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Evaluating the impact of stroke on the human brain based on electroencephalogram

(EEG) remains a challenging problem. Previous studies are mainly analyzed within

frequency bands. This article proposes a multi-granularity analysis framework, which

uses multiple brain networks assembled with intra-frequency and cross-frequency

phase-phase coupling to evaluate the stroke impact in temporal and spatial granularity.

Through our experiments on the EEG data of 11 patients with left ischemic stroke and

11 healthy controls during the mental rotation task, we find that the brain information

interaction is highly affected after stroke, especially in delta-related cross-frequency

bands, such as delta-alpha, delta-low beta, and delta-high beta. Besides, the average

phase synchronization index (PSI) of the right hemisphere between patients with stroke

and controls has a significant difference, especially in delta-alpha (p = 0.0186 in the

left-hand mental rotation task, p = 0.0166 in the right-hand mental rotation task), which

shows that the non-lesion hemisphere of patients with stroke is also affected while it

cannot be observed in intra-frequency bands. The graph theory analysis of the entire

task stage reveals that the brain network of patients with stroke has a longer feature path

length and smaller clustering coefficient. Besides, in the graph theory analysis of three

sub-stags, the more stable significant difference between the two groups is emerging

in the mental rotation sub-stage (500–800 ms). These findings demonstrate that the

coupling between different frequency bands brings a new perspective to understanding

the brain’s cognitive process after stroke.

Keywords: stroke, cross-frequency coupling, functional connectivity, brain network, mental rotation

1. INTRODUCTION

Stroke is a kind of cerebrovascular disease affecting the whole world. In most countries,
stroke is the leading cause of the disability of adults and hinders the daily routine of
patients and their families (Donkor, 2018). In recent years, neuroimaging techniques, such as
CT, positron emission computed tomography (PET), functional MRI (fMRI), are often used
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in clinical treatment and disease research to monitor the
neurological function of patients with stroke and explore the
plastic reorganization mechanism of the brain (Rossini et al.,
2003). However, these techniques are usually not portable and
very expensive. Electroencephalogram (EEG) is a convenient
and non-invasive technology with a high temporal resolution,
which is suitable formonitoring, prognosis, and evaluating stroke
disease (Monge-Pereira et al., 2017).

Previous research has proposed several Quantitative EEG
(QEEG) features to evaluate brain activity changes after stroke,
such as delta/alpha power ratio (Schleiger et al., 2014; Finnigan
et al., 2016), brain symmetry index (Sheorajpanday et al., 2009;
Sebastian-Romagosa et al., 2020), and laterality coefficients (Park
et al., 2016). Besides, nonlinear parameters are also used in stroke
research, such as Lempel Ziv complexity, sample entropy (Liu
et al., 2016), and nonlinear separate degree (Zeng et al., 2017).
These features are mainly analyzed based on single channels and
cannot reflect the functional interactions between different brain
regions. Therefore, some researchers explored the characteristics
of the brain network after stroke. For instance, Philips et al.
(2017) constructed brain networks in the beta band based on
EEG data of the intensive therapeutic intervention period and
found graph theoretical metrics are significant biomarkers to
evaluate stroke rehabilitation. Although current studies reveal
that oscillations in intra-frequency bands are reliable tools
for exploring brain abnormality after stroke, the oscillatory
mechanisms between different frequency bands have not been
clearly understood.

More and more studies have shown complex brain
information interaction between different frequency bands,
known as cross-frequency coupling (CFC). Several brain regions
of human and non-human primates found CFC phenomena,
such as the hippocampus, prefrontal cortex, and sensory
cortex (Mormann et al., 2005; Canolty et al., 2006; Jensen and
Colgin, 2007; Khamechian and Daliri, 2020). Besides, increasing
researchers use CFC to analyze cognitive and perceptual
processes. For example, Dimitriadis et al. (2015) explored
the coupling between the theta band and alpha band in the
frontal lobe, parietal lobe, and occipital lobe during mental
arithmetic tasks. Davoudi et al. (2021b) found an important
parieto-occipital alpha-gamma coupling mechanism to rapidly
select features from visual working memory storage. In the
meantime, CFC shows advances in understanding the impact of
many neurological diseases, including Alzheimer’s disease (Cai
et al., 2018), epilepsy (Jacobs et al., 2018; Yu et al., 2020), social
anxiety disease (Poppelaars et al., 2018), and multiple sclerosis
(Ahmadi et al., 2019). For instance, Jacobs et al. (2018) extracted
cross-frequency phase-amplitude coupling features to predict
seizures, and Yu et al. (2020) constructed the cross-frequency
phase-phase coupling from seizure interval to seizure period.
In human stroke-related studies of EEG signals, some studies
focused on the CFC between EEG and other physiological
signals, such as EMG (Xie et al., 2021) and cerebral blood flow
velocity (Liu et al., 2019). Other studies investigated the CFC
of EEG signals. For instance, based on the EEG data of the
upper limb movement experiment, the effective network of
5 predefined motor cortex areas was constructed by dynamic

causal modeling (DCM) to identify the biomarkers for classifying
the patients’ recovery state (Larsen et al., 2018). In addition, the
DCM was utilized to investigate intra-cortex and inter-cortex
effective connectivity of the 3 motor cortex areas in the intra-
frequency and cross-frequency bands during the precision grip
task in the stroke acute and sub-acute phase (Chen et al., 2017).
In summary, the existing related studies on the cross-frequency
analysis of EEG signals in patients with stroke mainly focus
on the motor cortex during motor executive tasks. However, it
may result in the obtained information being limited since it
may lose potential information interactions between different
brain regions. Moreover, the network information interaction of
patients with stroke during the motor imagery process, which
reveals the motor perception function after stroke, needs to
be explored.

Mental rotation, a kind of motor imagery task, is conducive
to restoring specific limbs’ motor ability. Yan et al. (2013)
constructed brain networks in beta bands based on the EEG data
of patients with stroke and healthy controls during the mental
rotation task and found significant alterations of the stroke brain
in several temporal and spatial granularity. But this study has
not explored the information interactions in cross-frequency
bands. Previous analysis of healthy subjects in themental rotation
task found cross-frequency coupling between posterior parietal
and frontal regions (Bertrand and Jerbi, 2009), which reveals
the importance of CFC analysis in understanding the brain’s
mental rotation cognitive process. However, extracting effective
features from CFC is more difficult than traditional intra-
frequency coupling since the corresponding data is complicated
and contains more hidden information. In addition, the cross-
frequency features revealing the physiological mechanism of the
brain requires to be deeply analyzed.

In this article, EEG data of patients with stroke and healthy
controls during the mental rotation task is analyzed. A multi-
granularity analysis framework is proposed, which uses multiple
brain networks assembled with intra-frequency and cross-
frequency phase coupling to evaluate the stroke impact in
temporal and spatial granularity. In detail, spatial granularity
includes analyzing the average phase synchronization index (PSI)
at the whole brain area scale, hemisphere scale, and single-
channel pairs scale. Besides, we also explore the brain networks
in the temporal granularity, including graph theory analysis in
the entire task stage and three sub-stages. The multi-granularity
analysis shows that the brain information interaction of patients
with stroke is highly affected in cross-frequency bands which
demonstrates that the coupling of different frequency bands is an
effective tool for exploring the impact of stroke.

2. MATERIALS AND METHODS

2.1. Subjects and Recording
The data of this experiment is collected by Shanghai Jiaotong
University and the Department of Neurology in the Fifth People’s
Hospital of Shanghai. The patients with stroke group consists
of 11 patients with stroke, and the ischemic stroke lesions are
in the left hemisphere of the brain. The healthy controls group
consists of 11 subjects of similar age and has no history of
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neurological diseases or psychiatric disorders. A mental rotation
task is conducted, and the visual stimulus materials are the
pictures with different rotation angles of the left and right hands,
0◦, 60◦, 120◦, 180◦, 240◦, 300◦, respectively, recorded as S1, S2,...,
S12. Stimulus pictures are randomly presented, and each subject
needs to decide whether the presented picture is a left hand or
right hand and make a corresponding keyboard response. Data
is recorded by Brain Vision Recorder (Brain Products GmbH,
Munich, Germany) with 30 EEG channels (FP1, FP2, F3, F4, C3,
C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, FZ, CZ, PZ, Oz, FC1,
FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10) and 2 EOG
channels (HEOG, VEOG). In the experiment, the impedance is
below 5 k�, and the sampling rate is 1,000 Hz. For more detailed
information on the data, please refer to the original article (Yan
et al., 2013).

2.2. EEG Pre-processing
First, the recorded EEG data is pre-processed. The original
EEG data is filtered to 0.01–30 Hz by a band-pass filter, and
the physiological artifacts such as Electrooculograms (EOGs)
are removed by the Independent Component Analysis (ICA)
method. After re-referenced to the channels TP9 and TP10,
baseline correction is conducted. EEG data of 28 channels are
segmented into the epochs of 1,000 ms starting from the onset
of stimulation. The layout of the channel locations is shown
in Figure 1A. Epochs with the correct keyboard responses are
extracted and filtered to delta (δ, 0.1–4 hz), theta (θ , 4–8 hz),
alpha (α, 8–12 hz), low beta (low β , 12–20 hz), and high beta
(high β , 20 h–28 hz) bands. Previous studies showed that the
cortical activation in each cognitive sub-stage of motor imagery
altered after stroke (Yan et al., 2012). Therefore, EEG data of three
sub-stages is extracted for the following analysis, including 0–
300 ms visual stimulus perception sub-stage, 300–800 ms mental
rotation sub-stage, and 800–1,000 ms response sub-stage.

2.3. Phase Synchronization Index
This study uses the n:m phase synchronization index to construct
functional connectivity matrices of intra-frequency and cross-
frequency bands (Cai et al., 2018). First, the original signal x(t)
is calculated by Hilbert transformation, which is defined as

x̃(t) =
1

π
PV

∫ ∞

−∞

x(τ )

t − τ
dτ (1)

where PV is the Cauchy principal value and x̃(t) is the result
of Hilbert transformation. The instantaneous phase φ(t) is
calculated by

φ(t) = arctan
x̃(t)

x(t)
(2)

Then n:m PSI is calculated tomeasure the functional connectivity
of two signals xfm and xfn with the mid-frequency fm and fn in
time T,
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(
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)
=

1
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∣∣∣∣∣
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ej[1φ
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)
]
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where the PSI is ranging in [0, 1] and 1φ
(
xfm , xfn , t

)
is the

instantaneous phase difference of the two signals,

1φ
(
xfm , xfn , t

)
= nφ

(
xfm , t

)
−mφ

(
xfn , t

)
(4)

When calculating the instantaneous phase difference of two
signals in the same frequency band, n and m are set to 1. In
the cross-frequency case, n and m are integers that need to meet
n × fm = m × fn. In our experiment, the ratio of the mid-
frequency of the five bands is 1 : 3 : 5 : 8 : 12, so the n and m are
set to minimum integers satisfying the requirement.

At last, we get 5 intra-frequency functional connectivity
matrices and 10 cross-frequency functional connectivity matrices
in each epoch. The size of each matrix is 28 × 28. A
bigger symmetric matrix is shown in Figure 1B to clearly
display the relationship between the intra-frequency and cross-
frequency connectivity matrices, where the small tiles of the main
diagonal represent the intra-frequency functional connectivity
matrices while the off-diagonal tiles are the cross-frequency
connectivity matrices.

2.4. Graph Theoretical Analysis
In this articles, two graph theoretical metrics are selected to
describe the functional differentiation and integration ability of
the brain. The characteristic path length is used to describe
the global function integration and information interaction
efficiency of the network. The characteristic path length of the
whole network is the average value of the shortest path between
any two nodes in the network, which is defined as

L =
1

N(N − 1)

∑

i6=j

lij (5)

where N is the number of nodes and lij is the shortest path length
between node i and node j. The clustering coefficient is used to
describe the functional differentiation ability of the network. The
clustering coefficient of the whole network is the average value of
the clustering coefficient of all nodes, which is defined as

C =
1

N

N∑

n=1

Ci (6)

where N is the number of nodes and Ci is the clustering
coefficient of each node. In detail, Ci is the average intensity of
all triangles associated with each node, which is defined by the
following formula,

Ci =
2

ki
(
ki − 1

)
∑

j,k

(
w̃i,jw̃j,kw̃k,i

) 1
3 (7)

w̃i,j =
wi,j

max(w)
(8)

wherewi,j is the weight scaled by the largest weight in the network
and ki is the degree of the node (Onnela et al., 2005).
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FIGURE 1 | The framework of the proposed method. (A) The layout of channel location, (B) Visualization of structure between intra-frequency and cross-frequency

connectivity matrices. Matrices show intra-frequency (diagonal tiles) and cross-frequency bands (off-diagonal tiles), and (C) Multi-granularity analysis framework.

2.5. Multi-Granularity Analysis
The multi-granularity analysis framework of the CFC is shown
in Figure 1C. Analysis of Variance (ANOVA) is used to
statistically analyze the PSI and graph theoretical metrics, and the
significance level is set to 0.05.

After calculating the intra-frequency and cross-frequency
functional connectivity matrices in every epoch, we get the mean
functional connectivity matrices of every subject by averaging
the mean functional connectivity matrices in 6 rotation angles
in left-hand or right-hand motor imagery. Then we analyze the
stroke patients’ and controls’ average PSI in spatial granularity,
including the whole brain area scales, intra-left hemispheres
scales, intra-right hemisphere scales, and inter-hemispheres
scales. To explore the CFC in a further step, we also analyze the
average PSI in every channel pair.

We analyze the brain networks in temporal granularity,
including the entire task stage and three sub-stages. The brain
networks are constructed by assembling intra-frequency
and cross-frequency functional connectivity and then
two graph theoretical metrics mentioned above are used
for analysis.

3. RESULTS

3.1. Analysis of Average PSI in Spatial
Granularity
The average PSI of patients with stroke and healthy controls are
analyzed in the whole brain, hemisphere scale, and single channel
pair. The average PSI of the whole brain is shown in Figure 2.
In total, the average PSIs of the whole brain in several intra-
frequency and cross-frequency bands show significant differences
between patients with stroke and controls. PSI of patients with
stroke is smaller than that of controls in intra-frequency bands,
especially in theta, alpha, and low beta bands (p < 0.05). As for
the cross-frequency bands, the average PSI of patients with stroke
in delta-alpha, delta-low beta, and delta-high beta is smaller than
that of controls (p < 0.05). The results between the left-hand and
right-hand mental rotation tasks are similar in most frequency
bands, while in the low beta-high beta cross-frequency band,
the average PSI of patients with stroke is higher than that of
controls in the right-hand mental rotation task (p < 0.05).
According to the above result, the following analysis of PSI
focuses on 3 intra-frequency bands (theta, alpha, and low beta)
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FIGURE 2 | Average phase synchronization index (PSI) of the whole brain. (A) In intra-frequency bands during left-hand mental rotation task, (B) In intra-frequency

bands during the right-hand mental task, (C) In cross-frequency bands during left-hand mental rotation task, and (D) In cross-frequency bands during right-hand

mental rotation task (∗p < 0.05).

and 3 cross-frequency bands (delta-alpha, delta-low beta, and
delta-high beta).

The average PSI is analyzed in the hemisphere scale, and
the results are shown in Tables 1, 2. The left hemisphere of
the brain is the lesioned hemisphere. It demonstrates that the
average PSIs of lesion hemisphere and inter-hemisphere between
patients with stroke and healthy controls are highly different in
intra-frequency and cross-frequency bands (p < 0.05). More
strikingly, we find that the cross-frequency PSI reveals richer
information. The average PSI between patients with stroke and
healthy controls in the non-lesion hemisphere also shows a
significant difference(p < 0.05, Table 2) that can not be observed
in intra-frequency bands.

To further explore the characteristics of cross-frequency
functional connectivity, the PSI analysis of each channel pair in
delta-alpha, delta-low beta, and delta-high beta cross-frequency
bands is conducted. The channel pairs’ average PSI with the
significant difference (p < 0.05) between patients with stroke and
controls are reserved, shown in Figure 3. In total, the channels
with the significant difference in alpha, low beta, and high beta
bands are located separately in the whole brain, while in the delta
band, they are mainly located in the central area, frontal area,
and parietal area. Besides, there are differences in the left-hand
and right-handmental rotation tasks in delta bands. For instance,
the average PSI in the right occipital area between patients with
stroke and healthy controls shows a significant difference during

the left-hand mental rotation task, while the average PSI in the
left parietal region between patients with stroke and healthy
controls shows significant differences during right-hand mental
rotation task.

3.2. Graph Theory Analysis in Temporal
Granularity
We combine intra-frequency and cross-frequency functional
connectivity to form a 56 × 56 functional connectivity
matrix for the paired delta-alpha, delta-low beta, and delta-
high beta, respectively. For instance, the 56 × 56 functional
connectivity matrix for the paired delta and alpha bands
are constructed from a 28 × 28 intra-frequency connectivity
matrix within the delta band, a 28 × 28 intra-frequency
connectivity matrix within the alpha band, a 28 × 28 cross-
frequency connectivity matrix of delta-alpha, and a 28 × 28
cross-frequency connectivity transpose matrix of delta-alpha.
Since the cross-frequency functional connectivity is smaller than
intra-frequency functional connectivity, the same percentages
of stronger functional connectivity are reserved (percentages
between 20 and 80%, at 10% intervals) in each 28 × 28
matrix to obtain the critical functional connectivity of intra-
frequency and cross-frequency simultaneously. Except for this
manual threshold method, we also perform the automated
threshold method, the orthogonal minimal spanning trees
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TABLE 1 | The p-values of average phase synchronization index (PSI) in hemispheres in intra-frequency bands.

Brain regions Theta Alpha Low beta

Left hand Right band Left hand Right band Left hand Right band

Intra-left hemisphere (lesion) 0.0049∗∗ 0.0015∗∗ 0.0048∗∗ 0.0129∗ 0.0253∗ 0.0143∗

Intra-right hemisphere 0.8066 0.9254 0.7999 0.9103 0.5420 0.7746

Inter hemispheres 0.0163∗ 0.0152∗ 0.0026∗∗ 0.0095∗∗ 0.0261∗ 0.0545

∗p < 0.05; ∗∗p < 0.01.

TABLE 2 | The p-values of average PSI in hemispheres in cross-frequency bands (especially the PSI of intra-right hemisphere between patients with stroke and healthy

controls shows a significant difference).

Brain regions Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Intra-left hemisphere (lesion) 0.0642 0.0403∗ 0.0296∗ 0.0734 0.0520 0.0192∗

Intra-right hemisphere 0.0186∗ 0.0166∗ 0.0310∗ 0.0440∗ 0.0657 0.0324∗

Inter hemispheres 0.0219∗ 0.0082∗∗ 0.0520 0.0677 0.0320∗ 0.0205∗

∗p < 0.05; ∗∗p < 0.01.

(OMST) topological filtering (Dimitriadis et al., 2017), to
construct the brain networks for both intra-frequency and cross-
frequency. After that, the brain networks assembled with two
frequency bands with 56 nodes are obtained in each epoch,
and then characteristic path length and clustering coefficient
metrics are calculated. The average characteristic path length and
clustering coefficient metrics of each subject in left-hand and
right-hand mental rotation tasks are analyzed, and the results are
as follows.

At first, the graph theory analysis of the brain networks
during the entire task stage is conducted. The characteristic path
length and clustering coefficient metrics based on the manual
threshold selection method are shown in Figures 4, 5. In general,
the characteristic path length of the brain networks of patients
with stroke is greater than that of healthy controls, while the
clustering coefficient is smaller than that of controls. This result
indicates that the brain functional differentiation and integration
ability of patients with stroke is significantly weaker. In more
detail, when thresholds are set bigger than 60%, two graph
theoretical metrics show significant differences (p < 0.05), and
the characteristic path length is more sensitive to the threshold
selection. Besides, the results in left-hand and right-hand mental
rotation tasks are similar. These results reveal that brain networks
constructed by intra-frequency and cross-frequency functional
connectivity are effective tools to distinguish patients with stroke
from healthy controls.

We also execute graph theory analysis of brain networks
in three sub-stages by setting 70% as the threshold based
on the above results. The ANOVA results of the two graph
theoretical metrics are shown in Tables 3, 4. Regarding two
graph theoretical metrics, the mental rotation sub-stage shows
significant differences between patients with stroke and healthy
controls in both metrics. In contrast, the other two sub-stage
shows significant differences in only the clustering coefficient

metric. Besides, the results under the mental rotation tasks of the
left and right hands are similar.

As for the brain networks topologically filtered based on
OMST, the p-values of ANOVA of two metrics during the entire
task stage and three sub-stages between patients with stroke and
healthy controls are shown in Tables 5, 6. In general, the results
are consistent with those using the manual threshold method.
The characteristic path length and clustering coefficient metrics
show significant differences between patients with stroke and
healthy controls during the entire task stage (p < 0.05). Besides,
the two metrics demonstrate more stable significant differences
between the patients with stroke and healthy controls during the
mental rotation sub-stage, while in the other two sub-stages, only
the clustering coefficient metric shows a significant difference.
Based on two different topological filtering methods, we analyze
the characteristic path length and clustering coefficient metrics
of the brain networks. The results are shown in Tables 7, 8,
and the threshold of the manual threshold method is set as
70%. The characteristic path length metric of the OMST-based
brain networks is larger than that of the brain networks filtered
by the manual threshold method. In addition, the clustering
coefficient metric of the OMST-based brain networks is also
slightly larger.

4. DISCUSSION

Focal nerve damage caused by stroke often has a long-distance
impact through the residual neural network activities, which
causes changes in the brain network (Kawano et al., 2017).
Previous research onmental rotation tasks of patients with stroke
is mainly limited to intra-frequency brain networks analysis (Yan
et al., 2013), this article considers intra-frequency coupling and
CFC to explore the impact of stroke. In total, our experiment
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FIGURE 3 | The distribution of channel pairs with the significant differences in each delta-alpha, delta-low beta, and delta-high beta band. (A,C,E) during left-hand

mental rotation task and (B,D,F) during the right-hand mental rotation task.

reveals that CFC presents a new perspective to understand brain
activity after stroke.

Several kinds of CFCs are used in research, namely phase
to amplitude coupling (PAC), phase to phase coupling (PPC),
amplitude to amplitude coupling (AAC) (Cohen, 2008;
Dimitriadis et al., 2015; Davoudi et al., 2021a,b). In stroke-
related research, some researchers explored PAC. For instance,
Yeh et al. (2016) explored muscle activation-movement

interaction using PAC based on EMG signals of patients
with stroke. But PAC is often limited to single channels and
AAC is sensitive to noise. We analyze PPC using the n:m
phase synchronization index and construct brain networks
by combining intra-frequency and cross-frequency phase
coupling. Moreover, a multi-granularity analysis framework
is used to extract the important features in temporal and
spatial granularity.
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FIGURE 4 | The characteristic path length of the brain networks based on the manual threshold method. (A) In paired delta-alpha band during left-hand mental

rotation task. (B) In paired delta-alpha band during right-hand mental rotation task. (C) In paired delta-low beta band during left-hand mental rotation task. (D) In

paired delta-low beta band during right-hand mental rotation task. (E) In paired delta-high beta band during left-hand mental rotation task. (F) In paired delta-high beta

band during right-hand mental rotation task (* p < 0.05, ** p < 0.01).

In this article, important CFC abnormalities are found
through exploring the phase coupling in the whole brain area
scale, which can be divided as the coupling between low-
frequency and high-frequency or the coupling between low-
frequency and low-frequency. As for the coupling between
low-frequency and high-frequency, previous research pointed
out a mechanism for cognitive control that low frequency
(delta and theta) in the prefrontal cortex modulates high-
frequency oscillations (beta) (Riddle et al., 2021). Similarly,
we have observed the abnormal CFC in delta-low beta and
delta-high beta after stroke (Figures 2C,D). As for the coupling
between low-frequency and low-frequency, other neurological
diseases like Alzheimer’s disease existed an abnormal phase
coupling phenomenon between different low-frequency bands
like delta-alpha (Cai et al., 2018). Our experiment also has
observed the unnatural cross-frequency phase coupling of the

patients with stroke between low-frequency bands (delta-alpha).
Besides, the abnormal cross-frequency phase coupling found in
our experiment is highly related to the delta band since low-
frequency oscillations like the delta band can reflect injury and
recovery of neurons (Cassidy et al., 2020).

This article also explores the information interaction on the
scale of the brain hemisphere. Previous studies pointed out that
the brain’s information communication of the lesion hemisphere
and inter-hemisphere in intra-frequency bands like the beta
band is significantly affected (Yan et al., 2013), which can also
be observed in our experiment (Table 1). Besides, the CFC
analysis further reveals that the information interactions of the
stroke brain in the lesion hemisphere and inter-hemisphere are
affected; more importantly, the information interactions in the
non-lesion hemisphere are also affected (Table 2) which can not
be observed in intra-frequency bands. CFC is considered to
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FIGURE 5 | The clustering coefficient metric of the brain networks based on the manual threshold method. (A) In paired delta-alpha band during left-hand mental

rotation task. (B) In paired delta-alpha band during right-hand mental rotation task. (C) In paired delta-low beta band during left-hand mental rotation task. (D) In

paired delta-low beta band during right-hand mental rotation task. (E) In paired delta-high beta band during left-hand mental rotation task. (F) In paired delta-high beta

band during right-hand mental rotation task (* p < 0.05, ** p < 0.01).

TABLE 3 | The p-values of characteristic path length metric of the brain networks based on the manual threshold method in three sub-stages (setting threshold as 70%).

Stages Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Visual stimulus perception 0.6120 0.0802 0.2091 0.0732 0.2728 0.0701

Mental rotation 0.0069∗∗ 0.0202∗ 0.0139∗ 0.0175∗ 0.0245∗ 0.0832

Response 0.1909 0.0928 0.2368 0.0692 0.3221 0.0630

∗p < 0.05; ∗∗p < 0.01.

play a crucial role in organizing large-scale networks and cross-
distance functional integration (Jirsa and Mueller, 2013). The
above findingsmay illustrate the obstacle of the brain’s large-scale
information interactions in patients with stroke. In addition,
further investigation on critical indicators of CFC is meaningful.

We further found that the information interaction of the
delta band in some brain regions is highly affected, like the
parietal cortex and central area (Figure 3). To our knowledge,
the frontal lobe and central area are in charge of the brain’s
cognitive and motor function, and the parietal lobe is in

Frontiers in Computational Neuroscience | www.frontiersin.org 9 March 2022 | Volume 16 | Article 785397

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ren et al. Multi-Granularity EEG Analysis

TABLE 4 | The p-values of clustering coefficient metric of the brain networks based on the manual threshold method in three sub-stages (setting threshold as 70%).

Stages Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Visual stimulus perception 0.0789 0.0121∗ 0.0012∗∗ 0.0058∗∗ 0.0455∗ 0.0020∗∗

Mental rotation 0.0087∗∗ 0.0069∗∗ 0.0238∗ 0.0184∗ 0.0241∗ 0.0259∗

Response 0.0074∗∗ 0.0045∗∗ 0.0007∗∗ 0.0032∗∗ 0.0182∗ 0.0058∗∗

∗p < 0.05; ∗∗p < 0.01.

TABLE 5 | The p-values of the characteristic path length metric of the brain networks based on the orthogonal minimal spanning trees (OMST) topological filtering

method in different stages.

Stages Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Entire task 0.0476∗ 0.0131∗ 0.0177∗ 0.0050∗∗ 0.0501 0.0084∗∗

Visual stimulus perception 0.6446 0.1488 0.4006 0.2106 0.4992 0.1421

Mental rotation 0.0129∗ 0.0308∗ 0.0134∗ 0.0268∗ 0.0272∗ 0.0341∗

Response 0.4311 0.2760 0.4133 0.1644 0.5746 0.1222

∗p < 0.05; ∗∗p < 0.01.

TABLE 6 | The p-values of clustering coefficient metric of the brain networks based on the OMST topological filtering method in different stages.

Stages Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Entire task 0.0030∗∗ 0.0020∗∗ 0.0017∗∗ 0.0016∗∗ 0.0066∗∗ 0.0103∗

Visual stimulus perception 0.0225∗ 0.0053∗∗ 0.0471∗ 0.0080∗∗ 0.0305∗ 0.0278∗

Mental rotation 0.0128∗ 0.0253∗ 0.0102∗ 0.0088∗∗ 0.0069∗∗ 0.0475∗

Response 0.0128∗ 0.0109∗ 0.0255∗ 0.0178∗ 0.0094∗∗ 0.0078∗∗

∗p < 0.05; ∗∗p < 0.01.

charge of spatial information and visual processing. They
are also the brain regions highly activated during the motor
imagery task for healthy subjects (Kosslyn et al., 1998; Ganis
et al., 2000). This finding reveals that functional impairment
in these brain regions after stroke may cause poor motor
imagery. Besides, previous research found that the stroke brain
phase coupling is weaker in beta bands during the mental
rotation task (Yan et al., 2013), which is also observed in our
experiment (Figure 2). We found the opposite phenomenon:
functional connectivity of patients with stroke is significantly
higher than that of controls in low beta-high beta (Figure 2D).
This phenomenon may be due to the functional regulation
of the brain, i.e., this strong cross-frequency coupling is
used to compensate for the weak phase coupling in the
intra-frequency bands.

Stroke is considered a network disease that changes the
whole brain network and its properties (Guggisberg et al., 2019).
In our experiment, brain networks constructed by combining
intra-frequency and cross-frequency phase coupling are used

to explore the functional brain networks in a broader range.
Besides local and global graph theoretical metrics are used to
analyze the brain networks in temporal granularity, including
the entire task stage, visual stimulus perception sub-stage, mental
rotation sub-stage, and response sub-stage. The graph theory
analysis of the entire task stage reveals that the characteristic path
length and clustering coefficient between patients with stroke
and controls are significantly different (Figures 4, 5; Tables 5,
6), indicating the stroke brain’s weaker functional differentiation
and integration ability. The sub-stage analysis found that the
graph theoretical metrics between patients with stroke and
controls in the mental rotation sub-stage show a stable difference
(Tables 3–6). Therefore, the graph theory analysis with CFC
facilitates our understanding of the pathological effect of stroke
in a broader range.

We apply two topological filtering methods, including
the manual threshold and the automated threshold methods.
In total, the brain networks created by the two methods
consistently reflect the difference between patients with
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TABLE 7 | The characteristic path length metric of the brain networks based on two topological filtering methods (setting the threshold as 70% for the manual threshold

method).

Stages Methods Subjects Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Entire task Manual Controls 2.99 ± 0.07 3.00 ± 0.06 3.39 ± 0.07 3.41 ± 0.06 3.69 ± 0.07 3.71 ± 0.08

Patients 3.10 ± 0.09 3.10 ± 0.07 3.53 ± 0.11 3.51 ± 0.10 3.82 ± 0.13 3.82 ± 0.09

OMST Controls 3.75 ± 0.06 3.76 ± 0.06 4.15 ± 0.08 4.17 ± 0.07 4.47 ± 0.09 4.49 ± 0.09

Patients 3.83 ± 0.10 3.84 ± 0.08 4.28 ± 0.12 4.29 ± 0.10 4.61 ± 0.14 4.62 ± 0.12

Visual stimulus perception Manual Controls 2.19 ± 0.03 2.18 ± 0.04 2.47 ± 0.04 2.46 ± 0.06 2.65 ± 0.04 2.64 ± 0.05

Patients 2.21 ± 0.07 2.23 ± 0.07 2.51 ± 0.08 2.52 ± 0.08 2.69 ± 0.11 2.72 ± 0.11

OMST Controls 3.01 ± 0.04 3.00 ± 0.05 3.25 ± 0.06 3.24 ± 0.08 3.43 ± 0.05 3.43 ± 0.06

Patients 3.00 ± 0.07 3.04 ± 0.08 3.27 ± 0.09 3.28 ± 0.09 3.46 ± 0.11 3.49 ± 0.12

Mental rotation Manual Controls 2.50 ± 0.05 2.52 ± 0.05 2.83 ± 0.06 2.85 ± 0.06 3.07 ± 0.07 3.10 ± 0.09

Patients 2.59 ± 0.07 2.59 ± 0.06 2.93 ± 0.09 2.92 ± 0.06 3.17 ± 0.11 3.16 ± 0.08

OMST Controls 3.30 ± 0.05 3.31 ± 0.06 3.61 ± 0.07 3.62 ± 0.07 3.85 ± 0.07 3.87 ± 0.08

Patients 3.39 ± 0.08 3.38 ± 0.08 3.71 ± 0.09 3.69 ± 0.07 3.96 ± 0.12 3.95 ± 0.07

Response Manual Controls 2.15 ± 0.05 2.16 ± 0.04 2.41 ± 0.06 2.42 ± 0.04 2.62 ± 0.09 2.63 ± 0.07

Patients 2.18 ± 0.07 2.20 ± 0.05 2.46 ± 0.12 2.47 ± 0.06 2.67 ± 0.12 2.71 ± 0.10

OMST Controls 2.98 ± 0.06 2.97 ± 0.03 3.22 ± 0.06 3.21 ± 0.03 3.43 ± 0.08 3.42 ± 0.05

Patients 3.01 ± 0.07 3.00 ± 0.06 3.25 ± 0.12 3.24 ± 0.05 3.46 ± 0.13 3.47 ± 0.07

TABLE 8 | The clustering coefficient metric of the brain networks based on two topological filtering methods (setting the threshold as 70% for the manual threshold

method).

Stages Methods Subjects Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Entire task Manual Controls 0.314 ± 0.017 0.313 ± 0.016 0.275 ± 0.013 0.274 ± 0.013 0.258 ± 0.012 0.258 ± 0.013

Patients 0.293 ± 0.015 0.294 ± 0.015 0.258 ± 0.016 0.259 ± 0.017 0.243 ± 0.016 0.243 ± 0.015

OMST Controls 0.328 ± 0.018 0.327 ± 0.018 0.292 ± 0.015 0.293 ± 0.016 0.288 ± 0.016 0.289 ± 0.017

Patients 0.298 ± 0.015 0.297 ± 0.015 0.264 ± 0.014 0.265 ± 0.014 0.264 ± 0.016 0.265 ± 0.017

Visual stimulus perception Manual Controls 0.457 ± 0.012 0.458 ± 0.012 0.385 ± 0.010 0.386 ± 0.012 0.355 ± 0.008 0.357 ± 0.010

Patients 0.443 ± 0.018 0.441 ± 0.016 0.369 ± 0.010 0.369 ± 0.013 0.342 ± 0.017 0.341 ± 0.011

OMST Controls 0.474 ± 0.009 0.474 ± 0.010 0.409 ± 0.012 0.410 ± 0.011 0.400 ± 0.010 0.401 ± 0.009

Patients 0.461 ± 0.014 0.456 ± 0.015 0.394 ± 0.018 0.390 ± 0.018 0.384 ± 0.018 0.386 ± 0.018

Mental rotation Manual Controls 0.383 ± 0.016 0.380 ± 0.014 0.329 ± 0.012 0.328 ± 0.012 0.305 ± 0.011 0.304 ± 0.012

Patients 0.362 ± 0.016 0.362 ± 0.013 0.313 ± 0.016 0.312 ± 0.015 0.291 ± 0.014 0.290 ± 0.015

OMST Controls 0.407 ± 0.016 0.406 ± 0.015 0.355 ± 0.015 0.356 ± 0.015 0.349 ± 0.014 0.349 ± 0.015

Patients 0.388 ± 0.011 0.390 ± 0.013 0.335 ± 0.014 0.336 ± 0.015 0.331 ± 0.010 0.334 ± 0.016

Response Manual Controls 0.482 ± 0.011 0.481 ± 0.006 0.410 ± 0.008 0.408 ± 0.005 0.372 ± 0.008 0.371 ± 0.006

Patients 0.467 ± 0.011 0.469 ± 0.010 0.393 ± 0.010 0.395 ± 0.010 0.362 ± 0.009 0.361 ± 0.008

OMST Controls 0.524 ± 0.007 0.526 ± 0.007 0.466 ± 0.008 0.468 ± 0.006 0.456 ± 0.008 0.456 ± 0.009

Patients 0.510 ± 0.015 0.516 ± 0.009 0.453 ± 0.015 0.455 ± 0.015 0.445 ± 0.008 0.444 ± 0.008

stroke and healthy controls. We further calculate the sparsity
of the OMST-based network, and the results are shown in
Table 9. In detail, the sparsity of the OMST-based networks
in each paired cross-frequency band is in a stable range
from 14 to 17%. In addition, the SD of the sparsity of the
OMST-based networks are also minor (almost all less than
0.5%). However, the sparsity of brain networks filtered by
the manual threshold method is selected as 70%, which is
different from the OMST-based brain networks. Compared
with the manual threshold method, the OMST topological

filtering method removes more connections to create the
final “non-redundant” brain networks. Besides, the OMST-
based topological filtering method remains both strongly
connected edges and weakly connected edges. Therefore, the
characteristic path length and clustering coefficient metrics
of the OMST-based brain networks are larger than the brain
networks based on the manual threshold method shown in
Tables 7, 8. Manual thresholding-based brain network analysis
is a potential feature selection method for EEG classification
tasks (Kong et al., 2018; Huang et al., 2021). In future study,
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TABLE 9 | The sparsity (%) of the OMST-based brain networks.

Stages Subjects Delta-Alpha Delta-Low beta Delta-High beta

Left hand Right band Left hand Right band Left hand Right band

Entire task Controls 15.48 ± 0.16 15.55 ± 0.20 15.08 ± 0.22 15.01 ± 0.27 14.66 ± 0.34 14.69 ± 0.37

Patients 15.26 ± 0.22 15.37 ± 0.25 14.79 ± 0.39 14.74 ± 0.38 14.24 ± 0.50 14.35 ± 0.52

Visual stimulus perception Controls 16.91 ± 0.16 16.86 ± 0.19 16.36 ± 0.19 16.36 ± 0.20 16.07 ± 0.17 16.10 ± 0.19

Patients 16.68 ± 0.21 16.74 ± 0.19 16.05 ± 0.15 16.00 ± 0.17 15.82 ± 0.20 15.90 ± 0.24

Mental rotation Controls 16.06 ± 0.29 16.07 ± 0.25 15.66 ± 0.25 15.66 ± 0.25 15.34 ± 0.32 15.36 ± 0.32

Patients 15.88 ± 0.33 15.93 ± 0.39 15.45 ± 0.35 15.58 ± 0.31 15.22 ± 0.42 15.04 ± 0.49

Response Controls 17.28 ± 0.26 17.35 ± 0.22 16.55 ± 0.23 16.64 ± 0.11 16.24 ± 0.25 16.31 ± 0.17

Patients 17.03 ± 0.18 17.15 ± 0.22 16.38 ± 0.22 16.56 ± 0.27 16.16 ± 0.29 16.28 ± 0.21

the comparison and evaluation of different topological
filtering methods are worth deeply being studied. Besides,
the cross-frequency coupling calculation methods such as using
mutual information (Tafreshi et al., 2019), transfer entropy
(Ahmadi et al., 2020; Xie et al., 2021), and effective feature
extraction methods from cross-frequency coupling are also
the focus.

5. CONCLUSION

Evaluating the impact of stroke on brain information interactions
is a challenging problem. This article constructs brain networks
assembled with intra-frequency and cross-frequency phase
coupling based on the EEG data of patients with stroke
and healthy controls during the mental rotation task and
explores them in temporal and spatial granularity. Through
our experiment, the abnormal phase coupling is found in
spatial granularity analysis, and the weaker brain functional
differentiation and integration ability are observed in temporal
granularity analysis in the brain networks of patients with stroke.
The brain information interaction of cross-frequency bands is
highly affected after a stroke. In total, these findings demonstrate
that the coupling between different frequency bands brings a
new perspective to understanding the brain’s cognitive process
after stroke.
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