelial cells inhibits leukocytes and the plate’s adhesion to the endothe-
lium, and induces vasorelaxation. The activation of the inflammatory response and the
production of IL-1, IL-6, and TNF-α is an important mechanism which implicates NO
bioavailability. It has been reported that TNF-α blocks the activation of eNOS through the
degradation of eNOS mRNA and by interfering with the phosphorylation of protein kinase
Akt [35]. Other mechanisms implicated in NO bioavailability reduction are: L-arginine
intracellular deficiency, decreased availability of BH4 co-factor, accumulation of the en-
dogenous eNOS inhibitor dimethylarginine, and inactivation of NO through excessive
generation of superoxide anion [36,37].

Up-regulation of L-arginase pathway and BH4 deficit trigger the transfer of an electron
from NADPH to O2, mediated by eNOS, which results in superoxide anion production and,
subsequently, scavenges NO to produce peroxynitrite. Experimental models have shown
that ECs’ BH4-dependent eNOS regulation plays a pivotal role in maintaining vascular
homeostasis [38].The reduction of NO bioavailability with the increased production of
superoxide anions and peroxynitrite is defined as eNOS un-coupling. Of interest, the
administration of peroxynitrite in in vitro culture of EPCs increased apoptosis and necrosis,
although treatment with peroxynitrite scavenger reversed the injury [39] and the in human
EPC biosynthesis of BH4 via the PTEN-AKT signaling pathway enhanced the regenerative
function of EPCs [40].

NAD(P)H oxidase, has also been described as another source of superoxidase anion
production. Indeed, an experimental model of RA revealed that NADPH oxidase is
responsible for increased endothelial oxidative stress, and an in vitro administration of
diphenylene iodonium chloride, an inhibitor of NAD(P)H oxidase activity, reduced the
production of superoxide anions [41]. Furthermore, recent findings report that NOX4-type
NADPH oxidase is important for proliferation, migration and apoptosis of EPCs [42], while
a positive correlation between the NOX-mediated oxidative stress and the dysfunctions
of circulating EPCs in dyslipidemia has been described, suggesting that a suppression of
NOX might offer a novel strategy through which to improve EPC functions [42,43].

A contributing role of Angiotensin II (Ang-II) in ED, related to RA, has been suggested
since Ang-II enhances superoxide anion production by stimulation of NADP(H) oxidase,
and the treatment with angiotensin II receptor blockers (ARBs) led to a reduction of
superoxide anions and the improvement of endothelial function [44,45]. an inhibition of
Ang II signaling by ARBs and ACE-inhibitors has been reported to increase the number of
EPCs [46].

4. EPC Response to Endothelial Dysfunction in RA

Maintaining adequate levels and function of EPCs is of particular importance for the
preservation of endothelial function and is protective against the atherosclerosis process,
as the chronic inflammatory condition which characterizes RA jeopardizes the endothelial
integrity. Initially, the release of inflammatory cytokines and pro-angiogenic mediators is
expected to trigger the mobilization and recruitment of circulating EPCs. In a collagen-
induced arthritis model, EPC markers significantly increased in the peripheral blood and
accumulated in inflamed synovial pannus, showing a significant increase approximately
3 weeks after disease onset [32]. Furthermore, the selective recruitment of EPCs to inflamed
joint tissue is mediated by VCAM-1/the very late activation antigen 4, which provides
EPC adhesion to cultured RA fibroblasts and to synovial tissue [32].

Experimental models revealed that VEGF plays a crucial role during the early stage of
RA development, affecting neovascularization and the progression of synovitis [47]. In RA,
the combination of local hypoxic conditions and the release of inflammatory cytokines such
as TNF, IL-1, IL-6 and IL-18 activates macrophages and synovial tissue fibroblasts to secrete
VEGF and fibroblasts growth factor. In turn, they activate ECs, induce the production of pro-
proteolytic enzymes and basement membrane degradation by MMPs, which results in ECs
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migration and their proliferation to vascular tubules, and, lastly, pericytes are incorporated
into the newly formed basement membrane [48]. The excessive expression of VEGF in
RA-inflamed synovial tissue has been broadly reported on [49] and the double labeling of
endothelium and pericytes/smooth muscle mural cells of synovial arthroscopic biopsies
from RA, revealed that immature vessels were present from the earliest phases of RA, and
their density increased in patients with a longer disease duration [50]. Of interest, a recent
study observed that pericyte-derived fibroblasts contribute to fibroblast proliferation and
fibrosis expansion in arthritis [51]. However, the migratory response to VEGF stimulation
and EPC adherence capacity isolated from RA patients with low disease activity, was
found to be reduced [47]. In this study, the overall EPC number correlated with endothelial
dysfunction characterizing RA. The presence of steady, low-grade inflammation and the
intake of disease-modifying antirheumatic drugs were suggested as possible explanation
for the modification of the EPC number [52]. It should be mentioned that the reduced
number of EPCs may also be explained by their recruitment to the injury site and the
homing of EPCs to the synovial tissue might be enhanced during periods of synovitis
exacerbations, resulting in reduction of circulating EPCs. Indeed, the presence of EPCs
was revealed in the synovial tissue of RA patients [53], and data from an experimental and
clinical model demonstrated that resistin promotes EPC homing into the synovium during
RA angiogenesis via VEGF signaling [54]. In addition, CXCL16 chemokin and its receptor
CXCR6 have been proposed as mediators of EPC recruitment and neovascularization in
the RA joint [55].

A recent study reported that adiponectin, an inflammatory mediator secreted by
adipose tissue, stimulates EPC migration and tube formation through activation of VEGF
expression facilitated by MEK/ERK signaling. The inhibition of adiponectin resulted in
the reduction of joint swelling, bone destruction, and angiogenic-marker expression in
collagen-induced arthritis mice [56]. Another study documented that another adipokine
apelin facilitated Ang1-dependent EPCs angiogenesis by inhibiting miR-525-5p synthesis
via phospholipase C gamma and alpha signaling [57]. Cysteine-rich 61 proinflammatory
cytokin has been shown to promote VEGF expression and to increase EPC-mediated
angiogenesis in RA [58]. Although the role of sphingosine kinase 1 (S1P) in RA angiogenesis
is unclear, a conditioned medium from S1P-treated osteoblasts significantly increased EPC
migration and tube formation. In addition, S1P and VEGF levels were higher in synovial
fluid from RA, compared to osteoarthritis patients, and infections with SphK1 shRNA
reduced angiogenesis, articular swelling and cartilage erosion in the ankle joints of mice
with collagen-induced arthritis [59]. TNF-α has also been suggested as a suppressor of EPC
proliferation and migration, as corticosteroid treatment increased EPC numbers [53].

The impairment of NO/eNOS signaling and endothelial dysfunction has been shown
to effect EPC mobilization [60]. Furthermore, endothelial dysfunction in patients with RA
was associated with a reduced number and dysfunction of EPC [52].

The main mechanisms that are responsible for the activation and modification of EPCs
are highlighted in Figure 1.

Activation of ROS, NO/eNOS signaling, TNF, and other factors as adipokines, sphin-
gosine 1 phosphate modify proliferation, recruitment and migratory properties of EPCs,
which further interfere with endothelial repair/damage equilibrium and induce accelera-
tion of atherosclerosis and other conidiations related to RA.
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Figure 1. Schematic diagram highlighting modification of EPCs in RA.

5. EPCs Levels in RA: Evidence from Clinical Studies

Different studies have compared the numbers of EPCs isolated from the peripheral
blood of RA patients to healthy controls. Grisar and colleagues reported that circulating
EPCs were reduced in patients affected by RA, and that active RA was associated with
a depletion in EPCs numbers [61]. Furthermore, among RA patients with high serum
levels of TNF-α, circulating EPC levels were found to be significantly decreased, while the
erythropoietin level was not correlated with EPC numbers, suggesting TNF-α dependence
and erythropoietin resistance mechanisms [53]. In line with this observation, infliximab, a
chimeric antibody targeted against TNF-α, improved the numbers and functional prop-
erties of EPCs, in parallel with an early clinical effect, and glucocorticoid treatment also
increased EPCs levels [53,62]. Another study, including low activity RA patients receiv-
ing methotrexate standard treatment, also found reduced numbers of EPCs among RA
patients, and that the endothelial dysfunction among RA patients measured by forearm
blood flow correlated with a reduction in overall EPCs and a reduction in their migratory
properties [52]. Other evidence associated the depressed EPCs numbers in RA patients
with increased asymmetric dimethyl-L-arginine levels, suggesting that oxidative stress
directly up-regulates the activity of asymmetric dimethyl-L-arginine levels [63]. Even
though the overall number of EPCs, compared to healthy controls, was reduced, data from
this study did not reach statistical significance. The results were explained by different
methods used to extract and identify EPCs, and the EPCs level was inversely correlated to
RA prognostic markers such as rheumatoid factor (RF) and c reactive protein (CRP) [64].
In addition, another study associated the reduced numbers of EPCs with atherosclerosis
development among RA patients [65]. In contrast, a study including patients with different
disease’s activity observed increased EPC numbers. This result was explained by the
different protocol used to quantify EPCs and the fact that the population was characterized
by a relatively long disease duration [66]. Results from another study also failed to reflect
significant differences in EPCs number by comparing early stage RA patients with healthy
controls. The relatively short disease duration in this RA cohort has been suggested as an
important source of discrepancies. In fact, the authors observed that EPCs population tend
to decrease after diagnosis, and a significant positive correlation appeared between EPCs
number and disease activity [67]. Furthermore, data from another study revealed that
long-standing (more than a year) RA patients exhibited EPC depletion compared to their
early stage counterparts [68]. Another study explained the contradictory results regarding
EPCs number in RA patients by disease-specific factors, such as low or high expression of
IFNα. From their results, EPCs were found to be significantly reduced in patients with low
IFNα serum levels, whereas higher levels of IFNα were associated with a higher number of
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EPCs [69]. Another study, focused on RA with longer disease duration, observed a reduced
number of EPCs and a correlation with angiogenic T cells (T-ang). A decrease in T-ang
was detected in RA patients even at diagnosis and, at this time point, it was not related to
EPCs numbers. T-ang were found to be decreased in a disease activity-dependent manner
in RA patients, suggesting that specific disease and T-ang/EPCs association was partially
recovered in patients with low disease activity [70]. Furthermore, it has been suggested that
CD147 may play a critical role in regulating the VEGF production of activated T-ang cells
by affecting Akt signaling [71]. Fenofibrate treatment did not effect EPCs expression, even
though, compared to the health controls, the EPC number before treatment was lower [72],
while short-term treatment of RA with TNF inhibitors was associated with increased EPCs
relating a proportional decrease of disease activity [73].

Another study confirmed the reduction of EPCs in 126 RA patients and a reduced
EPC number was associated with higher bone erosion scores in RA patients. In addition,
EPC numbers were restored by anti-TNF therapy, and this increase was paralleled with an
improvement in endothelial function as measured by flow-mediated dilation (FMD) [74].
The impairment of FMD in RA patients, was associated with age, IL-6, HDL, LDL and
depleted EPCs population [75]. Of interest, despite similar levels of improvement in disease
activity, the restoration of EPCs was attenuated in patients with higher bone-erosion scores
than in those with lower scores. In RA patients with moderate disease activity, vitamin
D deficiency is associated with a reduction in circulating levels of EPCs, suggesting that
vitamin D might contribute to endothelial homeostasis in patients with RA [76].

All studies reporting data related to EPCs modification in RA are summarized in
Table 1. An article search was performed on MEDLINE/PubMed using combinations of
the following terms: “endothelial progenitor cells” and “rheumatoid arthritis”.
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Table 1. Endothelial Progenitor Cells in Rheumatoid Arthritis Patients.

First Author and Year Study Population Exclusion Criteria Disease Activity State MACs/ECFCs Identification MACs/ECFCs Impairment
in RA Other Findings

Grisar J et al., 2005 52: 16 HC Significant Hypertension,
DM

active, low and no disease
activity CD34+/KDR+/AC133+ ↓MACs/ECFCs MACs/ECFCs levels were inversely

related to disease activity

Herbrig K et al., 2006 13 RA: 13 HC DM, CAD, smokers. low activity CD34+/CD133+/KDR+ ↓MACs/ECFCs

Migratory activity of EPCs was
reduced for RA patients. Adhesion

to mature endothelial cells after
activation with TNF-α was

enhanced only in HC

Ablin J et al., 2006 14 RA receiving
infliximab

DM, CAD, CVD,
Claudication active disease CD31+/Tie-2 ↑ ECFCs (after infliximab

therapy)

Significant correlation was observed
between the extent of clinical
improvement and the level of

increase in the number and function
of EPCs

Grisar J et al., 2007 29 RA receiving GC Significant Hypertension,
DM, CVD, CAD.

moderate-high active
disease CD34+/KDR+/AC133+ ↑MACs/ECFCs (after GC

therapy)
Disease activity and TNF decreased

significantly after GC treatment.

Surdacki A et al., 2007 30 RA: 20 HC
Atherosclerosis, CV risk

factors and Renal
dysfunction. D.A.S < 3.2

active disease CD34+/KDR+ ↓MACs

Plasma asymmetric
dimethyl-L-arginine levels are ↑ in
RA patients free of CV risk factors

or disease

Egan C et al., 2008 36 RA: 30 HC
Acute macro- or

microvascular events,
DM, statin treatment

Moderate-high active
disease

CD34+/CD133+

CD34+/CD117+

CD34+/CD31+

CD34+/KDR+

CD34+/CD133+/KDR+

MACs/ECFCs no
significant difference

Levels of EPCs were negatively
associated with prognostic markers

of poor disease status

Kai-Hang Y et al., 2010 70 RA CAD, myocardial
infarction, stroke N/R

CD34+

CD34+/KDR+

CD133+

CD133+/KDR+

↓MACs MACs predicted atherosclerosis in
RA patients

Jodon de Villeroche V
et al., 2010 59 RA: 36 HC CV risk factors different active disease Lin−/7AAD−

CD34+/CD133+/VEGFR-2+ ↑ ECFCs
No association between the EPCs

and serum markers of inflammation
or endothelial injury or synovitis.

Rodriguez- Carrio J
et al., 2012 83 RA: 13 HC CV risk factors early stage CD34+/VEGFR2+/CD133+ MACs unchanged

EPCs number exhibited a positive
correlation with disease activity in

early RA

Shirinsky I et al., 2012 25 RA: 16 Osteoarthritis N/R active disease CD34+/CD144+/CD3− ↓MACs/ECFCs
After 12 weeks of treatment with

fenofibrate, no significant changes
were observed in EPCs levels

Spinelli F.R et al., 2013 17 RA: 12 HC CVD, CKD;
Dyslipidemia, DM active state CD34+/KDR+ ↓MACs Short-term treatment with anti-TNF

was able to increase circulating EPCs
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Table 1. Cont.

First Author and Year Study Population Exclusion Criteria Disease Activity State MACs/ECFCs Identification MACs/ECFCs Impairment
in RA Other Findings

Rodriguez- Carrio J.
et al., 2014 120 RA: 52 HC N/R different active disease CD34+/VEGFR2+/CD133+ ↓MACs EPCs reduced in patients with

low IFNα

Rodriguez- Carrio J.
et al., 2015 103 RA: 18 HC N/R different active disease CD34+/VEGFR2+/CD133+ ↓MACs

Angiogenic T cells are reduced in
RA and are associated with CV

risk factors

Park YJ et al., 2014 126 RA: 26 HC CAD, stroke, CKD, CHF different active disease CD34+/VEGFR-2+ ↓MACs

EPCs is independently associated
with bone erosion scores in RA
patients. serum CXCL12 level is

significantly higher in RA patients.

Rodriguez- Carrio J
et al., 2014 194 RA N/R different active disease CD34+/VEGFR2+/CD133+ ↓MACs (>1 year RA vs. <,

=1 year)

RDW was associated with ↓ EPCs
and increased levels of different
mediators linked to endothelial

damage

Lo Gullo A et al., 2015 27 RA: 41 HC CV risk factors, Vitamin
D treatment moderate disease activity CD34+ ↓MACs Vitamin D deficiency is associated

with ↓MACs

Verma I et al, 2015 35 RA: 25 HC CV risk factors N/R CD34+/CD133+ ↓MACs Age, IL-6, HDL, LDL and ↓ EPCs
predicted accelerated atherosclerosis

RA: Rheumatoid Arthritis; HC: healthy Controls; DM: Diabetes Mellitus; CAD: Coronary Artery Disease; CVD: Cerebrovascular Disease; GC: Glucocorticoid; D.A.S: Disease Activity Score; N/A: Not applicable
or not specified data; CKD: Chronic Kidney DIsease; CHF: Chronic Heart Failure; KDR: Kinase Insert Domain Receptor; MACs: Myeloid Angiogenic Cells; ECFCs: Endothelial Colony Forming Cells; IFN-α:
Interferon alfa; VEGF: Vascular Endothelial Growth Factor. ↓: reduced; ↑: increased.
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6. EPCs as a Biomarker for CV Comorbidities Related to RA

RA is characterized by a two-fold increase in the development of cardiovascular
diseases (CVD), and CVD mortality is increased by approximately 50% in RA patients
compared to the general population [77,78].

The relationship between EPCs and cardiovascular risk factors has been well de-
scribed [79]. An impaired migratory response and negative correlation between EPCs and
the severity of coronary artery disease has been described, and a reduced number of EPCs
were observed in diabetic patients with peripheral artery disease [80,81]. Furthermore, the
delivery of EPCs promoted the neovascularization of hindlimb ischemia and the direct my-
ocardial injection of EPCs improved cardiac remodeling in different experimental models of
myocardial ischemia [82,83]. Different studies have reported the association between EPC
number, endothelial dysfunction and the enhancement of the atherosclerosis process in RA
patients [65,69,70,75]. Indeed, coronary atherosclerosis was more prevalent in patients with
RA compared to controls, and a multiple regression analysis revealed that older age (OR
1.25, 95% CI 1.10–1.41, p < 0.01) and lower EPCs (OR 0.07, 95% CI 0.00–0.97, p < 0.01) were
independent predictors for coronary atherosclerosis in patients with RA [65]. Data from
a recent study revealed that 60 months of preceding cumulative rheumatic inflammation
was associated with altered osteocalcin expression in EPCs and acted as an increased
risk of coronary calcification, suggesting that modulation of the bone-vascular axis by
inflammation may play an important role in coronary calcification among RA patients [84].
Vascular calcification has been inversely correlated with bone mineral density, and low
bone mass density appears to independently predict significant coronary artery disease in
a population of predominantly women [85]. An evaluation of bone microarchitecture using
a trabecular bone score, provided additional information regarding identification of RA
patients at risk of the development of fractures [86], and the evaluation of a total-bone score
in RA patients treated with anti-TNF allows for a greater discrimination of the population
at lumbar spine fracture risk [87]. Furthermore, the reduction in the trabecular bone score
for chronic inflammatory and autoimmune diseases was lower in patients with altered
microvascular, as evaluated by nail video-capillaroscopy [3]. Interestingly, a recent study
showed that elevated level of osteogenic circulating EPCs was associated with significantly
higher risk of cardiac conduction abnormalities in subjects with RA [88].

Furthermore, a significantly higher EPC level was found in interstitial lung disease
(ILD) patients affected by RA compared to RA patients without ILD, suggesting that an
EPC increase may represent a reparative compensatory mechanism in patients with both
RA and ILD [89].

It should be mentioned that across most of studies focused on EPC level and RA, the
association between endothelial dysfunction and EPCs was present even though patients
with a diagnosis of traditional CV risk factors such as hypertension, diabetes, smoking,
dyslipidemia were excluded. It is reasonable to believe that RA-specific features, rather
than traditional CV risk factors, trigger the modulation of EPCs, endothelial dysfunction
and, finally, CV consequences and comorbidities.

7. RA Therapy and Modulation of EPCs Level and Function

Current RA treatment includes nonsteroidal anti-inflammatory drugs, glucocorticoids,
synthetic and biological DMARDs [90]. Herbrig et al. [52] described that methotrexate,
a synthetic DMARD, induced apoptosis in EPCs isolated from healthy controls and sug-
gested that the reduction of EPCs observed in RA patients might in part be explained by
methotrexate treatment. Ablin and colleagues [62] showed that after a single infusion of
infliximab, (biological DMARD with anti-TNF action), in active seropositive RA patients,
the level of EPCs increased significantly, by 33.4%, and EPCs adhesion and differentiation
were also increased by 60% and 37.6%, respectively. Short term treatment with other
subcutaneous biological DMARDs such as etanercept or adalimumab, increased EPCs level
after three months [73].
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Daily treatment with 25–50 mg of prednisolone for one week showed that the EPCs
population significantly increased [53]. Experimental data have suggested that peroxisome
proliferator-activated receptors α agonists, or fibrates, are important for EPCs differentia-
tion; however, fenofibrate treatment for three months in twenty-seven patients with active
RA and taking traditional disease-modifying antirheumatic drugs significantly improved
the inflammatory and lipid profile, but failed to modify the number of EPCs. Prelimi-
nary data show that tocilizumab and hydroxychloroquine increase EPCs regeneration and
differentiation in RA [91,92].

8. Conclusions and Future Approaches

The recruitment of EPCs and modification of their migratory and proliferation prop-
erties are crucial steps related to endothelial activation and dysfunction in RA. Multiple
mechanisms, such as the activation of the inflammatory response, the generation of ROS
and modulation of NO/eNOS signaling influence the functioning of EPCs and interfere
with endothelial repair/damage equilibrium. Growing evidence from clinical studies sug-
gests that RA is associated with a reduction in EPCs, and the modification of EPCs function.
In addition, longer disease duration, activity status and treatments seem to influence their
expression. It should be mentioned that the modification of EPCs has been observed in RA
patients without cardiovascular risk factors, suggesting that the relationship between EPCs
and RA may be influenced by RA-specific characteristics. Adiponectin, sphyngosine-1
phosphate signaling, and the modulation of the bone-vascular axis should be further stud-
ied as potential mechanisms involved in EPCs-RA relationship. Furthermore, EPCs levels
seems to be associated with extra-articular complications and consequences of RA, such as
atherosclerosis, coronary artery disease and interstitial lung disease. The functional modifi-
cation of EPCs in RA disease appears to be a promising biomarker related to pathological
RA progression, and future studies should better explore and clarify EPCs evolvement in
these conditions. Further studies are required to investigate whether specific interventions
that influence the role of EPCs in the preservation of the endothelial function in RA might
serve as novel therapeutic strategies.
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