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repurposed drugs using QSAR and machine learning approaches
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Hepatitis C virus (HCV) infection causes viral hepatitis leading to hepatocellular carcinoma. Despite the
clinical use of direct-acting antivirals (DAAs) still there is treatment failure in 5–10% cases. Therefore, it is
crucial to develop new antivirals against HCV. In this endeavor, we developed the ‘‘Anti-HCV” platform
using machine learning and quantitative structure–activity relationship (QSAR) approaches to predict
repurposed drugs targeting HCV non-structural (NS) proteins. We retrieved experimentally validated
small molecules from the ChEMBL database with bioactivity (IC50/EC50) against HCV NS3 (454), NS3/4A
(495), NS5A (494) and NS5B (1671) proteins. These unique compounds were divided into training/testing
and independent validation datasets. Relevant molecular descriptors and fingerprints were selected using
a recursive feature elimination algorithm. Different machine learning techniques viz. support vector
machine, k-nearest neighbour, artificial neural network, and random forest were used to develop the pre-
dictive models. We achieved Pearson’s correlation coefficients from 0.80 to 0.92 during 10-fold cross val-
idation and similar performance on independent datasets using the best developed models. The
robustness and reliability of developed predictive models were also supported by applicability domain,
chemical diversity and decoy datasets analyses. The ‘‘Anti-HCV” predictive models were used to identify
potential repurposing drugs. Representative candidates were further validated by molecular docking
which displayed high binding affinities. Hence, this study identified promising repurposed drugs viz. naf-
tifine, butalbital (NS3), vinorelbine, epicriptine (NS3/4A), pipecuronium, trimethaphan (NS5A), olodaterol
and vemurafenib (NS5B) etc. targeting HCV NS proteins. These potential repurposed drugs may prove
useful in antiviral drug development against HCV.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatitis C Virus (HCV) is a pathogenic virus of global health
concern. It is known to cause viral hepatitis which leads to liver cir-
rhosis, hepatorenal syndrome, liver failure, hepatocellular carci-
noma and eventually death [1]. It is estimated to infect about
170 million people across the globe, with around 58 million people
developing chronic HCV infection [2]. HCV chronic infection leads
to about 300,000 to 400,000 deaths worldwide per year https://
www.who.int/news-room/fact-sheets/detail/hepatitis-c. As HCV
has a mortality rate of 5–7% of infected persons per annum, it could
also be the cause of the next pandemic [3].
HCV is a positive-sense single stranded enveloped RNA virus
belonging to the genus hepacivirus of the family flaviviridae [4].
HCV genome is of approximately 9.6 kilobases comprising 50

UTR, four structural genes - Core, E1, E2, and p7, six non-
structural genes - NS2, NS3, NS4A, NS4B, NS5A, and NS5B and
30UTR [5]. The genome encodes into a single polyprotein of around
3100 amino acids. This precursor polyprotein undergoes prote-
olytic cleavage by viral and host proteases to form viral structural
and non-structural proteins [1].

Various direct acting antivirals (DAAs) targeting specific viral
proteins have been developed to treat HCV infection [6]. Most of
these DAAs have been developed for viral non-structural (NS) pro-
teins namely NS3, NS3/NS4A, NS5A and NS5B. For example, NS3/4A
inhibitor voxilaprevir and pibrentasvir, NS5A inhibitor glecaprevir
and velpatasvir and NS5B RNA-dependent RNA polymerase (RdRp)
inhibitor sofosbuvir and dasabuvir [7]. Use of these DAAs elimi-
nated the side-effects of previous interferon therapy and improved
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the quality of life of HCV infected patients. Treatment using DAAs
achieves sustained virologic response (SVR) in about 92–95% cases
[8]. However, DAA therapy is quite costly and fails in about 5–10%
cases due to pre-existing or new generation of resistance-
associated substitutions (RAS) [9 10].

RAS renders the treatment regimens involving combinations of
DAAs ineffective in patients with resistant variants of the virus [6].
Thus, it is required to develop new drugs for HCV. In this endeavor,
repurposing of FDA-approved drugs for HCV is quite promising.
Various experimental studies have been conducted to look for
repurposed drugs activity against HCV. For instance He et al.,
2015 experimentally tested chlorcyclizine for repurposing against
HCV [11]. Similarly, Perin et al, 2016 checked for flunarizine activ-
ity for HCV [12]. However, taking a computational approach for
predicting the promising repurposed drugs could be helpful to deal
with the time and resources constraint of the drug discovery pro-
cess. In this context, quantitative structure–activity relationship
approach (QSAR) and machine learning based predictive methods
have already been used for different viruses viz., AVCpred [13],
AVPpred [14] HIVproti [15], anti-flavi [16] anti-corona [17],
HCVpred [18].

Some computational studies for identifying drugs for HCV have
also been carried out. Like, da Cunha et al. 2013 used the QSAR
approach to look for NS3 protease inhibitors [19]. Venkatesan
et al. 2018 developed pharmacophore features based predictive
models to identify HCV NS3/4A inhibitors [20]. A web server
named HCVpred was developed for predicting the bioactivity of
HCV NS5B inhibitors using the classification structure–activity
relationship (CSAR) method [18]. Similarly, StackHCV provides
classification based models developed by employing QSAR based
machine learning techniques to identify NS5B inhibitors [21].
However, there is a need for an integrated platform to predict
the antiviral activity of molecules against major HCV NS proteins
namely NS3, NS3/4A, NS5A and NS5B using machine learning tech-
niques (MLTs).

In this study, we developed the ‘‘Anti-HCV” framework having
recursive regression based predictive models to predict antivirals
targeting HCV NS3, NS3/4A, NS5A and NS5B proteins. We used dif-
ferent machine learning techniques namely support vector
machine (SVM), artificial neural network (ANN), k-nearest neigh-
bour (kNN), and random forest (RF) for the algorithm development.
In addition, we have also predicted the promising repurposed can-
didates for all four NS proteins using the best developed models by
scanning the ‘‘DrugBank’’ database. Few predicted molecules were
further validated by molecular docking. This study will be helpful
in finding the new drugs targeting major HCV NS proteins.

2. Methodology

Overall architecture of ‘‘Anti-HCV” is depicted in Fig. 1.

2.1. Data collection

The experimentally validated bioactive compounds for different
‘‘targets’’ of HCV were retrieved from the ChEMBL database.
ChEMBL is a comprehensive repository for bioactive compounds
with their inhibitory properties [22]. The data retrieving steps
include:

1. We collected data of bioactive molecules against HCV NS3,
NS3/4A, NS5A and NS5B proteins from ChEMBL. We obtained
1121, 1106, 2522 and 3011 entries respectively for the above
proteins.

2. The data was filtered for getting inhibitors with IC50/EC50 values
and SMILES followed by removing the redundant entries.
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3. Finally, we obtained 454, 495, 494 and 1671 unique small mole-
cules targeting HCV NS3, NS3/4A, NS5A and NS5B proteins
respectively.

4. These entries were respectively used to develop predictive
models for each target utilizing different machine learning
techniques.

5. The half-maximal inhibitory concentration IC50/EC50 of these
unique entries was changed to pIC50 using equation pIC50 =
-log10(IC50), here IC50 or EC50 are of molar concentration.

The inhibitor datasets used for the model development are pro-
vided in Supplementary Table S1, Table S2, Table S3 and TableS4
for NS3, NS3/4A, NS5A and NS5B proteins respectively.

2.2. Format conversion

The chemical structures of dataset compounds were converted
from SMILES format into the structure-data file (3D-SDF) format
using openbabel version 3.1.1 command line [23]. These converted
files were later on used as input for extracting the chemical
descriptors and fingerprints.

2.3. Molecular descriptors calculation

In order to develop QSAR based predictive models for different
HCV targets, an open source PaDEL-descriptor software [24] was
used to calculate molecular descriptors. We calculated 17,968
chemical descriptors for each molecule present in each dataset.
These molecular descriptors and fingerprints depict the informa-
tion about molecular structure such as molecular weight, number
of bonds, solvent accessible area etc. The descriptors are classified
into 1D, 2D and 3D features based on their dimensionality and are
necessary to understand quantitative structure–activity relation-
ship of compounds [17].

2.4. Feature selection

From the 17,968 chemical descriptors for the chemical datasets,
the relevant top 50 features to provide input variables for machine
learning methods were selected. Feature selection is necessary to
avoid overfitting and the curse of dimensionality. We used support
vector regression, decision tree regression and perceptron methods
in the recursive feature elimination (RFE) method of SciKit library
coded in Python for feature selection [25,26,17].

2.5. Machine learning methods

We developed predictive algorithms for targets using four
machine learning techniques viz., SVM, ANN, kNN, and RF.

SVM is one of the robust supervised machine learning methods
used for both classification and regression based problems. SVM
works by defining the kernel function and identifying the data
points by looking for hyperplanes in very high dimensional space.

kNN is a non-parametric supervised machine learning method
that looks for matches in training dataset to assign values to the
new data points. This method can use different distance matrices
for calculation of euclidean distances.

ANN is a supervised machine learning technique consisting of
nodes or connecting units in the same as neurons in the animal
brain. It learns by processing different inputs having a certain
probability-weighted link between the input and output. The
weight adjusts itself during the process.

RF is also a supervised machine learning algorithmwhich works
by creating decision trees for data points and developing models
and then selecting the best model out of all. This algorithm could
be used for both classification as well as regression analysis [27].



Fig. 1. Overall methodology used in ‘‘Anti-HCV” to develop predictive algorithms to identify inhibitors targeting HCV non-structural proteins – NS3, NS3/4A, NS5A and NS5B.
HCV non structural proteins inhibitors were taken from ChEMBL. Molecular descriptors were calculated using PaDEL-descriptor software followed by feature selection using
support vector regression (SVR), decision tree regression (DTR) and perceptron method. Selected features were used to develop predictive models using support vector
machine (SVM), random forest (RF), k-nearest neighbour (kNN), and artificial neural network (ANN) machine-learning techniques during ten-fold cross validation on training/
testing and independent validation datasets. Predictive models performance were assessed along with prediction of repurposed drugs for these NS proteins as well as their
structural validation using molecular docking.
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2.6. Randomized datasets

We randomly selected � 10 % molecules from the overall data
for each NS protein to be used as an independent validation data-
set. The remaining � 90% molecules were used for training/testing
of the model. This process was repeated five times to generate five
such training/testing and independent validation datasets. The
final datasets for HCV HCV NS3, NS3/4A, NS5A and NS5B comes
out to be 454 (T408 + V46), 495 (T445 + V50), 494 (T444 + V50)
and 1671 (T1503 + V168) respectively [17].

2.7. Ten-fold cross validation

For ten-fold cross validation, we divided the training/testing
datasets into 10 sets randomly. Nine out of ten datasets were used
for training the model while the remaining one dataset was used
for testing. This was iterated for 10 times such that every dataset
was used as a testing dataset. Then, performance of ten iterations
averaged for the developed model [17].

2.8. Model performance evaluation

The performance of the developed models was assessed by cal-
culating the Pearson’s correlation coefficient (R or PCC), mean
absolute error (MAE), coefficient of determination (R2) and root
mean absolute error (RMSE) values using the formulas given
below:
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where, n, Eact, and Epred are dataset size, actual and predicted
efficiencies HCV NS inhibition respectively.

2.9. Applicability domain

In addition to model performance assessment, reliability on
developed models for new predictions is also important. Applica-
bility domain provides the boundary or chemical space of the
developed model for its reliable performance [28]. We used a
distance-based leverage approach to assess the applicability
domain of the developed models for different HCV NS proteins.
The applicability domain space is depicted by the squared area
within the ± 3 band of leverage threshold (h*) and standardized
residuals. The leverage threshold is calculated as:

h� ¼ 3 p þ 1ð Þ=n
where, n is the dataset size and p is the number of features.
We plotted William’s plot using leverage values against stan-

dardized residuals to get the applicability domain space for each
HCV NS protein datasets. We also plotted actual inhibitory concen-
tration (pIC50) against predicted pIC50 values to check the robust-
ness of the models.

2.10. Decoy dataset

Decoys were generated for four HCV NS proteins – HCV NS3,
NS3/4A, NS5A, and NS5B protein inhibitors using DecoyFinder 2.0
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tool [29]. We used the molecular weight-based approach given in
DecoyFinder 2.0 to generate decoys for each HCV NS protein. A
subset of about 4.78 million drug-like molecules from the ZINC20
database was used as a source to generate the decoys [30]. Random
decoys for each active molecule were selected to develop decoy
datasets for each HCV NS protein. The decoy datasets contain
454, 495, 494 and 1671 randomly selected decoys for HCV NS3,
NS3/4A, NS5A, and NS5B proteins respectively. Molecular descrip-
tors for each decoy dataset were calculated to predict the inhibi-
tory activity (pIC50). Finally correlation is determined between
predicted pIC50 of decoys and actual pIC50 of their corresponding
active molecules for each decoy dataset.
2.11. Chemical analysis

Chemical diversity of the drugs/compounds used to develop
models for HCV NS proteins was checked by performing chemical
clustering. We used the multidimensional scaling algorithm with
a similarity score of 0.6 of ChemMine tools for chemical clustering
[31]. Binning clustering using the Tanimoto coefficient with the
same similarity score was also performed.
2.12. Drug repurposing

We used the best developed machine learning models to predict
the promising repurposed drugs from approved drugs taken from
the ‘‘DrugBank” database [32]. For this, we collected the ‘‘ap-
proved” drugs from the DrugBank repository. Format conversion
and chemical descriptors calculation was performed for 2468
approved drugs [17]. These descriptors were used to predict the
repurposing drug candidates for HCV NS proteins.
2.13. Molecular docking

After the prediction of highly efficient drugs for HCV NS pro-
teins, top 5 drugs for each category not yet tested for activity
against HCV were selected for docking. The AutoDock tool (ADT)
was used to customize the inhibitor molecule and protein, also
molecular structure saved in pdbqt format [33]. To dock HCV
NS3, NS3/4A, NS5A and NS5B protein structures and a potent inhi-
bitor molecule, AutoDock Vina (v1.1.2) was used at the default
parameters [34]. Default settings were used to generate the grid
boxes for each protein. Next, the nine best docking postures were
created for proteins and ligand molecules. With the exhaustiveness
parameter set to 10, we calculated the minimum binding affinity
between protein and ligand [17]. The interactions between protein
structure and ligands (inhibitors) were interpreted using Discovery
Studio Visualizer (DSV) and Pymol version 2.5.2.
3. Results

3.1. Performance of developed machine learning based QSAR models

The robust prediction models to predict inhibitors for four non-
structural proteins of HCV were developed. These models were
developed using four machine learning techniques – SVM, ANN,
kNN, and RF.

The predictive models for HCV NS proteins inhibitors developed
utilized the top 50 features selected by using recursive feature
elimination method of Scikit python module. For this, three regres-
sion based algorithms namely Support Vector Regression (SVR),
perceptron and Decision tree regression (DTR) were used. The
selected top 50 features for each NS protein for each method is pro-
vided in Supplementary Table S5. Using 10-fold cross validation,
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we select top performing models for all 4 NS proteins from ran-
domly generated 5 models for each dataset.

The performance of developed models was evaluated by calcu-
lating different statistical measures using 10-fold cross-validation
viz, Pearson’s Correlation Coefficient (R or PCC), Mean Absolute
Error (MAE), coefficient of determination (R2), and Root Mean
Absolute Error (RMSE). In this, PCC value depicts the correlation
of predicted with actual pIC50 values of the inhibitor. Generally,
PCC values range from �1 to + 1, where �1 shows negative corre-
lation while + 1 depicts positive correlation. Similarly, R2 provides
the likelihood of estimation of real data from the regression line. Its
value also ranges from 0 to 1. More the R2 value inclines towards 1,
higher is the efficiency of estimation. MAE and RMSE estimates
give the measures of magnitude of error in prediction of values.
More negative the values of MAE and RMSE, the better is the pre-
diction model.

For HCV NS3 protease training/testing data during ten-fold
cross-validation, PCC values of 0.84 to 0.86 for SVM, 0.80 to 0.84
for RF, 0.79 to 0.80 for kNN whereas 0.76 to 0.85 for ANN algo-
rithms were achieved. Similarly, the independent validation data-
set achieved the PCC of 0.83 to 0.92 for SVM, 0.81 to 0.89 for RF,
0.87 to 0.88 for kNN and 0.81 to 0.90 for ANN after ten-fold
cross-validation. The performance measures of best models for
each selected feature set, developed using SVM, RF, kNN and
ANN for NS3 protein are given in Table 1. The remaining models
developed for NS3 are provided in the Supplementary Table S6.

Likewise, for NS3/4A heterodimer protease complex inhibitor
developed predictive model showed PCC values ranging from
0.83 to 0.92 for SVM, 0.84 to 0.89 for RF, 0.83 to 0.88 for kNN
and 0.77 to 0.89 for ANN for the training/testing dataset. In the
case of independent validation dataset, PCC was found to be 0.88
to 0.96 for SVM, 0.90 to 0.91 for RF, 0.86 to 0.91 for kNN while
0.89 to 0.93 for ANN algorithm after ten-fold validation. The per-
formance measures of best models for each selected feature set,
developed using SVM, RF, kNN and ANN for NS3/4A heterodimer
protein are given in Table 2. The detailed information about mod-
Table 1
The statistical measures of performance of the best predictive models developed for NS3 p
fold cross validation on training/testing and independent validation datasets.

Machine learning model Feature selection algorithm Machine learning

Support Vector Machine SVR gamma:0.0005 C:1

DTR gamma:0.01 C:10

PCT gamma:0.001 C:20

Random Forest SVR n:500 depth:None

DTR n:100 depth:12 spl

PCT n:500 depth:8 split

k-Nearest Neighbour SVR k:5

DTR k:9

PCT k:5

Artificial Neural Network SVR solver:sgd activatio

DTR solver:sgd activatio

PCT solver:sgd activatio

* SVR = Support Vector Regression, DTR = Decision tree regression, PCT = Perceptron meth
correlation coefficient, R2 = Coefficient of Determination, T = Training or Testing datase
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els developed for the NS3/4A heterodimer protein complex are
provided in the Supplementary Table S7.

The prediction models developed for NS5A displayed PCC values
for SVM to be 0.80 to 0.88, 0.81 to 0.87 for RF, 0.80 to 0.86 for kNN
and 0.73 to 0.87 in ANN models for training/testing data with 10-
fold cross validation. For independent validation dataset, PCC were
ranging from 0.78 to 0.87 for SVM models, 0.81 to 0.88 for RF, 0.83
to 0.86 for kNN and 0.72 to 0.84 for ANN models. The performance
measures of best models for each selected feature set, developed
using SVM, RF, kNN and ANN for NS5A protein are given in Table 3.
The detailed information about models developed for the NS5A
protein are provided in the Supplementary Table S8.

For NS5B RdRp, the predictive models developed showed PCC of
0.62 to 0.84 for SVM, 0.67 to 0.85 for RF, 0.64 to 0.83 for kNN, and
0.59 to 0.81 for ANN for training/testing data with ten-fold cross
validation. For independent validation dataset, PCC ranges from
0.60 to 0.84 for SVM, 0.64 to 0.86 for RF, 0.61 to 0.85 for kNN
and 0.62 to 0.84 for ANN. The performance measures of best mod-
els for each selected feature set, developed using SVM, RF, kNN and
ANN for NS5B protein are given in Table 4. The detailed informa-
tion about models developed for the NS5B protein are provided
in the Supplementary Table S9.
3.2. Analysis of applicability domain

The applicability domain analysis showed the robustness of the
developed models. The threshold leverage (h*) values of 1.375,
1.28, 1.344 and 1.27 for NS3, NS3/4A, NS5A and NS5B respectively
depicted that the developed models are highly reliable Fig. 2. The
plots between actual and predicted pIC50 for training/testing and
validation datasets also revealed that most points fall near the
trend line showing the robustness of the developed models
Fig. 3. The additional data for applicability domain analysis and
actual vs predicted pIC50 plots is provided in Supplementary Table
S10 and S11.
rotein using different machine-learning techniques and selected features during ten-

model information Dataset MAE RMSE R2 PCC

00 T408 0.40 0.64 0.72 0.86
V46 0.22 0.47 0.83 0.92
T408 0.45 0.71 0.69 0.84
V46 0.42 0.65 0.69 0.83

0 T408 0.43 0.65 0.71 0.85
V46 0.25 0.50 0.81 0.90

split:2 leaf:4 T408 0.55 0.76 0.62 0.80
V46 0.47 0.68 0.65 0.81

it:5 leaf:2 T408 0.44 0.69 0.70 0.84
V46 0.29 0.54 0.78 0.89

:2 leaf:1 T408 0.56 0.74 0.62 0.80
V46 0.42 0.65 0.68 0.83
T408 0.56 0.76 0.62 0.80
V46 0.31 0.56 0.77 0.88
T408 0.55 0.77 0.62 0.79
V46 0.32 0.57 0.76 0.87
T408 0.56 0.76 0.62 0.80
V46 0.33 0.57 0.76 0.87

n:tanh learning:constant T408 0.40 0.64 0.71 0.85
V46 0.25 0.50 0.81 0.90

n:tanh learning:constant T408 0.65 0.81 0.54 0.76
V46 0.52 0.72 0.61 0.81

n:tanh learning:constant T408 0.40 0.63 0.71 0.85
V46 0.28 0.53 0.79 0.89

od, MAE = Mean absolute Error; RMSE = Root Mean Absolute Error, PCC = Pearson’s
t, V = Validation dataset (independent).



Table 2
The statistical measures of performance of the best predictive models developed for NS3/4A heterodimer protein complex using different machine-learning techniques and
selected features during ten-fold cross validation on training/testing and independent validation datasets.

Machine learning model Feature selection algorithm Machine learning model information Dataset MAE RMSE R2 PCC

Support Vector Machine SVR gamma:0.001 C:100 T445 0.38 0.62 0.82 0.92
V50 0.20 0.44 0.92 0.96

DTR gamma:0.01 C:10 T445 0.53 0.72 0.75 0.88
V50 0.41 0.64 0.83 0.91

PCT gamma:0.05 C:1 T445 0.74 0.85 0.68 0.83
V50 0.52 0.72 0.78 0.88

Random Forest SVR n:300 depth:10 split:5 leaf:1 T445 0.54 0.69 0.76 0.88
V50 0.47 0.68 0.80 0.90

DTR n:100 depth:8 split:2 leaf:1 T445 0.48 0.67 0.78 0.89
V50 0.39 0.62 0.84 0.91

PCT n:200 depth:8 split:10 leaf:1 T445 0.72 0.79 0.69 0.84
V50 0.44 0.67 0.81 0.90

k-Nearest Neighbour SVR k:3 T445 0.53 0.74 0.76 0.88
V50 0.46 0.68 0.80 0.90

DTR k:7 T445 0.65 0.79 0.70 0.85
V50 0.62 0.79 0.74 0.86

PCT k:5 T445 0.77 0.86 0.67 0.83
V50 0.43 0.65 0.82 0.91

Artificial Neural Network SVR solver:sgd activation:tanh learning:adaptive T445 0.50 0.68 0.76 0.89
V50 0.32 0.57 0.86 0.93

DTR solver:sgd activation:tanh learning:adaptive T445 0.81 0.81 0.60 0.81
V50 0.49 0.70 0.79 0.89

PCT solver:sgd activation:tanh learning:adaptive T445 1.08 0.92 0.47 0.77
V50 0.52 0.72 0.78 0.89

* SVR = Support Vector Regression, DTR = Decision tree regression, PCT = Perceptron method, MAE = Mean absolute Error; RMSE = Root Mean Absolute Error, PCC = Pearson’s
correlation coefficient, R2 = Coefficient of Determination, T = Training or Testing dataset, V = Validation dataset (independent).

Table 3
The statistical measures of performance of the best predictive models developed for NS5A protein using different machine-learning techniques and selected features during ten-
fold cross validation on training/testing and independent validation datasets.

Machine learning model Feature selection algorithm Machine learning model parameters Dataset MAE RMSE R2 PCC

Support Vector Machine SVR gamma:0.001 C:300 T444 0.77 0.82 0.78 0.88
V50 1.01 1.01 0.73 0.86

DTR gamma:0.01 C:50 T444 0.89 0.91 0.74 0.87
V50 0.96 0.98 0.74 0.87

PCT gamma:0.05 C:10 T444 1.30 1.12 0.62 0.80
V50 1.53 1.24 0.59 0.78

Random Forest SVR n:500 depth:None split:2 leaf:1 T444 1.10 1.01 0.68 0.83
V50 1.37 1.17 0.64 0.81

DTR n:500 depth:12 split:2 leaf:2 T444 0.86 0.90 0.75 0.87
V50 0.83 0.91 0.78 0.88

PCT n:100 depth:8 split:10 leaf:2 T444 1.20 1.04 0.64 0.81
V50 1.12 1.06 0.70 0.85

k-Nearest Neighbour SVR k:3 T444 0.99 0.97 0.71 0.85
V50 1.17 1.08 0.69 0.83

DTR k:5 T444 0.92 0.96 0.73 0.86
V50 0.99 0.99 0.74 0.86

PCT k:7 T444 1.27 1.10 0.63 0.80
V50 1.16 1.08 0.69 0.83

Artificial Neural Network SVR solver:sgd activation:tanh learning:constant T444 0.87 0.89 0.75 0.87
V50 1.15 1.07 0.69 0.84

DTR solver:sgd activation:tanh learning:constant T444 1.05 1.05 0.69 0.84
V50 1.13 1.06 0.70 0.84

PCT solver:sgd activation:tanh learning:constant T444 1.87 1.44 0.47 0.73
V50 2.53 1.59 0.32 0.72

* SVR = Support Vector Regression, DTR = Decision tree regression, PCT = Perceptron method, MAE = Mean absolute Error; RMSE = Root Mean Absolute Error, PCC = Pearson’s
correlation coefficient, R2 = Coefficient of Determination, T = Training or Testing dataset, V = Validation dataset (independent).
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3.3. Validation using decoy set

Decoys are generally regarded as inactive molecules that are
unable to bind targets, unlike active molecules. For validating the
developed models’ robustness, the inhibitory activity (pIC50) of
each decoy was predicted and compared with the inhibitory activ-
ity (pIC50) of its corresponding active molecule. PCC values for
each HCV NS protein decoy dataset were calculated. The decoy
datasets showed PCC values of �0.074, �0.037, 0.052 and 0.117
3427
for HCV NS3, NS3/4A, NS5A, and NS5B proteins respectively and
displayed through scatter plot in Fig. 4.

3.4. Chemical diversity analysis

Chemical clustering was performed to assess the diversity in
chemical structures of compounds for NS3, NS3/4A, NS5A and
NS5B proteins. Binning clustering showed compounds clustered
into 159 bins/clusters for NS3 protein, 25 bins for NS3/4A pro-



Table 4
The statistical measures of performance of the best predictive models developed for NS5B protein using different machine-learning techniques and selected features during ten-
fold cross validation on training/testing and independent validation datasets.

Machine learning model Feature selection algorithm Machine learning model parameters Dataset MAE RMSE R2 PCC

Support Vector Machine SVR gamma:0.05 C:1 T1503 0.54 0.74 0.70 0.84
V168 0.57 0.76 0.70 0.84

DTR gamma:0.01 C:10 T1503 0.58 0.78 0.67 0.82
V168 0.65 0.81 0.66 0.81

PCT gamma:1 C:10 T1503 1.10 1.04 0.38 0.62
V168 1.24 1.11 0.35 0.60

Random Forest SVR n:200 depth:None split:2 leaf:1 T1503 0.56 0.75 0.69 0.83
V168 0.66 0.81 0.65 0.81

DTR n:400 depth: None split:2 leaf:1 T1503 0.51 0.71 0.71 0.85
V168 0.52 0.72 0.73 0.86

PCT n:100 depth: 12 split:5 leaf:1 T1503 0.99 0.99 0.44 0.67
V168 1.12 1.06 0.41 0.64

k-Nearest Neighbour SVR k:5 T1503 0.59 0.78 0.67 0.82
V168 0.60 0.78 0.68 0.83

DTR k:7 T1503 0.57 0.76 0.68 0.83
V168 0.55 0.74 0.71 0.85

PCT k:9 T1503 1.06 1.03 0.40 0.64
V168 1.20 1.09 0.37 0.61

Artificial Neural Network SVR solver:adam activation:tanh learning:constant T1503 0.60 0.76 0.66 0.81
V168 0.58 0.76 0.70 0.84

DTR solver:adam activation:tanh learning:constant T1503 0.62 0.81 0.65 0.81
V168 0.70 0.84 0.63 0.80

PCT solver:sgd activation:tanh learning:constant T1503 1.19 1.08 0.33 0.59
V168 1.17 1.08 0.39 0.62

* SVR = Support Vector Regression, DTR = Decision tree regression, PCT = Perceptron method, MAE = Mean absolute Error; RMSE = Root Mean Absolute Error, PCC = Pearson’s
correlation coefficient, R2 = Coefficient of Determination, T = Training or Testing dataset, V = Validation dataset (independent).

Fig. 2. William plots for applicability domain analysis of the support vector machine based predictive models developed for each HCV NS protein – (A) NS3, (B) NS3/4A, (C)
NS5A and (D) NS5B.
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tein, 25 bins for NS5A protein and 142 bins for NS5B protein
with similarity threshold of 0.6 Supplementary Table S12. The
3D multidimensional scaling plots showed the chemical diver-
sity of compounds for NS3, NS3/4A, NS5A and NS5B proteins
Fig. 5.
3428
3.5. Prediction of repurposed drugs targeting HCV non-structural
protein NS3

The best performing SVM predictive models developed for HCV
NS3 were used to predict the promising repurposing drugs target-



Fig. 3. Support vector machine based developed predictive models robustness shown by the plots between actual and predicted pIC50 of molecules for each HCV NS protein -
(A) NS3, (B) NS3/4A, (C) NS5A and (D) NS5B.

Fig. 4. Scatter plots to display correlation between actual and predicted pIC50 of decoys and active molecules for HCV NS proteins - (A) NS3, (B) NS3/4A, (C) NS5A and (D)
NS5B.
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Fig. 5. The chemical analysis of inhibitors shown by 3-dimensional multiscaling plots among the compounds for each HCV NS protein - (A) NS3, (B) NS3/4A, (C) NS5A and (D)
NS5B.

Table 5
Table showing information for top 10 predicted repurposed drugs for HCV NS3 protein namely drug, DrugBank ID, primary use, predicted pIC50 and clinical status for HCV.

DrugBank Id Name of Drug Primary use pIC50 (predicted against NS3) Clinical status

DB00970 Dactinomycin Anticancer 8.95 Not yet tested
DB00735 Naftifine Antifungal drug 8.80 Not yet tested
DB01410 Ciclesonide Obstructive airway diseases 8.70 Not yet tested
DB13253 Proxibarbal Migraines treatment 8.61 Not yet tested
DB00241 Butalbital Treatment of tension-type headache 8.51 Not yet tested
DB13170 Plecanatide Chronic idiopathic constipation and IBS 8.48 Not yet tested
DB00474 Methohexital Anesthetic for deep sedation 8.48 Not yet tested
DB15465 Benzhydrocodone Pain reliever 8.42 Not yet tested
DB06711 Naphazoline Vasoconstrictor to relieve eyes itching and redness 8.24 Not yet tested
DB01091 Butenafine Antifungal 8.12 Not yet tested

Table 6
Table showing information for top 10 predicted repurposed drugs for HCV NS3/4A protein namely drug, DrugBank ID, primary use, predicted pIC50 and clinical status for HCV.

DrugBank Id Name of Drug Primary use pIC50 (predicted against NS3/4A) Clinical status

DB01395 Drospirenone Oral contraceptive pills 13.48 Not yet tested
DB06402 Telavancin Antibacterial agent 13.14 Not yet tested
DB00361 Vinorelbine Metastatic non-small cell lung carcinoma (NSLC) 12.57 Not yet tested
DB11275 Epicriptine Idiopathic decline in mental capacity 12.46 Not yet tested
DB00320 Dihydroergotamine Migraine and cluster headache 12.44 Not yet tested
DB11273 Dihydroergocornine Idiopathic decline in mental capacity 12.42 Not yet tested
DB00696 Ergotamine Treatment of migraine disorders 11.77 Not yet tested
DB04911 Oritavancin Antibacterial 11.52 Not yet tested
DB06663 Pasireotide Cushing’s disease treatment 11.24 Not yet tested
DB00256 Lymecycline Acne vulgaris and other infections 11.10 Not yet tested
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ing NS3. The repurposed drugs were predicted from the approved
drugs available in the ‘‘DrugBank ’’ database. Top 10 predicted
repurposed drug candidates for NS3 protein are given in Table 5.

3.6. Prediction of repurposed drugs targeting HCV non-structural
protein complex NS3/4A

We selected the best performing prediction model for NS3/4A
and used this model to predict the repurposing drugs from the
‘‘DrugBank” database. Top 10 predicted repurposed drug candi-
dates for NS3/4A protein are given in Table 6.

3.7. Prediction of repurposed drugs targeting HCV non-structural
protein NS5A

The potential repurposing drugs were predicted from the
approved drugs available in the DrugBank database. The best pre-
diction model was used to predict the repurposing molecules for
HCV NS5A. Top 10 predicted repurposed drug candidates for
NS5A protein are given in Table 7.

3.8. Prediction of repurposed drugs targeting HCV non-structural
protein NS5B

The best predictive model developed for NS5B inhibitors based
on SVM was used to predict the potential repositioning drug can-
didates for NS5B from the DrugBank approved drugs. Top ten pre-
dicted repurposed candidates for NS5B are given in Table 8.

The top 200 repurposing drug candidates for each NS protein
are provided in Supplementary Table S13.

3.9. Molecular docking of predicted inhibitors with NS proteins

Docking is an advantageous method to determine the affinity
and interactions of proteins with different ligands and vice versa.
Table 7
Table showing information for top 10 predicted repurposed drugs for HCV NS5A protein n

DrugBank Id Name of Drug Primary use

DB11585 Drometrizole
trisiloxane

UV ray absorbing agent

DB00728 Rocuronium Facilitate tracheal intubation and relax ske

DB01338 Pipecuronium Neuromuscular blocking agent, used as an

DB00210 Adapalene Acne vulgaris
DB01116 Trimethaphan Ganglionic blocker in hypertension
DB14879 Cefiderocol Cephalosporin antibiotic for urinary tract i
DB11951 Lemborexant Insomnia treatment
DB01190 Clindamycin Bacterial infections
DB13284 Meticrane Diuretic
DB01180 Rescinnamine Antihypertensive drug

Table 8
Table showing information for top 10 predicted repurposed drugs for HCV NS5B protein n

DrugBank Id Name of Drug Primary use

DB13125 Lusutrombopag Thrombocytopenia treatment
DB05294 Vandetanib Symptomatic or progressive medullary thyro
DB00365 Grepafloxacin Antibiotic to treat gram positive and gram ne
DB09080 Olodaterol Treatment of chronic obstructive pulmonary
DB12035 Sarecycline Inflammatory lesions or acne vulgaris treatm
DB08881 Vemurafenib For the treatment of metastatic melanoma
DB00334 Olanzapine Antipsychotic drug
DB14033 Acetyl sulfisoxazole Antibacterial agent
DB01044 Gatifloxacin Treatment of different infections
DB12792 Boscalid Glaucoma and Schirmers treatment
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We selected the top three molecules for each HCV NS protein
depending on the predicted pIC50 value for docking. Further, these
compounds were sequentially docked for their respective protein.
In the case of NS3 repurposed drug, the lowest binding energy
was observed in naftifine and NS3 protein (PDB Id 2XCF), i.e.,
�7.8 Kcal/mol and indicated four different types of interactions
as mentioned in Table 9. with NS3 protein. In contrast, the remain-
ing two molecules, namely, butalbital and proxibarbal, have bind-
ing energy � -6.3 and �6.2 Kcal/mol, respectively. Additionally,
three molecules, namely vinorelbine, epicriptine, and drospire-
none, were docked on HCV NS3/4A protein (PDB Id 4WF8) showed
the lowest binding energy ranged from �8.9 to �8.1 Kcal/mol as
well as showed different types of interactions as mentioned in
Table 9. Apart from this, three molecules were docked on NS5A
protein (PDB Id 4CL1) of HCV. Interestingly, the pipecuronium
molecule showed the lowest minimum binding energy � -9.8
Kcal/mol. In addition, the remaining molecules, trimethaphan
and cefiderocol showed minimum binding energy �9.4 and �9.2
Kcal/mol, and their interacting residues were mentioned in Table 9.
Additionally, three molecules i.e., olodaterol, vemurafenib, and
grepafloxacin were docked on NS5B protein (PDB Id 3VQS). In the
case of NS5B all three molecules showed �8.0 Kcal/mol given in
Table 9. Ribbon structure of proteins NS3, NS3/4A, NS5A, NS5B
binding with respective ligand molecules are displayed in Fig. 6.
Whereas, their molecular interactions in two dimensions form
are shown in Fig. 7.

4. Discussion

Hepatitis C Virus (HCV) causes viral hepatitis characterized by
acute liver inflammation to severe conditions like liver cirrhosis,
hepatic encephalopathy, liver failure, hepatorenal syndrome and
hepatocellular carcinoma [35 36]. About 55–85% of infected HCV
patients develop chronic infection which is associated with the
incidence of liver cancer [37 38]. HCV is a positive-sense single
amely drug, DrugBank ID, primary use, predicted pIC50 and clinical status for HCV.

pIC50 (predicted against NS5A) Clinical status

13.66 Not yet tested

letal muscles during surgery 13.33 Not yet tested

esthetic 13.17 Not yet tested

13.04 Not yet tested
12.82 Not yet tested

nfections 12.57 Not yet tested
12.52 Not yet tested
12.30 Not yet tested
12.17 Not yet tested
12.16 Not yet tested

amely drug, DrugBank ID, primary use, predicted pIC50 and clinical status for HCV.

pIC50 (predicted against NS5B) Clinical status

8.06 Not yet tested
id cancer treatment 7.97 Not yet tested
gative bacterial infections 7.92 Not yet tested
disease (COPD) 7.68 Not yet tested
ent 7.58 Not yet tested

7.67 Not yet tested
7.37 Not yet tested
7.35 Not yet tested
7.27 Not yet tested
7.17 Not yet tested



Table 9
Table represents the ligand, protein name, protein Id (PDB id), binding affinity, interacting residues, distance between interacting residues (Å), types of molecular interactions.

Protein (PDB id) Inhibitory ligand (Drugbank id) Affinity (Kcal/mol) Interacting residues Distance (Å) Molecular interactions

NS3 (2XCF) Naftifine (DB00735) �7.8 ALA-A:5
TYR-A:6
ALA-A:7
GLU-A:32
VAL-A:33

5.08
3.76
4.76
6.45
4.26, 4.95

Van der waals
Pi-anion
Pi-Alkyl
Alkyl

Butalbital (DB00241) �6.3 ALA-A:5
TYR-A:6
GLU-A:32
VAL-A:33
VAL-A:107

4.57
3.49
3.62
3.64, 3.70, 6.32
4.55

Van der waals
Conventional hydrogen bond
Pi-Alkyl
Alkyl

Proxibarbal (DB13253) �6.2 TYR-A:6
GLN-A:8
GLU-A:32
VAL-A:33

5.35
3.48, 4.74
4.26
3.25, 4.21, 4.89

Van der waals
Conventional hydrogen bond
Pi-Alkyl
Alkyl
Unfavorable Donar-Donar

NS3/4A (4WF8) Vinorelbine (DB00361) �8.9 ASP-A:1081
ASP-A:1168
ARG-A:1155

5.21
5.26, 5.71, 5.73
8.21

Van der waals
Attractive charge
Pi-cation
Pi-anion

Epicriptine (DB11275) �8.4 ALA-A:1013
GLN-A:1041
THR-A:1042
PHE-A:1043
HIS-A:1057
GLY-A:1137

4.2, 5.2, 6
4.33
5.64
5.20
5.73

Van der waals
Carbon hydrogen bond
Conventional hydrogen bond
Unfavorable Donar-Donar

Drospirenone (DB01395) �8.1 ALA-A:1005
VAL-A:1113

4.26
5.45

Van der waals
Alkyl

NS5A (4CL1) Pipecuronium (DB01338) �9.8 ARG-A:12, 15
ARG-C:49
ARG-D:15
GLY-A:13
ALA-D:74
LEU-A:124
ASP-A:125

4.3, 5.8,
5.59,
5.08, 5.30
5.74
4.91
4.9
4.65, 5.76, 5.78

Carbon hydrogen bond
Conventional hydrogen bond
Van der waals
Attractive charge
Alkyl

Trimethaphan (DB01116) �9.4 ARG-A:131
PHE-B:132
ARG-B:83
TRP-B:82

4.31
5.62
4.63, 4.77
5.74

Conventional hydrogen bond
Van der waals
Pi-Donor hydrogen bond
Pi-sigma
Pi-Pi stacked
Pi- Alkyl

Cefiderocol (DB14879) �9.2 THR-A:65
ARG-A:83
GLU-A:119
HIS-A:130
ARG-A:131
PHE-A:132
TRP-B:82
GLU-B:119
PHE-B:120
HIS-B:130

4.64
4.93
6.61
4.09
5.60
5.26, 6.24
6.88
5.94
4.20
3.95

Van der waals
Attractive charge
Conventional hydrogen bond
Pi-Anion
Pi-Donar hydrogen atom
Pi-Sulfur
Pi-Pi T-shaped
Pi-Alkyl

NS5B
(3VQS)

Oladaterol (DB09080) �8.8 SER-A:180
PHE-A:193
GLN-A:194
SER-A:288
MET-A:414
ILE-A:447
TYR-A:452
ILE-A:454
LEU-A:547

5.47
4.51, 4.67
6.99
4.19
6.76, 6.45
5.26
5.26, 6.22, 6.63, 6.63
5.76
4.0, 5.81

Van der waals
Conventional hydrogen bond
Pi-Donar hydrogen atom
Pi-Sulfur
Pi-Pi stacked
Pi-Pi T-shaped
Alkyl
Pi-Alkyl

Vemurafenib (DB08881) �8.7 SER-A:196
MET-A:414
ILE-A:447
ILE-A:454
ILE-A:462
LEU-A:466
LEU-A:547

4.44
6.19
5.28
5.41
4.78
6.08
4.48, 4.59

Van der waals
Conventional hydrogen bond
Carbon-hydrogen bond
Pi-sigma
Pi-Pi stacked
Alkyl
Pi-Alkyl

Grepafloxacin (DB00365) �8.4 TYR-A:191
PHE-A:193
SER-A:288
ALA-A:450
LEU-A:540

6.60
4.10
4.76
6.70
4.04

Van der waals
Conventional hydrogen bond
Pi-Donar hydrogen atom
Alkyl
Pi-Alkyl
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Fig. 6. Ribbon structure of proteins NS3, NS3/4A, NS5A, NS5B binding with respective ligand molecules (A) Represents the structure of NS3 protein and naftifine (B) structure
of NS3 and butalbital (C) structure of NS3 protein and proxibarbalb (D) structure of NS3/4a protein and vinorelbine (E) structure of NS3/4a protein and epicriptine (F)
structure of NS3/4a protein and drospirenone (G) structure of NS5A and pipecuronium (H) structure of NS5A trimethaphan (I) structure of NS5A and cefiderocol (J) structure
of NS5B and olodaterol (K) structure of NS5B and vemurafenib (L) structure of NS5B and grepafloxacin (Protein in Rainbow color and ligand molecule is gray color sphere).
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stranded RNA virus exhibiting error-prone replication due to RNA-
dependent RNA polymerase [39]. Due to high mutation rate, there
is generation of various viral variants called quasispecies [40 41].
The traditional regimen of pegylated interferon and ribavirin ther-
apy have been used for years but are reported to show SVR rates of
only 55% [42]. In recent years, various antivirals targeting specific
viral proteins of HCV known as direct acting antivirals (DAAs) have
been developed, achieving SVR in about 90% cases [43]. However,
treatment cost and failure in about 5–10% cases makes it necessary
to look for new drugs against HCV [9].
3433
Since traditional drug discovery is complex and time consum-
ing, computational interventions assist in speeding up this process.
For this, different in-silico techniques like CSAR, QSAR and machine
learning based methods have been used in the development of
desirable predictive models. Further, drug repurposing is being
used as an alternative to look for new drugs [44]. Many predictive
algorithms have been developed to help in antiviral drug discovery.
For instance, AVCpred [13] and Antiflavi [16] used a QSAR based
approach to predict inhibitors for many viruses including HCV.



Fig. 7. An illustration of molecular interactions of proteins NS3, NS3/4A, NS5A, NS5B binding with respective ligand molecules in two dimensions form depicting NS3 with
ligands (A) Naftifine (B) Butalbital (C) Proxibarbal; NS3/4A with ligands (D) Vinorelbine (E) Epicriptine (F) Drospirenone; NS5A with ligands (G) Pipecuronium (H)
Trimethaphan (I) Cefiderocol and NS5b with ligands (J) Olodaterol (K) Vemurafenib (L) Grepafloxacin.
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In the ‘‘Anti-HCV”, we used the experimentally validated com-
pound with their activity against different NS proteins namely
NS3, NS3/4A, NS5A and NS5B to develop predictive models. We
employed the four MLTs viz, Support Vector Machine (SVM), Ran-
dom Forest (RF), k-Nearest Neighbour (kNN) and Artificial Neural
Network (ANN) for predictive algorithms development. We inves-
tigated 17,968 molecular descriptors (1D, 2D and 3D) and finger-
prints of the inhibitors and used a robust recursive feature
elimination method for feature selection. Robust predictive models
were developed and assessed by different methods like applicabil-
ity domain, independent validation, decoy datasets validation and
chemical diversity analysis. The best performing models were
found to be developed from SVM-SVR methods with PCC values
of 0.86, 0.92, 0.88 and 0.84 on training/testing data and 0.92,
0.96, 0.86, and 0.84 on independent validation datasets for NS3,
NS3/4A, NS5A and NS5B respectively. Likewise, for RF-SVR we
achieved PCC values of 0.80, 0.88, 0.83 and 0.83 on training/testing
data and 0.81, 0.90, 0.81, and 0.81 on independent validation data-
sets for above proteins. Similarly, for kNN-SVR we obtained PCC
values of 0.80, 0.88, 0.85 and 0.82 on training/testing data and
0.88, 0.90, 0.83, and 0.83 on independent validation datasets for
respective proteins. Moreover, for ANN-SVR we obtained PCC val-
ues of 0.85, 0.89, 0.87 and 0.81 on training/testing data and 0.90,
0.93, 0.84, and 0.84 on independent validation datasets for NS3,
NS3/4A, NS5A and NS5B respectively.

A few regression based studies have been reported to identify
inhibitors against HCV NS3 drug target [45,19]. Lafridi et al. 2022
used the QSAR based Multiple Linear Regression (MLR) approach
to study the interaction between macrocyclic inhibitors and NS3
protease. They showed multiple correlation coefficient (R2) of
0.84 [45]. da Cunha et al., 2013 developed QSAR based models
using 93 boceprevir analogs achieving the R2 of 0.66 for NS3 pro-
tease. They also performedmolecular docking of promising analogs
for binding affinity to NS3 protease [19]. In addition, we found a
classification based method using 413 NS3 protease inhibitors hav-
ing Matthew’s correlation coefficient (MCC) of 0.79 [46]. The pre-
dictive ‘‘Anti-HCV” NS3 models were developed utilizing four
MLTs in comparison to limited MLTs. Further, our method showed
the PCC values of 0.86 on training/testing with 0.92 for indepen-
dent validation dataset. Thus, ‘‘Anti-HCV” NS3 regression based
algorithm using multi MLTs is performing equal or better than
the pre-existing methods.

Similarly, a few regression based methods reported to target
HCV NS3/4A protein for drug designing. Qin et al., 2017 used
MLR and SVM methods to develop QSAR based predictive models
for NS3/4A inhibitors. They achieved R2 values of 0.75 to 0.87 for
training data and 0.72 to 0.85 on testing data [47]. Alqahtani
et al., 2021 developed QSAR models using CORAL software for
HCV NS3/4A inhibitors prediction employing the ideality of corre-
lation method, achieving 0.86 to 0.88 of coefficient of determina-
tion [48]. In addition, QSAR and pharmacophore based in-silico
studies have also been conducted. We found a study which used
pharmacophore mapping based approach developing seven fea-
tured pharmacophores to identify HCV NS3/4A inhibitors [49].
Venkatesan et al., 2018 have developed pharmacophore features
based predictive models using the PHASE module of Schrodinger
suite and screened 197 HCV inhibitors for their activity against
NS3/4A protein [20]. Whereas, ‘‘Anti-HCV” NS3/4A regression based
algorithms showed better performance with PCC of 0.92 on train-
ing/testing with 0.96 on independent validation dataset.

‘‘Anti-HCV” NS5A regression based algorithms achieved PCC of
0.88 from training/testing with 0.80 for independent validation
dataset. Since we could not find any MLTs based method to design
inhibitors targeting HCV NS5A protein. Therefore, this is the first
in-silico study which incorporated HCV NS5A as a target to identify
antivirals against HCV.
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NS5B protein, being RNA-dependent RNA polymerase, has also
been targeted for drug identification against HCV. A few regression
based methods have been developed to predict inhibitors against
NS5B protein. For instance, Wang et al., 2014 developed QSAR
based predictive models using SVM and MLR approaches using
333 NS5B inhibitors, obtaining correlation coefficient of 0.91
[50]. Similarly, Z. Wang et al., 2020 used comparative molecular
field and similarity indices analysis for NS5B inhibitors identifica-
tion and achieved 0.74 to 0.91 correlation coefficient [51]. In addi-
tion, a few classification based methods are also available.
HCVpred developed classification structure–activity relationship
(CSAR) based models using the set of 578 HCV NS5B inhibitors.
They achieved Matthew’s correlation coefficient (MCC) of 0.7 to
0.8 [18]. StackHCV is a web server which employs MLTs using
124 active and 124 inactive compounds to develop a predictor
for NS5B inhibitors [21]. ‘‘Anti-HCV” NS5B regression based algo-
rithms are developed using the largest dataset (1671) employing
four MLTs, having better performance with PCC values of 0.85 on
training/testing and 0.84 for independent validation dataset.

Simultaneously, the robustness of the developed ‘‘Anti-HCV”
models were assessed by applicability domain analysis by calculat-
ing the leverage threshold and plotting William’s plots. We also
plotted the actual pIC50 with predicted pIC50 of the model data-
sets for checking robustness of developed models and found that
developed models are highly robust and reliable. The reliability
and robustness of the developed ‘‘Anti-HCV” models was also vali-
dated by comparing the inhibitory activity of ‘inactive’ decoy mole-
cule with the inhibitory activity of the corresponding active
molecules for each HCV NS protein. We observed PCC values of
�0.074, �0.037, 0.052, and 0.117 for HCV NS3, NS3/4A, NS5A,
and NS5B protein decoy datasets respectively suggesting the
robustness of our developed predictive models. Moreover, chemi-
cal diversity of the compounds used for model development was
also assessed. Chemical analysis using binning clustering based
on Tanimoto coefficient (Tc) with similarity index of 0.6 for each
NS protein inhibitor was carried out. The compounds were found
to be highly diverse clustering into many clusters, indicating the
chemical space of the model developed to be quite large. The mul-
tidimensional scaling (MDS) based chemical clustering which uses
classical MDS ‘cmdscale’ function implemented in R showed the
dispersion of chemical compounds in 2D and 3D chemical space.
The MDS plots showed that compounds used in model develop-
ment are dispersed across the chemical space indicating the
diverse nature of compounds.

Potential repurposed drug candidates for each target NS protein
- NS3, NS3/4A, NS5A and NS5B are also predicted along with their
pIC50 using the developed respective predictive models. A number
of predicted repurposed drugs for different NS proteins are also
found to be already experimentally validated for HCV in different
studies. This showed the reliability and efficacy of our developed
models in ‘‘Anti-HCV”. From the NS3 predicted inhibitors, terbina-
fine, an antifungal drug was used against HCV in a case report (pre-
dicted pIC50 = 8.50) [52]. candesartan cilexetil, an angiotensin
receptor blocker used for treatment of hypertension and diabetic
neuropathy is used for treatment of HCV patients with lichen pla-
nus condition (predicted pIC50 = 9.77) [53].

Among the NS3/4A predicted inhibitors from the study, vin-
desine (predicted pIC50 = 12.01) is used in phase II study for lym-
phoma regimen including HCV infected patients [54]. temsirolimus
(predicted pIC50 = 11.06), an antineoplastic agent is reported to be
in phase II trial for the advanced hepatocellular carcinoma treat-
ment [55]. Similarly, from NS5A predicted drugs, rimantadine (pre-
dicted pIC50 = 11.06) a RNA synthesis inhibitor, is experimentally
tested as HCV viroporin inhibitor [56]. Vildagliptin (predicted
pIC50 = 11.06) a dipeptidyl peptidase 4 inhibitor, is experimentally
validated for its activity against hepatocellular carcinoma progres-
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sion [57]. For NS5B predicted inhibitors, cabozantinib (predicted
pIC50 = 7.15) and regorafenib (predicted pIC50 = 6.97) have cleared
the phase III clinical trial for the treatment of hepatocellular carci-
noma [58].

In addition to the activity of predicted repurposing drug candi-
dates against HCV, several predicted drugs were also found to
show their antiviral activity against other viruses. From NS3 pre-
dicted inhibitors, Hou, H.Y., et al., 2016 looked for the antiviral
activity of idarubicin (DB01177) against Enterovirus replication.
It showed EC50 of 0.493 lM of idarubicin against Enterovirus 71
strain [59]. Abrams, R.P.M., et al., 2020 identified methacycline
(DB00931) as Zika protease inhibitor in addition to other four inhi-
bitors [60]. Among NS3/4A inhibitors, demeclocycline (DB00618)
showed inhibition of West Nile virus (WNV) replication and
WNV-induced apoptosis [61]. Daptomycin (DB00080) was vali-
dated for its activity against Zika virus [62]. Kato, F., et al., 2019
showed anti-Dengue virus activity of bromocriptine (DB01200)
using luciferase assay [63].

From NS5A predicted inhibitors, Zhou, N., et al., 2016 revealed
that telavancin (DB06402) and Oritavancin (DB04911) blocks the
entry of Ebola virus, Middle East Respiratory Syndrome Coron-
avirus (MERS-CoV), and Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV) [64]. Paromomycin (DB01421) showed
capsid protease inhibitory activity against Chikungunya virus
(CHIKV). It showed EC50 of 22.91 lM against CHIKV [65]. Similarly,
among the NS5B predicted inhibitors, micafungin (DB01141) was
revealed to inhibit Dengue virus infection by disruption of virus
binding, entry and stability [66]. Another antifungal drug, anidula-
fungin (DB00362) also shows inhibitory activity against Zika virus
[67] and SARS-CoV-2 [68]. Mefloquine (DB00358) showed antiviral
activity against Human polyomavirus 2, also called JC virus [69]. It
also inhibits SARS-CoV-2 infection with EC50 of 1.2 lM [70].

Selected predicted repurposed drugs were also validated for
their interactions with the respective NS proteins through molecu-
lar docking approach. Upon docking potential predicted inhibitors
of NS3, plecanatide (DB13170), naftifine (DB00735), and butalbital
(DB00241) showed comparable binding affinity of �6.3, �7.8, and
�6.2 Kcal/mol respectively for NS3 protein as compared to
approved NS3 inhibitor, asunaprevir (-7.4 Kcal/mol) [71 72]. Simi-
larly, For NS3/4A, three docked ligands, vinorelbine (DB00361),
epicriptine (DB11275), and drospirenone (DB01395) have lower
binding energy of �8.9, �8.4, and �8.1 Kcal/mol respectively.
These binding energies also correspond to the binding energy (-
7.3 Kcal/mol) of telaprevir, an approved HCV NS3/4a inhibitor
[73]. Likewise, for predicted inhibitors for NS5A, the binding affin-
ity of �9.8, �9.4, and �9.2 Kcal/mol for pipecuronium (DB01338),
trimethaphan (DB01116) and cefiderocol (DB14879) respectively
was observed. These affinities are also close to the approved
NS5A inhibitor, daclatasvir [74]. For the NS5B predicted repur-
posed drugs, oladaterol (DB09080), vemurafenib (DB08881), and
grepafloxacin (DB04876) have quite lower binding energies of
�8.8, �8.7, and �8.4 Kcal/mol respectively. Even though not much
comparable with binding energy of �14.3 Kcal/mol for approved
NS5B inhibitory drug, sofosbuvir [75]. This shows that the docked
molecules are effectively interacting with the target proteins
which confirms the efficiency of the developed machine learning
models in our study. Thus, these models can be very helpful in pre-
dicting the activity of inhibitors against important targets for HCV
i.e, NS3, NS3/4A, NS5A and NS5B proteins.
5. Conclusion

In this study, we have developed ‘‘Anti-HCV” QSAR regression
based algorithms utilizing MLTs Support Vector Machine (SVM),
Random Forest (RF), k-Nearest Neighbour (kNN) and Artificial Neu-
3436
ral Network (ANN). In this method, predictive models were devel-
oped to identify inhibitors against important drug targets in HCV
namely NS3, NS3/4A, NS5A and NS5B. These predictive models per-
formed well with PCC of 0.85 to 0.92 on training/testing and 0.84 to
0.92 on independent validation datasets. Applicability domain,
decoy datasets and chemical diversity analysis suggest these meth-
ods to be robust and reliable. We also scanned the ‘‘DrugBank”
database to identify potential repurposing drug candidates. Selec-
tive repurposed molecules were also shown to be effective by
molecular docking technique. Thus, it will help in easy and fast
development of new antivirals against HCV targeting non-
structural proteins.

6. Code availability

All the codes used for developing the predictive models for anti-
HCV are available at GitHub (https://github.com/manojk-imtech/
anti-HCV).
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