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The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring.
Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric
electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by
morphology analysis and reduces power consumption by the power-saving transmission functionality.The gateway server provides
a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most
normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted
to evaluate the platform’s performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds
37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%.
Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.

1. Introduction

As the population is becoming progressively older, higher
quality of health and medical care is now expected in coun-
tries with significant aging problems.This care is particularly
important for countries with 75% of the elders suffering
from chronic diseases [1]. According to a recent statistical
analysis in 2012, two million deaths are caused by heart and
cerebrovascular diseases every year in China [2]. Continuous
recording of biomedical signals by smart devices is critical
for the advancement of diagnosis as well as the treatment
of cardiovascular diseases. For the elders, wearable devices,
such as smart clothes, enable early detection through long-
term trend analysis to limit the occurrence of acute events
and chronic cardiovascular diseases [3].

Wireless and sensor technologies facilitating noninvasive
sensors integrated into clothing can enhance disease pre-
vention [4–6]. Axisa et al. designed and developed smart
and flexible sensors for healthcare and illness prevention [7].
Jovanov et al. [8] proposed awireless body area network using
different types of sensing units, such as electrocardiography

(ECG), body tilt, pulse oximetry (SpO
2
), and knee activity.

The sensor data are sent via Bluetooth to mobile devices
and are routed to nursing homes or workstations via the
Internet. MIThril [9] is a next-generation, wearable research
platformdeveloped by researchers at theMITMedia Lab.The
MIThril hardware platform combines body-worn computa-
tion, sensing, and networking in a clothing-integrated design.
The MIThril software platform is a combination of user
interface elements and machine learning tools built on the
Linux operating system. Nguyen et al. [10] designed a body
sensing module, integrating the optical linear encoder (OLE)
and an accelerometer. A sensor network of three sensing
modules was established via a controller area network bus to
capture human armmotion. For heart conditionmonitoring,
the LifeShirt system is accurate in detecting both heart rate
and heart rate variability [11]. Recent studies have found
more evidence that heart rate variability is associated with
mild and severe depression [12, 13], stable chronic obstructive
pulmonary disease [14, 15], and attention deficit hyperactivity
disorder (ADHD) in children [16].
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Figure 1: System architecture: (a) smart clothes, (b) sensor node, (c) gateway server, and (d) health cloud.

Recent technologies enable smart clothing to be minia-
turized, power-saving, integrated, and comfortable [17, 18].
By combining cloud technology with smart clothing [19], the
measured personal physiological data can establish a health
database to promote telemedicine and medical services.
However, smart clothes still face some bottleneck problems.
(1) Continuity: most smart clothes cannot be made as
comfortable as ordinary clothes. There are also issues, such
as washability, frequent charging, and online updating. (2)
Reliability: individual differences and artificial interference
can reduce the accuracy of ECG signal extraction, which is
crucial for health analysis and disease diagnosis. (3) Power
consumption: smart clothes sensors without an intelligent
transmission algorithm can result in a huge amount of
garbage data being sent to the cloud, consuming an enormous
quantity of power.

Taking the above issues into consideration, we present
a smart-clothing platform for ECG acquisition, analysis,
and transmission for the detection of abnormal ECG. (1)
We design washable and comfortable smart clothes using
fabric electrodes that connect to the sensor node directly.
Thus, the sensor node employs a wireless network to enable
noninvasive monitoring of cardiovascular condition. (2) The
ECG detection is comprised of a filtering phase and a pattern
matching phase. Most normal ECG can be filtered out in the
filtering phase, and the remaining abnormal ECG is further
analyzed. Morphology analysis is proposed to improve the
detection accuracy of QRS complexes. In addition, a recon-
figurable finite state machine (RFSM) is defined to support
online updating. (3) The power-saving transmission strategy
can smartly decide whether to transmit statistical results or
raw data depending on the short-term analysis of heart rate
variability (HRV) [20–23]. Therefore, power consumption
and garbage data can be largely reduced, which is of great
significance for telemedicine and medical service.

2. Methodology

The overall system architecture is shown in Figure 1. The
smart-clothing platform consists of (a) smart clothes with
fabric electrodes to collect the ECG signal, (b) a sensor node
integrating a signal processing circuit and microprocessor

module that can convert biomedical signals to high quality
ECG data, (c) an android tablet acting as a gateway server
[24] to display the analysis results, and (d) a health cloud
service that can transfer personal data to the hospital for
health consultation. The smart clothes are mainly composed
of fabric electrodes and a sensor node. The smart clothes are
washable and have physical properties similar to ordinary
clothing. Fabric electrodes are used to obtain lead II ECG
signals on the chest. Signals are transmitted to the sensor
node via conductive fiber, which is particularly well-adapted
for the monitoring of chronic cardiovascular disease.

2.1. Sensor Node Design and ECG Analysis Algorithm for
Ambulatory QRS Detection. The circuit of the sensor node is
shown in Figure 1(b). It contains amplifiers, filters, analog-to-
digital converters, MCU, and a Bluetooth module. Because
the raw signals are too weak and distorted, an amplifier
(100 gain) is required to amplify the differential signal and
constrain the in-phase signal. A band-pass filter (0.5Hz to
250Hz) is used for reduction of noise beyond the ECG
signal band. Equations (1)–(3) illustrate how to determine the
resonant frequency (𝐹

𝑟
) for the corresponding circuit. 𝐹

ℎ
and

𝐹
𝑙
are themaximum cutoff frequency (250Hz) andminimum

cutoff frequency (0.5), respectively. 𝑄 is a quality factor to
characterize a resonator’s bandwidth relative to𝐹

𝑟
.The higher

the 𝑄, the narrower and sharper the peak. A secondary
amplification (68.5 gain) is applied and a notch filter (50Hz,
60Hz) is needed for the rejection of a DC component to
enhance the AC component. The notch filter is used to
reject the 50Hz and 60Hz signals, and the capacitance is
0.1 𝜇F. Equation (4) helps to select a proper resistor (𝑅) and
capacitance (𝐶). 𝐹notch is 60Hz and 𝐶 is 0.1 𝜇F. The resistor
is approximately 26.5 kΩ. The filtered signals are gathered
into the microcontroller through an ADC at 1000Hz. The
microcontroller in the sensor node is mainly responsible for
analyzing the ECG raw data and controlling the Bluetooth
module to transmit the results to the gateway server. Consider

bandwidth = 𝐹
ℎ
− 𝐹
𝑙
, (1)

𝐹
𝑟
= √𝐹
ℎ
𝐹
𝑙
, (2)
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Figure 2: Ambulatory ECG analyzing framework on the sensor node: (a) ECGprocessing strategy, (b) ambulatoryQRS detection procedures,
and (c) QRS morphology analysis algorithm.

𝑄 =
𝐹
𝑟

bandwidth
, (3)

𝐹notch =
1

2𝜋𝑅𝐶
. (4)

2.2. Ambulatory QRS Detection. As shown in Figure 2(a),
the processing strategy is introduced to analyze raw ECG
data. A digital filter and QRS detection algorithm (includ-
ing ambulatory QRS detection algorithm (Figure 2(b)) and
a QRS morphology analysis algorithm (Figure 2(c))) are
applied to obtain ECG segmentations in the sensor node.
Next, more attribute values of the HRV parameters are
calculated according to user requirements. The attribute
values are compressed for transmission to the gateway server
by our power-saving transmission strategy. The ambulatory
QRS detection procedures (illustrated in Figure 2(b)) are
described as follows:

(1) Initial State: a low-pass filter [25] and nonlinearly
scaled curve length transformation [26] are employed
to enhance the QRS complexes and to suppress other
parts of the ECG and noise. Equation (1) illustrates
the curve length transformation LT (𝑤, 𝑖). Δ𝑦 is the
length differentiable over the time window 𝑤, and Δ𝑡
is the sampling period. The time window is chosen
to be approximately equal to the QRS duration (𝑤
= 0.13 second) to calculate the ECG curve length
corresponding to the QRS complexes. 𝑖 is the start
index. We calculate the curve length transformation
from 𝑖 − 𝑤 to 𝑖. After the length transformation, the
Initial State is set to the Idle State if no valid ECG

signal is detected. Otherwise, the Initial State goes to
the Learning State if a likely QRS complex is detected:

LT (𝑤, 𝑖) =
𝑖

∑

𝑘=𝑖−𝑤

√Δ𝑡
2
+ Δ𝑦
2

𝑘
. (5)

After the curve length transformation calculation,
the location of the QRS complex is indicated by
the local maximal curve length. Figure 3 shows the
relationship between the QRS complex and the LT
signal.

(2) Idle State: the process in the Idle State is to the low
power model until a valid ECG signal is detected. If a
likely QRS complex is detected, the state jumps to the
Learning State.

(3) Learning State: if the sensor node finds more than 5
likely QRS complex events in 10 seconds, we calculate
the signal baseline and switch to the Detection State.
If not, the process is interrupted and is returned to the
Idle State.

(4) Detection State: a novel QRS morphology analysis
algorithm called MWqrs is proposed to differentiate
between QRS complexes and artifacts. Three feature
points are calculated after the algorithm detects a
possible QRS complex.These three points include the
QRS onset (named Q point), QRS peak (named R
point), and QRS end (named S point) [25]. The coor-
dinates of the three points are Q(𝑋

𝑄
, 𝑌
𝑄
), R(𝑋

𝑅
, 𝑌
𝑅
),

and S(𝑋
𝑆
, 𝑌
𝑆
), which form a triangle, as illustrated by

the red dotted lines in Figure 2(c). The morphology
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Table 1: QRS morphology parameters.

Indicator Formula Min Max
QRS width |𝑋

𝑆
− 𝑋
𝑄
| 40ms 160ms

QRS height |𝑌
𝑅
− 𝑌
𝑆
| 0.05mV 1.5mV

𝑄 horizontal |𝑌
𝑄
− 𝑌
𝑆
| 0 1.5mV

RR interval |𝑅
𝑖
− 𝑅
𝑖−1
|
∗ 250ms 1500ms

∗
𝑅𝑖 is the real-time R peak position. 𝑅𝑖−1 is the previous R peak position of

the real-time R peak position.

of this triangle is then analyzed based on biomedi-
cal standards. Table 1 illustrates all the morphology
parameters and their ranges based on the biomedical
standards. For instance, we define the “R peak” to be
the 𝑋

𝑅
in the range of (𝑋

𝑄
, 𝑋
𝑆
). The QRS complex

is recognized as a true QRS complex if every mor-
phology parameter is within the min and max range.
Otherwise, the complex is annotated as an artifact. If
continuous QRS complex errors are detected by our
morphology analysis method, the process jumps to
the Idle State and notifies the user to adjust the smart
clothes to reduce the movement artifact.

2.3. Power-Saving Transmission Strategy. Power-saving trans-
mission is an intelligent transmission strategy designed to
compress the ECG data (shown in Figure 4). The gateway
server sends a message to the sensor node every 5 minutes
to require a statistical value of the past ECG data. The sensor
node replies to the gateway server with the acknowledged
package and HRV statistical parameters. According to the
HRV attribute values, the sensor node sends the raw data
if a ECG QRS complex waveform is detected. The package
formats of the HRV attribute values and ECG raw data are
defined in Figure 5. The first two rows contain the HRV
statistical parameters package consisting of 32 bytes, and the
subsequent rows contain the ECG raw data package made up
of 65536 bytes.

2.4. Multipattern Abnormal Disease Matching in Gateway
Server Design. Clinicians usually calculate HRV parameters,
such as SDNN (standard deviation of all normal RR inter-
vals), LF (low frequency, 0.04–0.15Hz), and ratio of LF/HF

Send HRV parameter
to server

Request raw
data?

Send ECG raw data
to server

Send ACK command
to server

Yes

Yes

No

5-minute timer
from server

Figure 4: Power-saving transmission data transmission flow.

(high frequency, 0.15–0.4Hz) [20] as attribute values when
they want to distinguish subjects of different severity of
depression [12]. HRVparameters generate a series of attribute
values (Attribute

1
, Attribute

2
, . . ., Attribute

𝑛
) according to

the range of disease symptoms. To increase the flexibility of
abnormal ECG symptom recognition, an RFSM is proposed
to support online updating in the gateway server. The RFSM
is used to divide the segmented ECG signals into normal
patterns and abnormal patterns depending on the range of
the attribute values.

For ease of explanation, we assume that there are seven
patterns, named P1 to P7.These are defined by three attributes
(𝑋,𝑌, 𝑍). The range of each attribute values is from 0 to
65536, and “∗” means that the value of this attribute does not
relate to this pattern. Each pattern corresponds to an action
that indicates a certain type of disease symptom or process
(as shown in Table 2). There are several steps to building an
RFSM. Firstly, as shown in Figure 6, a series of attribute values
(𝑋,𝑌, 𝑍) are transformed into distributed ranges signed by
a character string according to the ranges of patterns (i.e.,
0 < 𝑋 < 3 as 𝑋1, 4 < 𝑋 < 7 as 𝑋3, 𝑋 = 7 as 𝑋4, and
7 < 𝑋 < 10 as𝑋5). Therefore, all attributes can be illustrated
by combined character strings. Secondly, different patterns
(P1,P2, . . . ,P7) are converted to regular expressions by the
attribute character string. A pattern that matches a certain
regular expression is equivalent to a pattern that matches
a series of attributes. Seven patterns can be expressed as
P1[(𝑥1)(𝑦2 | 𝑦3 | 𝑦4)(𝑧5)], P2[(𝑥2 | 𝑥3 | 𝑥4 | 𝑥5 |
𝑥6)(𝑦5 | 𝑦6)(𝑧2)], P3[(𝑥2 | 𝑥3 | 𝑥4 | 𝑥5 | 𝑥6)(𝑦5 |
𝑦6)(𝑧1 | 𝑧2 | 𝑧3)], P4[(𝑥3 | 𝑥4 | 𝑥5 | 𝑥6)𝑧1], P5[𝑥4],
P6[𝑥6(𝑦3 | 𝑦4 | 𝑦5 | 𝑦6)], and P7[(𝑦4 | 𝑦5)𝑧1]. Finally,
all regular expressions are transmitted to the Deterministic
Finite Automaton (DFA) to construct a look-up table [27].
The look-up table is used for the matching of the finite state
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Table 2: Date package format.

Pattern 𝑋 𝑌 𝑍 Action
P1 0 < 𝑋 < 3 2 < 𝑌 < 10 5 < 𝑍 < 65535 Disease 1
P2 3 < 𝑋 < 65535 11 < 𝑌 < 65535 𝑍 = 2 Disease 2
P3 3 < 𝑋 < 65535 11 < 𝑌 < 65535 0 < 𝑍 < 3 Disease 3
P4 4 < 𝑋 < 65535 ∗ 0 < 𝑍 < 2 Disease 4
P5 𝑋 = 7 ∗ ∗ Artifact
P6 10 < 𝑋 < 65535 7 < 𝑌 < 65535 ∗ Alarm
P7 ∗ 9 < 𝑌 < 27 0 < 𝑍 < 2 Disease 4

0 4 8 12 16
Time AVNN

16 20 24 28 32
SDNN RMSSD pNN50 Check sum

0 4 8 12 16
Time Payload (65535)

16 32
Raw data

65520 65532 65536
Raw data Check sum

· · ·· · ·

· · ·

Type (0 × 02)

Type (0 × 01)

Header (0 × 55)

Header (0 × 55)

Figure 5: Date package format.

machine (FSM). Once new patterns are added, the look-up
table is regenerated and downloaded to flash memory via
the Internet. When the ECG data are ready for analysis, it
is transformed into a series of attribute values represented
by a character string. When the matching starts, the process
jumps to different states in the look-up table according to the
character string values, such as (State 𝑖, String 𝑋𝑖) → (State
𝑗). The matching process continues until it jumps to the final
state to match a certain pattern and execute an action.

3. Experimental Design and Result

3.1. Signal Quality Analysis and Experimental Result. Signal
quality is a vital factor that guarantees the accuracy of
the platform. A criterion named SNR (SNR ≈ 10 log

10

(Signal Voltage/Noise Voltage)2) is introduced to assess the
performance of the smart clothes sensor. Figure 7 illustrates
the experimental design of the Signal Voltage and Noise
Voltagemeasurement. (1) Signal Voltage is directly measured
from a KL-79106 ECG simulator through the sensor node
in different beats per minute (BPM). (2) Noise Voltage is
the difference of the raw data with and without the smart
clothes sensor. The SNR of different BPM (BPM 60, BPM 80,
BPM 100, and BPM 120) is 37.75, 37.52, 37.62, and 37.91 dB,
respectively. After calculation of the RR interval by the
gateway server, the accuracy of the BPM values with smart
clothes is greater than 99.60%. This result shows that the
signal quality of smart clothes is very good [28, 29].

3.2. QRS Detection Algorithm Experimental Result. The per-
formance of our algorithm is evaluated using the MIT
database [30] by comparing the MWqrs algorithm with the
Wqrs algorithm [25]. We chose 18 normal subjects from
the MIT-BIH Normal Sinus Rhythm Database to verify the
algorithm performance. Two indicators, namely, sensitivity
and positive prediction, are introduced to quantify the QRS
detection accuracy. The sensitivity parameter indicates how
likely it is that the test can detect the presence of a QRS
complex, and the positive prediction parameter indicates how
likely someone with a QRS complex will show a positive
test result. The annotation file (atr) in the MIT database is
chosen as the standard comparison. Sensitivity and positive
prediction are calculated using the “Bxb” programs from the
PhysioToolkit [30]. The experimental results are shown in
Table 3. The result shows that the accuracy mostly exceeds
99%, and the average accuracy of theQRS sensitivity is greater
than 99.68%. Subject 16272 is the worst case with interference
from several artifacts. The positive prediction of the MWqrs
algorithm is 95.26%, which is 5.47% higher than the Wqrs
algorithm. This shows that our MWqrs algorithm performs
better in the presence of ECG artifacts.

To verify the performance of the algorithm for normal
and abnormal subjects, we analyzed 18 normal subjects (MIT-
BIH Normal Sinus Rhythm Database) and 48 abnormal
subjects (MIT-BIHArrhythmia Database).We calculated the
HRV features, including AVNN (the average of all normal
RR intervals), SDNN, RMSSD (the root mean square of
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Table 3: Normal database test results.

Subjects QRS sensitivity Positive prediction
Wqrs MWqrs Wqs MWqrs

16256 100.00% 99.99% 99.74% 99.76%
16272 97.00% 95.76% 89.79% 95.26%
16273 99.99% 99.93% 99.93% 99.98%
16420 99.98% 99.87% 99.79% 99.93%
16483 99.98% 99.93% 99.88% 99.97%
16539 99.97% 99.87% 99.79% 99.94%
16773 99.99% 99.95% 99.96% 99.99%
16786 100.00% 100.00% 99.97% 99.98%
16795 99.99% 99.80% 99.87% 99.95%
17052 99.98% 99.87% 99.52% 99.71%
17453 99.98% 99.80% 99.72% 99.91%
18177 99.98% 99.91% 99.63% 99.74%
18184 99.99% 99.91% 99.55% 99.91%
19088 100.00% 99.95% 98.29% 98.38%
19090 99.99% 99.96% 99.70% 99.80%
19093 100.00% 99.99% 99.87% 99.88%
19140 100.00% 99.99% 99.82% 99.85%
19830 99.93% 99.84% 98.74% 99.07%
Average 99.82% 99.68% 99.09% 99.50%

the differences of successive RR intervals), and pNN50 (the
percentage value of consecutive RR intervals that differ by
more than 50ms) [31]. The features we calculated were com-
pared with HRV information calculated from the annotation
file in the MIT-BIH database. The average result, best case,
and worst case are presented in Table 4.The average accuracy

of the HRV features of the abnormal subjects is more than
96%. The accuracy of the best case is higher than 98% and
that of the worst case is over 93%.The average accuracy of the
normal subjects is better than the abnormal subjects. These
experimental results show that the MWqrs algorithm is able
to robustly detect ambulatory QRS complexes. In our HRV
time domain results, we observe some differences between
normal and abnormal subjects; that is, the AVNN, SDNN,
and pNN50 values of normal subjects are higher than the
abnormal subjects, and the RMSSD values of the normal
subjects are lower than the abnormal subjects. These results
can be used as rules to decide if raw data are to be transmitted
or not.

3.3. Power-Saving Transmission Efficacy Analysis. We com-
pared the transmission efficacy every 5 minutes according to
different abnormal subject ratios with “full transmission” and
“power-saving transmission.” In the power-saving transmis-
sion mode, data is transmitted to the gateway server in a 32-
byte package at a five-minute interval. In the full transmission
mode, data is transmitted continuously at a one-second
interval. In total, the size of continuous data transmitted over
five minutes is 57,652 bytes (12 bits ∗ 128/sec ∗ 300 s + 20
bytes of package field + 32 bytes of HRV result). A 24-hour
data set is emulated using 288 5-minute data sets.The normal
ratio is defined as the percentage of normal HRV results
analyzed by the multipattern abnormal disease matching in
the gateway server. Once theHRVparameters are transmitted
to the gateway server, they are analyzed to decide whether
to transmit the raw data. For instance, if the normal ratio is
80%, the 24-hour power-saving transmission transmits 288∗
32 bytes + 57652 bytes ∗ 288 ∗ (1 − 80%) = 3.176Mb,
and the efficiency is 15.84Mb/3.176Mb = 4.99. Suppose that
100% normal patterns can be detected from the subjects; the
transmission efficacy is then 1980 times. This is very useful
for the analysis of a huge amount of personalized ECG data
in the health cloud (Table 5).

4. Conclusions

In this paper, we present a smart-clothing platform for
ECG acquisition, analysis, and transmission. This platform
is dedicated to the detection of abnormal ECG. A washable,
low-power consumption, and comfortable smart cloth is
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Table 4: HRV time domain analysis results.

Indicator
Normal subjects Abnormal subjects

Average Best case Worst case Average Best case Worst case
(𝑛 = 18) # 16256 # 16273 (𝑛 = 48) # 230 # 105

AVNN (ms) 787.7 795.5 818.9 747.4 794.9 748.8
Accuracy (%) 99.1% 99.5 98.9 98.4 99.9 96.2
SDNN (ms2) 136.5 169.8 135.7 55.3 47.8 62.5
Accuracy (%) 98.9 99.8 98.0 96.7 97.9 93.1
RMSSD (ms2) 27.9 39.9 46.2 43.5 61.3 24.2
Accuracy (%) 98.7 99.3 96.9 97.0 98.1 93.7
pNN50 (%) 7.5 17.2 17.9 5.7 9.2 2.8
Accuracy (%) 98.4 99.6 96.3 97.7 98.7 96.7

Table 5: Power-saving transmission efficacy results.

Normal ration 0% 20% 40% 60% 80% 100%
Full transmission (Mb/24-hour) 15.84 15.84 15.84 15.84 15.84 15.84
Power-saving transmission (Mb/24-hour) 15.84 12.67 9.54 6.33 3.176 0.008
Efficiency (times) 1 1.25 1.66 2.50 4.99 1980

designed using fabric electrodes. The SNR values are more
than 37 dB, which demonstrates that the smart clothes have
very good signal acquisition capability. The reconfigurable
firmware architecture enables online updating. In addition,
the normal ECGdetection process comprises a filtering phase
and a pattern matching phase. Both the MWqrs detection
algorithm and parameters of the whole platform have more
than 99.5% accuracy performance in QRS detection and
BPM calculation. The power-saving transmission strategy
can smartly compress raw data depending on short-term
analysis of HRV, which helps to achieve more than 500 times
the transmission efficacy and power reduction.

Our platform can be used for the long-term moni-
toring of elders’ cardiovascular status with high accuracy,
simplicity, and future expandability. Our future efforts will
focus primarily on abnormal ECG pattern recognition with
multichannels. Therefore, the platform can provide clinically
meaningful information to doctors to reduce the harmcaused
by cardiovascular disease.
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