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Vitamin D, a fat-soluble vitamin, plays a critical role in calcium homeostasis, the immune
system, and normal development. Many epidemiological cohort studies globally have
found high prevalence rates of vitamin D deficiency and insufficiency, recognized as an
important health issue that needs to be solved. In particular, reproductive age and
pregnant women low in vitamin D status may confer risks of diseases like obesity on
their offspring. While observational studies have suggested associations between prenatal
vitamin D deficiency and metabolic phenotypes in offspring, not yet determined is whether
prenatal vitamin D deficiency permanently alters the development of the liver, a major
metabolic organ. We tested the histopathology and the transcriptomic profiles of livers
from male C57BL/6J mice exposed to prenatal vitamin D deficiency through a maternal
dietary intervention model. We found that prenatal vitamin D deficiency increases the
prevalence of histopathological changes in the liver, and alters its gene expression profile.
Cell subtype proportion analysis showed that the liver of prenatal vitamin D deficiency
alters non-parenchymal cells of the liver, specifically macrophages, a subset of endothelial
cells, and dendritic cells. Our results indicate the long-term memory of prenatal vitamin D
deficiency exposure in the adult liver, a potential contributor to offspring health risks.

Keywords: vitamin D deficiency, prenatal environment, liver, transcriptional alterations, DOHaD (developmental
origins of health and disease)

INTRODUCTION

Vitamin D is a crucial micronutrient that plays many physiologic functions in mammals. Humans
create vitamin D from the action of sunlight on the skin, with the consequence that limiting sun
exposure, covering skin with clothes, or darker skin pigmentation reduces vitamin D production
and may cause its deficiency. The serum 25-hydroxyvitamin D concentration is the marker of
vitamin D nutritional adequacy. Serum 25-hydroxyvitamin D concentrations in the range of 50-125
nmol/L indicate adequate vitamin D intake, 30-49 nmol/L is inadequate, and less than 30 nmol/L is
classified as deficient, while greater than 125 nmol/L represents excess (1, 2). Many countries
provide recommended daily vitamin D intake values and fortified foods such as milk, margarine,
flours, cereals, and juices to reduce the prevalence rate of vitamin D deficiency (VDD), but VDD
remains highly prevalent worldwide (3-6). In particular, the prevalence of VDD in reproductive-age
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women and pregnant women is recognized to be an urgent issue
that needs to be addressed in low- and mid-income countries,
and in high-income countries within the specific race and
ethnicity groups (6-8).

While a major role of vitamin D is in regulating calcium
homeostasis [reviewed in (9)], it has broader physiological
effects. The bioactive metabolite of vitamin D, 1,25(0OH)2D3
(calcitriol), is a steroid hormone, influencing transcriptional
regulation through interaction with the high-affinity nuclear
vitamin D receptor (VDR), a member of the nuclear receptor
superfamily of ligand-activated transcription factors. The VDR
pathway regulates the transcription of many genes, including
genes with essential roles in fetal development and ensures the
fetal supply of calcium for bone development (10-13).
Intriguingly, epidemiological studies exploring the effects of
maternal vitamin D deficiency revealed that offspring exposed
to vitamin D deficiency in the uterus increased not only the risk
of infantile rickets (4) but also the risk of childhood obesity (14-
17) later in adulthood, suggesting long-term memories of the
deficiency while developing in utero.

A mouse dietary intervention study revealed that mice born
to mothers fed a vitamin D deficient diet had rapid weight gain
after weaning and were more susceptible to high-fat diet-induced
adipocyte hypertrophy than those born to mothers fed a vitamin
D sufficient diet (18). In addition, a study of mice exposed to
prenatal VDD found that prenatal VDD alters the DNA
methylation status of the liver and sperm of two generations of
offspring (19). These findings suggest that prenatal vitamin D
deficiency predisposes offspring to long-term metabolic
phenotypic alterations. However, little is known if prenatal
vitamin D deficiency permanently alters the physiology of the
liver, a major metabolic organ. To fill this knowledge gap, we
assessed the effects of prenatal vitamin D deficiency on liver
physiology and gene expression at the adult stage.

MATERIALS AND METHODS

Maternal Vitamin D Deficiency

Mouse Model

Five week old C57Bl/6] (Strain #000664) female mice (F0)
purchased from the Jackson Laboratory were fed vitamin D
deficient (VDD) or sufficient (VDS) diets for five weeks before
mating to the control diet-fed male mice. The assigned diets were
maintained throughout the subsequent pregnancy. VDD (0.0 IU/
g vitamin D) and nutrient-matched VDS (1.0 IU/g vitamin D,
D12450]) diets were obtained from Research Diets Inc. (10 kcal%
fat, 20 kcal%Protein, and 70 kcal%Carbonate). VDD-fed females
were supplemented with 1.5% calcium gluconate to maintain
calcium homeostasis (20). Vitamin D deficiency of the FO
animals was confirmed by measuring serum 25-OH vitamin D
levels using the Mouse Rat 25-OG Vitamin D ELISA kit (Eagle
BIOSCIENCES) before mating and postnatal day 1 offspring
(Supplementary Figure 1A). After delivery, all FO mice were fed
VDS diets. After weaning, the offspring (F1) were fed a VDS diet

that was maintained until animal sacrifice. All animal studies
were approved by the Institutional Animal Care and Use
Committee at the Albert Einstein College of Medicine.

Histopathological Study

After dissection, the liver samples were fixed in 4%
paraformaldehyde solution at 4°C for overnight and processed
for paraffin embedding. The paraffin-embedded tissue slides
were stained with hematoxylin and eosin (HE), trichrome, and
Gomori Reticulin stainings. We assessed 10 VDS-F1 and 19
VDD-F1 male mice.

Transcription Analysis

We used male offspring for gene expression studies (n=6 VDD-
F1 and n=6 VDS-F1). Total RNA was extracted from mouse
livers at 16 weeks of age using the AllPrep DNA/RNA Micro Kits
(QIAGEN). The RNA-seq libraries were generated using KAPA
RNA HyperPrep with RiboErase kit (Roche) and sequenced on
an Illumina NovaSeq sequencer (Novogene Co., Ltd., USA).
After removing reads that failed the quality check and
trimming adapter sequences, the resulting sequences were
aligned to the mouse mml0 reference genome, quantifying
gene expression by transcript counting (GENECODE release
M15, GRCm38) using the STAR aligner (21). Differential
expression as a result of dietary manipulation was determined
using the Bioconductor package DESeq2 (22). We eliminated
genes with fewer than the mean read counts per sample per gene
is less than 12 from the analysis. Significantly differentially
expressed genes (DEGs) were determined based on a log,-fold
change of less than -1 or greater than 1 and a false discovery rate
(FDR) adjusted p-value less than 0.05. DEGs were further
assessed for their biological properties by Gene Ontology (GO)
enrichment analysis using a Bioconductor package, clusterProfiler
(23, 24). Quantitative reverse transcription PCR (qRT-PCR) was
performed on the same RNA samples to verify the results. We
used SuperScript IIT with random hexamer priming to synthesize
cDNA and LightCycler FastStart Universal SYBR Green Master
Mix for quantitative PCR. The measurement was performed
using the LightCycler 480 system. The primers used in this
study are listed in Supplementary Table 1.

Cell Subtype Deconvolution

We used CIBERSORTX, a web interface-based tool, for
quantifying the proportion of cell types in the RNA-seq data
(25). A publicly available mouse liver (parenchymal and non-
parenchymal liver cells isolated by a two-step collagenase
perfusion) single-cell RNA-seq data (GSE134134) (26, 27) was
used to generate a custom signature from single-cell liver gene
expression data that represents the gene expression signatures of
liver cell and immune cell subtypes. We combined four datasets
of single-cell RNA seq libraries listed under GSE134134, 1000
(GSM3937757), 2000 (GSM3937758), 5000 (GSM3937759), and
10000 (GSM3937760) (26, 27). We used the Seurat R package for
the single-cell RNA-seq analysis (28). We excluded cells with the
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detected number of genes were less than 1000 and reads from
mitochondrial were greater than 10% before the analysis. We
performed normalization and variance stabilization using the
sctransform algorism (29), and the sctransformed datasets were
merged using integration functions and identified clusters based
on the gene expression profiles (29). We identified cell subtype
clusters based on the expression status of maker genes
(Supplementary Figure 4).

Statistical Analysis

All statistical analyses were performed using R version 4.1.1
(https://www.r-project.org/). The Student’s t-test was used to
analyze continuous variables between VDS and VDD unless
otherwise stated, and Fisher’s exact test to analyze categorical
variables. P-values of <0.05 or FDR-adjusted p-values in multiple
testing analyses were considered significant.

RESULTS

Prenatal Vitamin D Deficiency Is
Associated With Histopathological
Changes of the Livers of Offspring

The growth trajectory of offspring was comparable in VDD-F1
and VDS-F1 (Supplementary Figure 1B). We dissected F1
male mice at 16 weeks of age to assess the long-term effects of
prenatal vitamin D deficiency. We found histopathological
alterations of the livers including hydropic degenerations,
steatosis, and fibrosis in VDD-F1 offspring (Figure 1). While

the prevalence rates were not statistically significant due to the
small sample numbers, steatosis and fibrosis were only observed
in the VDD-F1 offspring. The sizes of lipid droplets were
varied between the individuals, but the morphology of the
nuclei remained unaltered. We summarize the histopathological
alterations in Table 1.

Prenatal Vitamin D Deficiency Is
Associated With Permanently Altered
Gene Expression of the Liver

The histopathological analyses suggested that prenatal vitamin D
deficiency alters liver physiology. We, therefore, conducted a
transcriptional analysis using bulk RNA-seq to assess the gene
expression alterations linked to prenatal vitamin D deficiency.
We extracted total RNA from the left lateral lobes of the liver and
prepared libraries (n=6 per group, Supplementary Figure 2).
We sequenced libraries at the depth of at least 26 million paired
reads per library. After the quality check of the sequences and
removal of low-quality reads, we performed a principal
components analysis to compare the expression pattern
between the individual F1 mice (Figure 2A, Supplementary
Table 2). We observed three large clusters that consist of only
VDS samples, VDD samples, and both VDS and VDD. There
were no significant histopathological differences between VDD
samples in different clusters. Next, we performed a differential
expression analysis and identified 281 significant differentially
expressed genes (DEGs) when comparing samples from mice
who were exposed to prenatal VDD versus those exposed to
prenatal VDS. 249 of DEGs were upregulated and 32 of DEGs

Abnormal

Reticulin

indicate the described changes.

FIGURE 1 | Representative histopathological alterations in the liver of VDD-F1 offspring. Top, hematoxylin-eosin stain; bottom, Gomori's reticulin stain. The arrows

Fibrosis
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TABLE 1 | A summary of histopathological alterations in liver.

VDD-F1 (n=19)

Hydropic degeneration 11
Steatosis 1
Steatosis and Fibrosis 5
No alterations observed 8

VDS-F1 (n=10) p-values*
4 0.675
0 0.063
0 —
6 0.562

*Fisher’s exact test.

were downregulated (Figure 2B, Supplementary Table 3). We
verified the results using the same RNA samples and confirmed
significant alterations or the same trends of DEGs by quantitative
RT-PCR (Figure 2C, Supplementary Figure 3).

The DEGs Are Enriched in Pathways for
the Extracellular Structural Organization
and Lipid Catabolism

We performed gene ontology (GO) enrichment analyses on
upregulated and downregulated DEGs respectively to test if the
DEGs are enriched in specific gene pathways. We found that
lipid metabolism-related pathways such as lipid catabolic
process, xenobiotic metabolism, and linoleic acid metabolic
process are enriched in down-regulated DEGs. 249 upregulated
DEGs were enriched in extracellular structure organization,
nuclear division, and mitosis-related pathways (Figure 3,
Supplementary Table 4).

Cell Subtype Proportion Analysis of Bulk
RNA-Seq Data Revealed That Prenatal
Vitamin D Deficiency Alters Cell

Subtype Composition of Non-
Parenchymal Liver Cells

We next tested if the proportions of cell subtypes are affected
based on prenatal exposure to VDS or VDD. To perform cell
subtype proportion analysis, we generated reference expression
signatures of each liver cell subtype using publicly available adult
liver single-cell RNA-seq data. We segregated 21 clusters of the
adult liver cells, as shown in Figure 4A and Supplementary
Figure 4. Based on the relative expression of well-known marker
genes of liver cell subtypes identified by the mouse cell atlas, we
identified the cell subtypes of each cluster. The cluster
information was then used to generate a custom signature of
gene expression in liver cells using CIBERSORTx. The generated
reference expression signature was used to perform
deconvolution of bulk RNA-seq data of each sample
(Supplementary Table 5). As we expected, the hepatocyte
proportion was the highest among the cell subtypes (80.6%
VDD and 81.4% VDS, p=0.39) (Supplementary Table 6).
While the proportions of hepatocytes were not significantly
altered, we observed significant alterations in non-parenchymal
liver cell subtypes, macrophages, endothelial cells, and dendritic
cells (Figure 4B). Interestingly, while Cd163-positive
macrophages were reduced in prenatal VDD offspring liver,
Ccr2-positive macrophages were increased compared to that of
VDS offspring. We previously reported that cell subtype
composition significantly contributes to the gene expression

profile (30). We therefore tested if the DEGs we identified
were attributable to the cell subtype proportion differences
between samples. We did not observe significant contributions
of cell subtype proportion variations to the gene expression
profile (Supplementary Figure 5). This result indicates that
the identified DEGs were independent of the cell subtype
proportion variations.

DISCUSSION

In this study, we found that prenatal vitamin D deficiency alters
liver histology and transcription profiles in oftspring adulthood.
We observed livers with varying ranges of cytoplasmic clearing,
hydropic changes, and fibrosis in histopathological analysis.
Transcriptional analysis showed that lipid metabolism-related
genes, mitosis-related genes, and extracellular structure
organization-related genes were enriched in DEGs. Moreover,
cell subtype deconvolution analysis indicates alterations of non-
parenchymal liver cell proportions. These findings suggest that
prenatal vitamin D deficiency permanently alters the
physiological and metabolic properties of offspring livers.

Herrick et al. reported that more than 23% of Americans
equal or older than 1 year are at risk of vitamin D inadequacy or
deficiency and the prevalence of the risk of deficiency is at its
highest among adults among 20-39 years old using 2011-2014
National Health and Nutrition Examination Survey (NHANES)
data sets (1). They also reported that the risk of deficiency was
higher among non-Hispanic Black than non-Hispanic Asian,
non-Hispanic White, and Hispanic participants. Moreover, the
high prevalence of vitamin D deficiency and inadequacy is
associated with obesity (5, 31, 32). These findings suggest that
reproductive-age women with obesity have a higher risk of
vitamin D deficiency during pregnancies, specifically women of
the vitamin D deficiency vulnerable ethnic/race groups.

The associations between maternal vitamin D deficiency and
adverse maternal and fetal outcomes have been well reported
(33-37). A systematic review of 3357 studies revealed that
maternal vitamin D deficiency increases the risks of gestational
diabetes, preeclampsia, and small for gestational age infants (35).
In addition, prior studies have implicated associations between
maternal vitamin D deficiency and offspring obesity later in life
in both human observation studies (14-17, 38) and dietary
manipulation studies in rodents (18, 39). We did not observe
an obese phenotype; however, we found that mice exposed to
prenatal vitamin D deficiency showed transcriptional alterations
in lipid metabolism-related pathways. Moreover, the
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FIGURE 2 | Prenatal vitamin D deficiency leads to altered gene expression in adult mouse liver. (A) PCA demonstrates variation in expression patterns between VDD
and VDS offspring. (B) A volcano plot shows differentially expressed genes (DEGs) found in the analysis comparing mouse offspring exposed to a prenatal vitamin D
deficiency versus mice exposed to a vitamin D sufficient diet. Genes are significantly differentially expressed if they have a p adjusted value less than 0.05 and -2 <
fold change < 2. (C) gRT-PCR using cDNA generated from offspring liver samples validates the upregulation of the collagen, type Ill, alpha | (Col3a7), and Cidec genes.

histopathological analysis suggested that exposure to a prenatal
vitamin D deficiency affects the physiology of the liver at the
adult stage. Our results suggest the existence of long-term
memory of prenatal vitamin D deficiency exposure in the liver.

The association between vitamin D deficiency in adulthood
and chronic liver diseases (CLD) (40), including cirrhosis (41),
non-alcoholic fatty liver disease (NAFLD, recently been proposed
to rename as metabolic-associated fatty liver disease [MAFLD)

(42)] (43-45), and non-alcoholic steatohepatitis (NASH) (44, 45),
have been identified in many cross-sectional studies. Stokes et al.
reviewed the associations between CLD and vitamin D deficiency
(46). We fed a vitamin D sufficient diet to all offspring after
weaning, finding that the serum vitamin D concentration of mice
exposed to prenatal VDD became normal by 5 weeks of age.
Therefore, the pathogenesis of the liver phenotype we observed in
the liver of prenatal VDD offspring was not by deficiency at the
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time, likely by a long-term memory of VDD exposure. However,
there are several similarities that exist. For instance, the
infiltration and activation of macrophages is a key feature of
endoplasmic reticulum stress-induced inflammation in liver
injury, with VDR signaling regulating the inflammatory
response in macrophages (47). We found that two distinct
macrophage proportions, Cd163-positive, the anti-inflammatory
(M2 phenotype) macrophages (48), and Ccr2-positive
macrophages had distinct patterns of alteration in prenatal
VDD offspring. Associations between the Ccr2-positive Kupfter
cells (hepatic residential macrophage) and choline-deficient
amino acid-defined diet-induced hepatic steatosis and fibrosis
have been identified (49, 50). Several studies reported that a high-
fat diet-induced hepatic steatosis increases bone-marrow (BM)-
derived macrophages, which predominantly express Ccr2 (51,
52). The cell subtype reference expression signatures of both
Cd163-positive and Ccr2-positive macrophages in this study
showed higher expression of Emrl (F4/80) but low expression
of Itgam (Cd11b) (52), indicating that they may be tissue-resident
macrophages. Ccr2 expression in Kupffer cells contributes to BM-
derived macrophage recruitment (49). The resident macrophages
are derived from multiple anatomical locations during
development suggesting developmental origin cell subtype
proportion alterations may exist in the liver that is associated
with a predisposing condition of prenatal VDD to the liver
phenotype at the adult stage. The GO enrichment analyses on
DEGs in this study showed enrichment of biological processes
GO terms including extracellular matrix organization, regulation
of vascularized development, and regulation of angiogenesis,
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FIGURE 3 | Results from GO enrichment analysis (biological processes) using a Bioconductor package, clusterProfiler, for up and down-regulated DEGs. The top 15 up
(right) and downregulated (left) terms were. The size of the dots represents the number of the genes, and the color indicates the significance of the enrichment.

processes which occur with liver fibrosis. Our study provides
new insight into how prenatal VDD affects the liver phenotype
and physiology as well as how this results in changes in the
proportions of liver-resident immune cell subtypes in
adult offspring.

There are several limitations of the current study that we
would like to address in the future. First, we performed dietary
manipulation on FO female mice for five weeks prior to mating
until the delivery. Belenchia et al. reported that it takes at least
two weeks for serum vitamin D levels to return to normal after
switching the diet to VDS from long-term VDD feeding (53).
Thus, the F1 offspring were exposed to vitamin D deficient and
insufficient conditions for the first two weeks of life. Using foster
mothers would help us dissociate the effects between prenatal
and neonatal periods. Second, while we observed cell subtype
proportion changes in the prenatal VDD offspring, we cannot
conclude if this alteration contributes to prenatal VDD exposure
or results from liver damage. We believe testing cell subtype
proportions in the liver before liver injury started would resolve
this question.

Moreover, we estimated cell subtype proportion changes by
the bulk RNA-seq results; therefore, the estimated proportion
may be affected by the expression changes in specific cell
subtypes. Testing the expression profiles at the single-cell levels
will test if the alterations we observed in this study are attributed
to the gene expression alterations between the same cell subtypes.
Lastly, Wang et al. estimated the relationship between mice and
humans at stages of growth and reported that the age range of 10
to 64.29 weeks of age in mice corresponds to the adult stage in
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FIGURE 4 | Liver cell subtypes were found in different cell subtype proportions in prenatal VDD compared to VDS offspring. (A) Publicly available single-cell RNA-
seq data was processed and clustered as shown in the UMAP plot. Gene expression patterns of clusters were used to define cell identities. (B) The proportions of
Cd163+ macrophages and Ccr2+macrophages were inversely related between prenatal VDD and VDS offspring. Dendritic cells were found in a significantly lower
proportion in VDD samples while a subset of endothelial cells was found in a higher proportion in VDD samples.

humans (20 to 51 years old) (54), suggesting 16 weeks of age is at
the early adult stage. The prevalence of NAFLD increases after
age 30 (55) and age older than 40 is a risk factor of NAFLD (56).
This study could be improved by maintaining the mice for longer
than 16 weeks of age following prenatal VDD in order to observe
more changes related to prenatal VDD and at the adulthood stage.

In summary, we found that prenatal vitamin D deficiency
alters gene expression profiles of the liver and cell subtype
proportions of non-parenchymal cells at the adult stage. The
prevalence of at risk of vitamin D deficiency and insufficiency is
high among reproductive-age women, and a significant
association of obesity to low vitamin D status has been
implicated. Childhood obesity in the world is rising in
frequency, with the prevalence of overweight/obesity among
children aged 5-18 in the world rising from 4% in 1974 to 18%
in 2016 (57). Epidemiological studies have identified significant
associations between excess weight during childhood and the risk
of adulthood obesity (58-62). Moreover, the incidence of NASH
and NAFLD/MAFLD in young people has increased to 1.52
times between 1990 and 2017, and the prevalence of NAFLD/
MAFLD in children varies by ethnicity (56). Prenatal and

neonatal vitamin D deficiency may be contributing to this
increase in prevalence rates. Reducing maternal vitamin D
deficiency could reduce the adverse health outcome of the next
generation, while understanding mechanisms of how our body
remembers prenatal vitamin D status over the lifespan should
help us to find interventions and treatments to prevent
developmental origins of health and diseases in the liver.
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