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Abstract

Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle.
While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise
impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression
in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44–56 performed one hour of one-
legged cycling at 50% Wmax. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately
after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin,
and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in
exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part
of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR
signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate
that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely
mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond
the contracting muscle.
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Introduction

Regular exercise training is generally recognized as a powerful

preventive and therapeutic strategy for diseases such as type 2

diabetes, obesity and cardiovascular disease. At a systemic level,

regular exercise training improves cardiac and lung function

[1,2,3], reduces the amount of adipose tissue [4], increases muscle

mass [5,6,7], and decreases liver fat [8,9], representing chronic

adaptations to repeated exercise bouts. Interestingly, the observa-

tion that unilateral training also improves strength in the

immobilized or untrained limb indicates that the beneficial effects

of exercise are not limited to the tissues directly engaged in

exercise [10,11,12].

Immediately upon initiation of exercise, local demand for ATP,

oxygen, glucose and fatty acids increases dramatically. These

demands are accommodated by rapid changes in skeletal muscle

activity of key enzymes and transporters involved in glucose and

fatty acid oxidation via allosteric regulation and phosphorylation

of rate-limiting enzymes. In addition, regulation at the mRNA

level importantly contributes to the acute response and chronic

adaptations to exercise. A large number of studies have shown that

acute exercise induces genes involved in a variety of processes,

including energy metabolism, hypertrophy and signalling

[13,14,15,16,17,18,19,20,21]. Whole genome mRNA profiling

has confirmed these findings, revealing major changes in skeletal

muscle gene expression from 1 hour to even 48 hours after

cessation of exercise [22,23,24,25]. All efforts to characterize

exercise-induced changes in mRNA have so far focused on the

exercising muscle. To what extent exercise influences gene

expression in non-exercising muscles remains completely unclear.

Conceivably, exercise may elicit changes in gene expression in

non-exercising muscle via circulating mediators and metabolites.

Such a mechanism may provide a conceptual framework for the

impact of exercise on non-contractile tissues such as liver. In the

present study, we have employed the one-legged exercise model

and pre- and post-exercise muscle biopsies to study the acute

effects of exercise on whole genome gene expression in exercising

and resting human skeletal muscle. The results reveal that acute

endurance exercise elicits pronounced changes in gene expression

in non-exercising muscle, which are likely mediated by changes in

circulating factors such as free fatty acids (FFA).
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Methods

Subjects
Twelve healthy middle-aged men (age 51.565.1 years, body

weight 88617 kg, body mass index 2664) participated in the

study. All subjects exercised less than 4 hours per week.

Anthropometric parameters, VO2max and Wmax (1 and 2 legged)

values can be found in table 1. The study was approved by the

medical ethical committee of Wageningen University and all

subjects received oral and written information about the exper-

imental procedures and provided written informed consent.

Experimental design
All subjects performed a single 60 minutes experimental

endurance exercise bout, which was preceded by two preliminary

exercise tests and two familiarization trials (figure 1A). During the

endurance exercise bout subjects had to perform one-legged

cycling on a cycle ergometer (Excalibur Sport, Lode, Groningen

NL) adapted with a custom-made leg support. Skeletal muscle

biopsies were taken from both legs immediately before and shortly

after exercise.

Preliminary exercise tests
Two graded cycling exercise tests to exhaustion were per-

formed, the first with both legs, the second with one leg (Excalibur

Sport, Lode, Groningen NL). The first two-legged exercise test was

used to determine the subjects’ maximum aerobic capacity

(VO2max; table 1), while the second test was used to determine

maximum workload of the dominant experimental leg (Wmax-1-

leg; table 1). Both tests started at a set workload (100 watt 2 legs,

20 watt 1 leg), which increased gradually until exhaustion

(15 watts per minute 2 legs, 10 watts per minute 1 leg), determined

as the participant not being able to continue cycling at 60 rounds

per minute for longer than 15 seconds. Respiratory quotient (RQ)

was above 1 at the end of the test in all subjects. During the tests

oxygen uptake (VO2) and heart rate (HR) were measured (Oxycon

Pro, Jaeger, Hoechberg, Germany). The tests were performed at

the same ergometer as the endurance exercise bout and

familiarization trails and were completed at least 14 days before

the endurance exercise bout and 3 days apart to avoid a training

effect. The day prior to both tests subjects were asked to refrain

from alcohol and heavy exercise.

Familiarization trials
All participants were unfamiliar with one-legged exercise.

Therefore the two familiarization trials were performed before

the endurance exercise bout to make sure that subjects became

familiar with one-legged cycling (figure 1A). The familiarization

trials consisted of 20 minutes of one-legged cycling at a self-chosen

workload. All subjects performed the one-legged exercise with the

dominant leg, which was determined via a number of daily life

related questions.

Experimental endurance exercise bout
Subject refrained from heavy exercise the last 4 days prior to

the experimental day. The last day before the experimental

exercise bout subjects received a standardized evening meal and

refrained from alcohol. On the morning (8.15 h) of the exper-

imental test subjects reported to the research facility, after an

overnight fast (.10 hours). The experimental exercise bout

consisted of 60 min one-legged cycling at 50% of the one-legged

Wmax. Before (T0) and shortly after (T1) the exercise a venous

blood sample was drawn and muscle biopsies were taken from

both legs (see figure 1B). Two hours after cessation of the exercise

a third blood sample was taken (T3). During the experimental

exercise HR was recorded continuously. Subjects remained fasted

until after the last blood sampling, but were allowed to drink water

ad libitum.

Blood samples
Blood was collected in EDTA containing tubes. The samples

were immediately centrifuged at 1000 g at 4uC for 10 minutes,

after which plasma was stored in 280uC until further analysis.

Blood samples were analysed for free fatty acids (Centre for

Medical Diagnostics (SHO), Velp, NL), glucose, triglycerides,

cortisol, lactate (Gelderse Vallei hospital, Ede, NL), catechol-

amines (laboratory of clinical chemistry, Radboud Medical

Center, Nijmegen, NL), and insulin (enzyme-linked immunosor-

bent assay, Mercodia, Uppsala, Sweden).

Muscle biopsies
Percutaneous needle biopsies were taken before (T0) and shortly

after (T1) exercise from the vastus lateralis muscle from both legs

(4 biopsies in total), using the Bergström technique with suction

[26]. Skin was anesthetized with Xylocaine 2% with Adrenaline.

All biopsies were taken from a separate incisions. There was at

least a 2 cm gap between the biopsies of T0 and T1 to prevent

influence of the earlier biopsy. The second biopsy from the same

leg was taken from a more proximal position. Pre-exercise biopsies

were taken just before the exercise; post-exercise biopsies within

30 minutes after termination of the exercise bout, on average it

took ,15 minutes before the first post-exercise biopsy was taken.

Biopsies of the exercising leg were taken first, followed shortly

afterwards by the biopsy of the non-exercising leg. After each

biopsy, the collected tissue sample was carefully cleared from

visible adipose tissue and blood and divided into four pieces. Three

pieces were directly frozen into liquid nitrogen and one piece was

embedded into Tissue-Tek O.C.T. compound (Sakura Tissue

Tek, Alphen a/d Rijn, NL) and frozen in liquid-nitrogen cooled

isopentane, and stored at 280uC for further analysis. We were not

able to collect muscle biopsies of one of the participants due to

hypersensitivity of the participant to the biopsy procedure.

RNA extraction
Total RNA was isolated from the skeletal muscle tissue by using

Trizol reagent (Invitrogen, Breda, NL). Thereafter RNA was

Table 1. Subject characteristics (N = 12).

Subject characteristics (N = 12)

Age (years) 5265

Length (cm) 18465

Weight (kg) 88617

BMI (kg/m2) 2664

Rest HR (bpm) 60611

Maximum HR (bpm) 170617

VO2MAX (ml/min/kg) 35610

VO2Peak 1 leg (ml/min/kg) 28610

Wmax 1 leg (watts) 164637

Wmax 2 legs (watts) 260664

Values are mean 6 standard deviation. HR = heart rate, BMI = body mass
index, VO2MAX = maximum oxygen uptake, VO2Peak = peak oxygen uptake,
Wmax = maximum work load.
doi:10.1371/journal.pone.0051066.t001
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purified using the Qiagen RNeasy Micro kit (Qiagen, Venlo, NL)

and RNA quality was checked using an Agilent 2100 bioanalyzer

(Agilent Technologies, Amsterdam, NL).

Microarray processing
Total RNA (100 ng) was labelled using an Ambion WT

expression kit (Life Technologies, Bleiswijk, The Netherlands)

and hybridized to human whole genome Genechip Human Gene

1.1 ST arrays coding 19.732 genes, (Affymetrix, Santa Clara, CA).

Sample labelling, hybridization to chips and image scanning was

performed according manufacturer’s instructions.

Microarray data analysis
Microarray analysis was performed using MADMAX pipeline

for statistical analysis of microarray data [27]. Quality control was

performed and all arrays met our criteria, except arrays from 2

participants that showed a clearly distinct clustering and pattern

after normalization. Those microarrays were excluded from

further analysis. For further analysis a custom annotation was

used based on reorganized oligonucleotide probes, which

combines all individual probes for a gene [28]. Expression values

were calculated using robust multichip average (RMA) method,

which includes quantile normalisation [29]. Microarray data were

filtered, and probe sets with expression values higher than 20 on

more than 5 arrays were considered to be expressed and selected

for further statistical analysis. In addition, an Inter Quartile Range

(IQR) cut-off of 0.2 was used to filter out genes that showed no

variation between the conditions. Significant differences in

expression were assessed using Intensity-Based Moderated T-

statistic (IBMT [30]). Genes were defined as significantly changed

when the P value was ,0.01. Differences in gene expression

between the legs were determined using a paired IBMT test on the

difference between T0 and T1 for both legs (p,0.05).

Two subjects (4 and 8) were classified as outliers based on their

aberrant response to exercise in the non-exercising leg. In subject 4

and 8, expression of 6 out of the 10 most highly upregulated genes

was higher than the average plus two times the standard deviation.

Accordingly, the analysis was repeated without these two subjects.

All microarray data are MIAME compliant and have been

submitted to the Gene Expression Omnibus (accession number

GSE41769).

Pathway analysis
Geneset enrichment analysis (GSEA; http://www.broad.mit.

edu/gsea/) was performed for both legs using MADMAX and

genesets with a false discovery rate (FDR),0.2 were considered

Figure 1. Experimental design. The timeline of the study (A) and set-up of the endurance exercise bout (B). After 2 familiarization trails and 2
exercise tests, subjects performed 1 hour of submaximal one-legged endurance exercise. Before and after the exercise bout muscle biopsies and
venous blood samples were taken, and another blood sample was taken 2 hours after the end of exercise.
doi:10.1371/journal.pone.0051066.g001

Table 2. Primer sequences used for qPCR.

Gene Name Primer Sequence

NR4A1-F ATGCCCTGTATCCAAGCCC

NR4A1-R GTGTAGCCGTCCATGAAGGT

NR4A2-F GTTCAGGCGCAGTATGGGTC

NR4A2-R AGAGTGGTAACTGTAGCTCTGAG

NR4A3-F CAGCACTGAGATCACGGCTAC

NR4A3-R CCCTCCACGAAGGTACTGATG

FOS-F CACTCCAAGCGGAGACAGAC

FOS-R AGGTCATCAGGGATCTTGCAG

JUNB-F CCTACCGGAGTCTCAAAGCG

JUNB-R CGAGCCCTGACCAGAAAAGTA

GAPDH-F GAAGGTGAAGGTCGGAGTC

GAPDH-R GAAGATGGTGATGGGATTTC

doi:10.1371/journal.pone.0051066.t002
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significantly enriched. Possible transcription factors playing a role

in the activation and inhibition of genes were identified using

Ingenuity Pathway Analysis (IPA; Ingenuity Systems, Redwood

City, CA). The ClueGO plugin in Cytoscape was used for gaining

insight into processes activated during exercise in both legs

[31,32].

cDNA synthesis and quantitative real time PCR
Total RNA was reverse transcribed with a cDNA synthesis kit

(Promega, Leiden, NL). Standard qPCR was performed using

SensiMix real time PCR reagents (Bioline, London, UK) and a

Bio-Rad CFX384 machine (Bio-Rad laboratories, Veenendaal,

NL). Primer sequences were based on availability in the

PRIMERBANK (http//pga.mgh.harvard.edu/primerbank/in-

dex.html) and can be found in table 2. qPCR data were

normalized using GAPDH as housekeeping gene for the human

samples, since it was shown to be stable within skeletal muscle

during exercise [33], and was stable between the time points

according to our microarray analysis.

Statistical analysis
Statistical analysis for the plasma parameters and qPCR results

were performed using SPSS (version 18, SPSS, Chicago, IL).

Differences between the different time points for the plasma

parameters (TG, glucose, FFA, lactate, insulin, cortisol, adrenaline

and noradrenaline) were determined using a repeated measure

one-way ANOVA. Differences between T0 and T1 in qPCR were

evaluated using a paired t-test, differences between the legs in

Figure 2. Exercise increases heart rate and plasma levels of FFA, insulin, cortisol and noradrenaline. Heart rate reserve (%) was
calculated based on the heart rate measured during the exercise (N = 12). Plasma glucose, triglyceride, free fatty acids, lactate, insulin, cortisol,
adrenaline and noradrenaline were measured before and after exercise (T0 and T1; N = 12) and after 2 hours of recovery (T3; N = 12). a = p,0.05
compared to T0, b = p,0.5 compared to T3, c = p,0.1 compared to T0, p,0.1 compared to T3, repeated measures ANOVA. Depicted is mean 6 SEM.
doi:10.1371/journal.pone.0051066.g002
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qPCR were evaluated using a paired t-test for the changes between

T0 and T1 in each leg. Data are mean 6 SD and p,0.05 was

considered statistically significant.

Results

Systemic effects of one-legged exercise
Subjects performed one-legged exercise for one hour at 50% of

their maximal workload with an average heart rate during the last

five minutes of 132618 beats per minute. The percentage heart

rate reserve (%HRR) during the last 5 minutes was 65612.5%

(figure 2). Plasma glucose and triglyceride (TG) levels were not

altered by one-legged cycling, while plasma FFA and lactate

increased at T3, but mostly returned to baseline at T3 (figure 2).

Insulin, cortisol and noradrenalin increased during exercise, with

insulin and cortisol returning to baseline at T3 (figure 2).

Adrenalin tended to increase during exercise, although the

increase was not statistically significant (p = 0.08; figure 2).

One-legged cycling exercise altered gene expression in
skeletal muscle of the exercising and non-exercising leg

We first ruled out that there was a significant difference in

baseline expression between the two legs. Only eight out of 19,732

genes were found to be significantly different between the two legs

at baseline (p,0.01; table S1).

Statistical comparison of the baseline and post-exercise samples

revealed that in the exercising leg (E) one-legged exercise

significantly changed expression of 938 genes (p,0.01), with the

majority of genes being upregulated (figure 3A and D). The

number of genes significantly changed by exercise in the non-

exercising leg (NE) was lower but still remarkably high (p,0.01;

516 genes), and also here the majority of genes was upregulated

(figure 3A and C). Intriguingly, the majority of genes altered in the

non-exercising leg were also altered in the exercising leg

(figure 3A). Overall, the data indicate that a single exercise bout

of exercise caused marked changes in gene expression not only in

exercising muscle, but also in non-exercising muscle and that

exercise mainly promotes upregulation of gene expression.

To gain more insight into the changes induced by exercise,

genes were subsequently ranked according to mean fold-change in

expression in the exercising leg and the changes in expression

compared between the individual subjects (figure 4A, left panel).

Expression changes of the same set of genes in the non-exercising

leg are presented in parallel (figure 4A, right panel). Remarkably,

the most highly induced genes in the exercising leg are the three

members of the nuclear receptor subfamily NR4A. Of the 20 most

highly induced genes in the exercising leg, 17 were also

significantly upregulated in the non-exercising leg although to a

lesser extent. Figure 4A clearly illustrates the marked inter-

individual variation in response to exercise in the non-exercising

leg. qPCR of selected genes largely confirmed the results of the

microarray (figure S1).

To examine the impact of exercise on gene expression in parts

of the body not directly influenced by exercise, we next focused

our attention on genes upregulated in the non-exercising leg.

Similarly to the exercising leg, genes were ranked according to

Figure 3. Exercise mainly causes upregulation of gene expression in both the exercising and non-exercising leg. (A) Venn diagram of
significantly regulated genes and their overlap. (B) Flowchart of microarray analysis. Heatmaps of all significant genes in the non-exercising (C) and
exercising leg (D) and number of genesets significantly regulated by exercise in both legs (E). N = 9, IQR = interquartile range.

doi:10.1371/journal.pone.0051066.g003
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mean fold-change in the non-exercising leg (figure S2, left panel)

and changes in the exercising leg are shown in parallel (figure S2,

right panel). Many of the most highly upregulated genes in the

non-exercising leg were also highly induced in the exercising leg

(figure S2). The two most highly upregulated genes were again

NR4A2 (FC = 5.3) and NR4A3 (FC = 4.5). Importantly, subject 4

and 8 both showed a distinct profile from the other subjects

illustrated by marked induction of numerous genes in the non-

exercising leg that are not shared with other subjects. Based on the

notion that gene expression was clearly distinctive from other

subjects and using specific criteria outlined in the methods, we

classified them as outliers and repeated statistical analysis without

subject 4 and 8. We suspect that these subjects engaged in

involuntary (isometric) contractions or other type of stimulation of

the non-exercising leg. Removal of both subjects markedly

reduced the number of significantly changed genes (209 vs. 516

genes). Furthermore, the overlap in gene regulation between the

exercising and non-exercising leg decreased from 285 to 85 genes.

After removing subject 4 and 8, many of the most highly

upregulated genes in the non-exercising leg were characterized by

lower induction in the exercising leg. Other genes showed similar

fold-induction in the exercising and non-exercising leg, including

ZNF750, PDK4, KLF10, and SLC22A5 (figure 4B), which are

established or suspected target genes of PPARs [34].

Processes during one legged cycling in the exercising leg
and non-exercising leg

We suspected that exercise-induced changes in gene expression

were mediated by specific transcription factors. To identify these

transcription factors and to identify pathways regulated by

exercise, we performed Ingenuity pathway analysis (IPA) (figure 5

and table S2). IPA uses information from literature combined with

gene expression changes to predict a role of transcription factors in

the dataset. The most significant set of target genes in the

exercising leg was the set controlled by CREB1. CREB1 and also

ATF4 (lower in the list) are both induced by cAMP and mediate

cAMP-dependent gene regulation. SREBF1, SREBF2 and

NR1H3 (LXR) are all involved in lipid and especially cholesterol

Figure 4. Top 20 of most highly induced genes in exercising and non-exercising leg. A) Left panel shows the top 20 of upregulated genes
in the exercising leg (N = 9), right panel the corresponding genes in the non-exercising leg. B) Left panel shows the top 20 of upregulated genes in
the non-exercising leg (N = 7), right panel the corresponding genes in the exercising leg. Green is a signal log ratio of 23, red a signal log ratio of 3.
Values are displayed per subject to visualize inter-individual differences. FC = fold change, * = p,0.05, # = p,0.1 between exercising and non-
exercising leg.
doi:10.1371/journal.pone.0051066.g004
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homeostasis and have extensive cross-talk. Other sets of target

genes shown in figure 5 are involved in growth (sets under control

of STAT3, FOXO1, NOTCH1, MYC and NR3C1) and

inflammation (sets under control of NR3C1 and STAT3). HIF1A

is a major regulator in the adaptive responses to hypoxia.

The only significant set of target genes in the non-exercising leg

was the set controlled by PPARa, which is consistent with the

marked upregulation of several existing and putative PPARa
target genes (table S2). Since PPARa is activated by fatty acids

[35], these data point to a role of elevated plasma FFA levels in

exercise-induced changes in the non-exercising leg, and to a lesser

extent in the exercising leg, as other processes seem to play a more

pronounced role there.

To further determine the biological processes activated during

exercise, we used ClueGO and GSEA. ClueGO integrates GO

categories and creates a functionally organized GO category

networks based on the overlap between the different GO

categories and the significance [31]. According to ClueGO

analysis, a substantial number of processes was induced during

exercise in both legs (figure 6). In the exercising leg the important

processes were growth and development of skeletal muscle,

neurons and vessels, metabolism (mostly basal and protein

metabolism) and transcriptional regulation (figure 6A). Also kinase

cascade and signalling were induced. GSEA showed an compa-

rable picture, with upregulation of genesets involved in growth

(hypertrophy model), MAPK signalling and stress response (AP1

pathway; figure S3). ClueGO revealed that most processes

induced by exercise in the non-exercising leg are involved in

basal metabolism and signalling/transport (figure 6B). GSEA

showed a clear upregulation of PPAR target genes, (cytokine)

signalling and growth and stress response (hypertrophy & AP1

pathway; figure S3).

Discussion

Here we used the one-legged exercise model to study the effect

of acute endurance exercise on whole genome muscle gene

expression and determine the relative importance of systemic

versus local contraction-related stimuli. We found that acute

exercise induced immediate and dramatic gene expression changes

in the exercising leg, with the most dramatic inductions observed

for the NR4A family. Strikingly, acute exercise also caused

substantial gene expression changes in non-exercising leg. Overall,

our data indicate that the molecular responses to acute exercise are

not confined to the exercising muscle but also extend to resting

muscle. The notion that exercise alters gene expression in non-

exercising muscles is new. Our data provide a conceptual and

molecular framework for the observation that immobilized muscle

can experience favourable metabolic adaptations in response to

repeated contractile activity in non-immobilized muscle

[10,11,12].

In general, changes in gene expression in non-exercising muscle

were less pronounced compared to the exercising muscle, both in

magnitude of fold-changes and number of genes changed. A

relatively small number of genes, many of which represent known

target genes of the PPAR transcription factors including

ANGPTL4, KLF10, SLC22A5, ZNF750, PDK4, was induced

equally in exercising and non-exercising muscle. PPARs play a key

role in regulation of lipid metabolism in a variety of tissue,

including skeletal muscle [36]. Ingenuity pathway analysis and

GSEA further indicated significant enrichment of PPAR target

genes in set of genes upregulated in the non-exercising leg.

Induction of PPARa targets is expected to lead to enhanced fatty

acid oxidation as an acute but perhaps also adaptive response to

endurance exercise. Inasmuch as plasma FFA levels go up during

exercise and fatty acids are known ligands of PPARs and

ANGPTL4 and PDK4 [37,38], our data may point to an

important role of elevated FFAs as systemic factor driving gene

expression changes in exercising and non-exercising muscle during

exercise. One gene (ANGPTL4) was more highly induced in the

non-exercising leg compared to the exercising leg. Detailed

exploration of the regulation and role of ANGPTL4 during

exercise will be reserved for a future publication. Apart from FFAs,

it could be hypothesized that other factors including other

metabolites and circulating hormones may also impact gene

expression in non-exercising muscle. NR4A transcription factors

are known to be regulated via b-adrenergic signalling [39].

Elevated catecholamines (via sympathetic innervation or via the

circulation) may at least partially account for the induction of

NR4A genes in the exercising leg, which was supported by

Ingenuity Pathway Analysis showing the CREB1 pathway as most

significant transcription factor pathway. However, even though

circulating levels of catecholamines were increased, expression of

NR4A genes was not increased in the non-exercising leg,

indicating only a minor role of catecholamines in the non-

exercising leg. It can be hypothesized that gene expression changes

in the non-exercising leg may also be elicited by myokines secreted

from the exercising leg. In a future publication we will address the

impact of exercise on secretion of myokines using a so called

secretome approach followed by measurement of numerous

potentially novel and existing myokines in plasma. However, this

type of analysis is beyond the scope of the present manuscript.

Figure 5. Induction of transcription factor pathways by
exercise. Transcription factor pathways related to growth, stress
response, cAMP signalling and hypoxia were induced by exercise.
Transcription factor pathways were identified for the exercising leg
using IPA and are displayed in a bar diagram. Genes induced by
exercise for the different transcription factors can be found in table S1.
Transcription factors with a z-score above 1.5 (or under 21.5) are
considered as biologically relevant.
doi:10.1371/journal.pone.0051066.g005
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We are the first to use microarray to assess the immediate effect

of acute endurance exercise on human skeletal muscle gene

expression. Prior studies focused on the recovery after exercise

[22,24,25], or used animal models [22,23]. Exercise causes

immediate perturbations of homeostasis that are gradually

restored during recovery. Based on this notion, it can be suspected

that changes in gene expression elicited by exercise gradually fade

out during post-exercise recovery. In support, in our study a total

of 938 genes was altered post-exercise in the exercising leg,

whereas previously 173 genes were found to be increased 3 hours

Figure 6. ClueGO network analysis. Analysis shows significant regulation of several GO categories involved in skeletal muscle development,
angiogenesis, inflammation and MAPK cascade in the exercising leg (A; N = 9) and basal metabolism and signalling in the non-exercising leg (B; N = 7).
The nodes represent significantly changed GO categories. Lines represent the overlap between different categories. All nodes with a large overlap
have a similar colour.
doi:10.1371/journal.pone.0051066.g006
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after termination of exercise and 37 genes 48 hours after exercise

[24]. However, direct comparison is complicated by the use of

different array platforms and statistical cut-offs. Mahoney et al.

[24] used an custom made array, and only signal log ratios were

available, which did not allow us to use the same statistical cut-off.

Many of the observed exercise-induced changes in gene

expression are likely part of an acute stress response related to

disturbances in homeostasis elicited by exercise. The most highly

induced genes in the exercising leg were all members of the NR4A

family, a subgroup of orphan receptors within the nuclear receptor

superfamily. NR4A1 and NR4A3 have been reported to be

upregulated shortly after acute exercise and during recovery in rat

[40,41], pig [23], and human [24], and this upregulation likely

occurs locally by contractile stimuli [40]. This finding was

confirmed by our study in which we observed an upregulation

of NR4As in the exercising, but not in the non-exercising leg.

NR4A transcription factors are also known to be induced by

adrenaline and noradrenaline [39]. Circulating adrenalin and

noradrenalin levels were increased in our study but must exert

only a minor effect as NR4As were exclusively induced in the

exercising leg,. Upregulation of NR4A2 has been observed once in

human but its role during exercise is unknown [24]. NR4A1 and 3

are thought to play a key role in regulating energy metabolism and

early adaptation [42,43,44]. Combined analysis of our study and

the study of Mahoney et al. suggests that NR4A2 is induced

immediately during exercise and decreases relatively quickly after

exercise during recovery, whereas NR4A3 shows a different

pattern characterized by a relative small induction during exercise

followed by a large induction in the recovery phase (figure S4

[24]). The results may imply that NR4A family might play an

important role in the regulation of metabolic responses after

exercise.

Unlike in other subjects, in two subjects the overall magnitude

of gene expression changes in the exercising and non-exercising

leg were very similar. It is unclear how such an extreme response

can occur in a resting leg that was not engaged in any concentric

contractions. We cannot completely exclude these two subjects

performed significant isometric contractions in the non-exercising

leg, although subjects were instructed not to. Alternatively, a

potential role for (involuntary) neural stimulation muscles may be

envisioned. It is known that neural stimulation can induce gene

expression changes via increased calcium concentrations in the

skeletal muscle [45,46,47], as well as via other mechanisms [48].

Since energy utilization and metabolic flux must have been much

lower in the non-exercising leg, which showed gene expression

changes comparable to the exercising leg, it can be inferred that

the majority of gene expression changes are unrelated to metabolic

flux. The exception are genes induced similarly in the exercising

and non-exercising leg in all subjects.

One-legged cycling is frequently used as a model to enable

direct comparison between exercising and resting muscle. Earlier

studies encountered problems with repeated biopsies, showing

inflammatory gene expression changes induced by repeated

biopsies [49]. Other studies showed no effect of repeated biopsies

on gene expression [50]. The main difference between these

studies is that the study that did show an effect of repeated biopsies

on gene expression used one incision for all biopsies [49], whereas

the other study showing no effect performed new incisions for each

biopsies [50], analogous to our protocol. This indicates that

separate incisions might be crucial for reducing the effect of

repeated biopsies, which was also verified by the lack of

inflammatory genes changed in the resting muscle in our study.

In conclusion, exercise has profound effects on gene expression

in human skeletal muscle, not only in exercising muscle but also in

resting muscle. The latter effects are likely mediated by changes in

circulating factors such as FFA and may explain why muscles not

involved in the exercise movement may undergo favourable

adaptations in response to exercise.

Supporting Information

Figure S1 qPCR confirming microarray results of NR4A
family, JUNB and FOS (N = 11): fold changes of both legs
are displayed, which are calculated by dividing the post-
exercise by the baseline sample for both legs. Before

expression values were normalized by the housekeeping gene

GAPDH. * = p,0.01. Depicted is mean 6 SEM.

(TIF)

Figure S2 The 20 most highly induced genes in the non-
exercising leg, including subjects 4 and 8: heatmap of
the top 20 upregulated genes in the non-exercising
(N = 9), left panel shows top 20 of the non-exercising
leg, right the corresponding genes in the exercising leg.
Green is a signal log ratio of 23, red a signal log ratio of 3. Values

are displayed per subject to visualize inter-individual differences.

FC = fold change, * = p,0.05, # = p,0.1 between exercising

and non-exercising leg.

(TIF)

Figure S3 Acute endurance exercise induces several
genesets in both legs related to immune response,
skeletal muscle hypertrophy and stress. Venn diagram

shows the overlap between the upregulated genesets in both legs.

Next to the circles are the top 5 enriched genesets. Genesets

depicted in bold are overlapping between exercising and non-

exercising leg, whereas geneset with a normal font are unique for

that leg. FDR = 0.2, exercising leg N = 9, non-exercising leg

N = 7.

(TIF)

Figure S4 Combined time course of gene expression of
selected genes of Mahoney et al. and this study: signal
log ratios of selected genes (based on presence in
datasets and expression) are displayed directly after
exercise (this study) and 3 and 48 hours after exercise
(Mahoney et al. 2005).

(TIF)

Table S1 List of differentially expressed genes at
baseline (T0) in exercising and non-exercising leg.

(PDF)

Table S2 Induced sets of transcription factor targets.

(PDF)
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