
A New Computational Tool for the Phenomenological
Analysis of Multipassage Tumor Growth Curves
Antonio S. Gliozzi1*, Caterina Guiot2, Pier Paolo Delsanto1

1 Department of Physics, Politecnico di Torino, Torino, Italy, 2 Department of Neuroscience, Università di Torino, Torino, Italy

Abstract

Multipassage experiments are performed by subcutaneous implantation in lab animals (usually mice) of a small number of
cells from selected human lines. Tumor cells are then passaged from one mouse to another by harvesting them from a
growing tumor and implanting them into other healthy animals. This procedure may be extremely useful to investigate the
various mechanisms involved in the long term evolution of tumoral growth. It has been observed by several researchers
that, contrary to what happens in in vitro experiments, there is a significant growth acceleration at each new passage. This
result is explained by a new method of analysis, based on the Phenomenological Universalities approach. It is found that, by
means of a simple rescaling of time, it is possible to collapse all the growth curves, corresponding to the successive
passages, into a single curve, belonging to the Universality Class U2. Possible applications are proposed and the need of
further experimental evidence is discussed.
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Introduction

The fitting of any given set of experimental data may be just an

exercise to find, for practical purposes, a convenient analytical curve

to represent the data or, at a much deeper level, it may aim to

provide a model. In the latter case one should restrict one’s attention

to the raw data and analyse them independently of the field of

application, in order to extract from them unbiasedly every bit of

meaningful information. This tough requirement is well described by

the old adage ‘‘If you torture well enough your data, they’ll confess’’,

with the double-entendre that they might ‘‘confess’’ what you expect

or would like to find, rather than the underlying reality. A totally

unbiased procedure to compel the data to ‘‘confess the truth’’ may be

found in the Phenomenological Universalities (PUN) approach,

recently proposed by P.P. Delsanto and collaborators [1–4], which is

briefly described in the Text S1.

Tumor growth data represent perhaps one of the most critical

instances of such a predicament. In fact, due to the multifaceted

complexity of tumor growth mechanisms and their interactions

with the host tissue, it is important to try to learn as much as

possible from the data about avascular and vascular growth,

metastasis, invasion, etc. Since clinical data are usually restricted

to very few points in time, one tries to gain additional information

from models, such as Multicellular Tumor Spheroids (MTS) [5–8],

or from ex vivo experiments of transplants in lab animals, such as

mice [9–11]. Although MTS experiments boast some inherent

advantages, in the present contribution we are mostly concerned

with the latter, since they are likely to be a better approximation to

in vivo tumoral growth.

The amount of information which can be retrieved from a given

dataset is obviously related to the number of experimental

‘‘points’’, just as in a system of N equations in order to solve for

M unknowns it is necessary that MƒN. In fact, in order to reduce

the effect of experimental errors, it is usually desirable that M%N.

However, if new datapoints are added too close to the old ones,

little information is gained, although the overall statistical accuracy

may improve. For this reason multi-passage experiments (MPE)

are performed, as a tool to study the long-term evolution of grafted

tumor lines: see Figure 1.

Methods

It is generally assumed that tumors originate from a ‘‘seed’’ and

grow by cell duplication, therefore following in the first phase an

exponential growth law. As long as no mechanical nor nutritional

restrictions apply, they go on replicating with a constant

duplication time. After a while, however, host and other

constraints force the development of a necrotic core, and growth

slows down towards some asymptotic level of saturation. This

behaviour is well described by the well known Gompertz law [12],

which has been heuristically used for more than a century in

biology and other disciplines. Most aggressive tumors overcome

nutrients deprivation by means of angiogenesis, and the neo-

vascular network partly supports growth, as discussed by C Guiot

et al. [13], following the model of G.B. West and collaborators

[14–17]. The mechanical pressure induced by the host tissue can

be circumvented by tumor invasion [18] and/or metastatic

diffusion [19].

The progress of growth in the three phases is illustrated in

Figure 2, for the case of Multicellular Tumor Spheroids [20]. The

three phases are also schematically represented in Figure 3, where,

however, the third phase refers to in vivo tumors. The three phases
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correspond, for the case of tumor growth, to the three PUN classes

U0, U1 and U2, which are described in the Text S1. It is

important to remark, however, that the progression from one class

to the next one must not be understood as a ‘‘shift’’, but rather as a

better approximation (see Table 1 and/or Text S1, Equations 3

and 4) which becomes necessary as the tumor ages.

Let us now assume that we always transplant ‘‘young’’ tumors,

i.e. that a new seed of approximately the same mass m0 is taken

each time after a short time T (e.g. ten days) after each transplant.

Then we can assume to have always an exponential growth law

with approximately the same rate C. It follows that, at the time Dt

after n transplants, i.e. t~nTzDt the tumor mass will be given, at

least as a first approximation, by

m tð Þ~azb exp Ct½ �~azb exp nCT½ �exp CDt½ � ð1Þ

In order to have m(t) = m0 at the outset of each new transplant,

we must have azb exp nCT½ �~m0 for every value of n, hence

b~m0 and a~m0 (1{exp nCT½ �). It follows:

Figure 1. A cartoonist’s view of multi-passage experiments. In MPE experiments, tumors grow following the subcutaneous implantation on
the back of a lab animal (usually mice) of ,106 tumor cells (from cell cultures or from surgical resection). Tumor cells are then passaged from one
mouse to another by harvesting them from a growing tumor and implanting a given number of them into another healthy animal. Once the tumor
has grown above a certain volume it can be harvested again. This passage of tumor cells is repeated for multiple rounds (McCredie et al. [10] report
the case of a spontaneous mammary tumor in a C3H mouse, from which the first syngenic transplant was done in 1946 and which has been serially
transplanted in the C3H/HeJ strain, reaching in 1971 the 900th generation!). The idea of taking a very small fraction of a spontaneous tumor mass and
repeateadly transplanting it in a new host seems to reproduce the ideal situation of unlimited resources, and therefore should give us some insight
about unrestricted tumor growth.
doi:10.1371/journal.pone.0005358.g001

Figure 2. The three phases of growth of MTS’s. Temporal evolution of a MTS made of EMT6/Ro mouse mammary carcinoma cells grown in a
confined culture medium. The experimental data (triangles) are taken from Ref. [26]. The ‘‘squares’’ and ‘‘circles’’ correspond to the total numbers of
MTS cells and necrotic cells, respectively. They have been obtained from a mesoscopic simulation [20,27], based on the model of P. P. Delsanto and
collaborators [28–30]. In the figure three regions may be well identified. In the first one, corresponding in the formalism of the Text S1 to the PUN
class U0, there is an almost perfect exponential growth without necrotic core formation. In the second phase, which requires a better approximation
as provided by U1, a bending of the growth curve towards some asymptotic level of saturation can be clearly observed: may be related to the
decreasing availability of nutrients for the growing MTS. In the third phase (U2), a better agreement with the experimental data may be obtained by
considering the next level of approximation (PUN class U2).
doi:10.1371/journal.pone.0005358.g002

Multipassage Tumor Growth
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m tð Þ~m0 1zexp nCTð Þ exp CDtð Þ{1½ �f g ð2Þ

where t~nTzDt and m0~m 0ð Þ. Equation (2) shows that the

exponential trend is corrected by a term (exp nCT½ �), which

accounts for the real age of the tumor and increases at each

transplant, thus accelerating the growth. I.e., at each transplant

the curves become steeper and steeper. Other explanations for the

growth acceleration are also possible, e.g. a lack of accumulated

toxic wastes in the new host and/or the emergence of a more

aggressive subpopulations.

It is interesting to note that the Equation (2) can be viewed as a

Taylor expansion of the Gompertzian law at the first order on Dt.

If, after a limited number n of transplants, we wish to follow the

tumor growth for a large time Dt&T , then it is no longer

possible to assume that we have a purely exponential growth,

since we eventually enter into phases one and two. Thus, for a

best fitting of the experimental curves the formalism of class U2

must be adopted (Text S1, Equation 5). Also, in order to keep

into account the growth acceleration after n passages, as

discussed before, it is convenient to renormalize the physical

time t, using instead

t~t=r ð3Þ

where the acceleration parameter r increases with the number of

transplants n.

Results

As a first instance of application of our approach, we consider

the classical work of G. G. Steel [9], who performed up to ten

‘‘passages’’ of cells from the tumoral line rat fibroadenoma, (see

Figure 4). As discussed in the previous Section, the growth curves

became increasingly steeper at each successive passage, as it can be

inferred also from an analysis of the fitting parameters (see Table 2).

In fact, the y-derivative in t = 0 is steeper at each successive passage.

However, contrary to what one could expect, the asymptotic value of

the tumor mass, given by (see Text S1, Equation 5)

y?~ 1z
a0c

b

� �{1
c

, ð4Þ

decreases with the number of transplants, since b,0.

Figure 3. Schematic representation of the three UN phases. In U0 the MTS has no core, but starts developing it in U1. The third box represents
three possible evolutionary scenarios for U2 of a tumor in vivo (not of a MTS), i.e. tumor invasion [18,31], angiogenesis [32] and metastatic diffusion [19].
doi:10.1371/journal.pone.0005358.g003

Table 1. Explicit expression of the generating functions b(a), growth rate a(t), and z(t) = ln[y(t)] for the three classes U0, U1, and U2.

Class b(t) a(t) z(t) Remarks

U0 0 a0 z = a0t Exponential growth.

Constant duplication time

U1 ba a0 exp(bt) z = a0/b [exp(bt)21] Gompertz law.

Growth restricted by b.c.’s and/or other
constraints

U2 ba+ca2 a0 [(1+a0c/b) e2bt2a0c/b]21 z = 21/c ln[1+a0c/b (12ebt)] Generalization of the West law [14–17].

Emergence of fractal properties in the
solution

y(t) represents the given dataset, in our case the mass (or volume) of the transplanted tumor at each passage n.
doi:10.1371/journal.pone.0005358.t001

Multipassage Tumor Growth
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A very interesting follow-up to Steel’s data, which to our

knowledge has not been recognized by other researchers, is the

following. If we ‘‘renormalize’’ his data by means of a simple

rescaling of the time (see Equation (3)), after a suitable choice of

the parameter r we obtain a plot (Figure 4B), in which all the

curves corresponding to the various passages, are collapsed into a

single one, belonging to a very good approximation (R2 = 0.98016)

to the PUN class U2 (Text S1, Equation 5). This result, besides its

intrinsic interest (since it means that a tumor after transplant keeps

growing with the same law as before, as discussed previously), is

also of great relevance for our analysis, since it allows the

accumulation of a large number of independent datapoints. It may

also be interesting to observe that the parameter r (which can be

obtained from Equation 3 and Figure 5A) seems to vary linearly

with the number of passages, as shown in Figure 5B. However,

since only the data for four transplants were reported, no firm

conclusion can be reached on this point.

In order to confirm the validity of our approach, we have

extended it to another set of data, from the paper of McCredie et

al. [10]. In their paper the rate of growth of the C3H spontaneous

mammary carcinoma in the mouse is compared with that of its

first and 900th generation syngeneic transplants (see Figure 6). The

results of our analysis are presented in Figure 6 and the fitting

parameters reported in Table 3.

The MPE growth acceleration has also been observed by other

researchers [21,22] who, unfortunately, did not report the

detailed growth data necessary for a computational analysis. It is

important to remark that the timing of the re-implantation as

well as the dimension reached by the tumor before transplan-

tation may be very different in different experiments. Allowing

the tumor to become large before transplantation invalidates the

assumption of ‘unrestricted growth’ so that the tumor-host

interaction becomes more and more important. This makes

multipassage models interesting for understanding other biolog-

ical mechanisms involved. For instance, after implantation,

subpopulations of other apparently uniform cell populations may

develop, with different properties of proliferation, migration, and

metastasis [23].

In other development, Shen et al. [24] studied the cellular

adjustment of gastric cancer for hepatic metastasis in successive

orthotopic implantation models. The authors compared the

parental cell line (YCC-16) with those obtained by inoculation

into nude mice after 1, 2 and 3 passages (S1L1, S2L2 and S3L3

respectively). They found that, although slower than the parental

line, the doubling time decreased from S1L1 to S3L3 while

clonogenity increased. A progressive increase in the expression of

matrix-metalloproteasis MMP-2 ( i.e. the ability of invasion) was

observed. Also Beniers et al. [21], investigating five lines of renal

Figure 4. MPE results from G. G. Steel. Up to 10 transplants of cells from the tumoral line rat fibroadenoma have been performed, but the curves
corresponding to only four of them have been reported [9]: see (A). As discussed in Methods, the averaged growth curves become increasingly
steeper with successive passages, due to the aging of the newly transplanted tumor cells. By rescaling the time (see Equation 3) with a suitable
choice of the parameter r, we obtain a plot (B), in which all the curves are collapsed into a single one, belonging to the PUN class U2. The fitting
parameters are reported in Table 2.
doi:10.1371/journal.pone.0005358.g004

Table 2. U2 fitting parameters for the data from [9].

Data from [9] 2nd transpl. 3rd transpl. 4th transpl. 10th transpl.

b 20.013 20.019 20.025 20.043

c [61025] 0.005 0.012 0.643 0.868

a0c/b [61023] 20.004 20.005 20.090 20.158

For the second and third transplants the values of c are negligible. They begin
to be appreciable (although still very small) only in subsequent transplants.
Correspondingly the value of p starts being different from one (thus causing a
small level of fractality) only in the latter.
doi:10.1371/journal.pone.0005358.t002

Multipassage Tumor Growth
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tumors transplanted in mice after reaching al least 1 cm in

diameter, were able to show differences in ‘tumor aggressivity’, i.e.

clonogenity, metastasis capacity, etc., between the 5th and the 15th

passage.

Discussion

The accelerated growth of transplanted tumors at each

successive passage challenges our understanding of tumor

development. In fact, it is well known that multipassaging in in

vitro setups does not show any remarkable variation in growth rate

[23]; when the same cell line is implanted in animal models, on the

contrary, the growth accelerates significantly at each new passage.

In this contribution we have analyzed two instances of

multipassage experiments in mice: the classical studies of Steel

[9] and of McCredie et al. [10]. As a tool for the analysis of their

datasets we have applied the Phenomenological Universalities

approach [1], which has been fruitfully utilized for application in

different fields (among them: auxology (human growth) [3],

elastodynamics [4] and fracture mechanics [25]). Perhaps the

most important PUN class studied to date is the class UN, which at

the first level (N~0), corresponds to unrestricted exponential

growth. At the level N~1, it yields the Gompertz law, which has

been used, up to few years ago, to fit almost all growth

phenomena. Finally, at the level N~2 (i.e. U2), it successfully

predicts the fractal properties of the solution of the growth

equation at larger times. By applying the PUN approach to the

data of Steel [9] and McCredie et al. [10], we have found that the

class U2 describes extremely well both their datasets, although

with accelerated time scales.

We have also found an explanation for this acceleration. In fact

if, as in the two cases been analyzed, the transplants are always

performed after a short time T , with only relatively few cells

reimplanted into a new healthy and well oxigenated host, their

growth occurs in virtually unrestricted conditions. From a

mathematical point of view we keep having always approximately

the same exponential growth exp CDtð Þ during each successive

transplantation. But the cumulative effects of a certain number n

of transplants yields a term exp CDtð Þ, which may be responsible

for the accelerated growth (see Equation 1). In other words, the

tumor cells are as old as the seed taken at the very beginning and

they grow correspondingly faster. This result may have important

consequences in clinical practice. In fact, if one or more

parameters of the system do not change upon transplantation,

they could be considered as a sort of ‘fingerprints’ of a specific

tumor. Then, a very important corollary to our work could

perhaps be the study of metastatic diffusion, since the parameters

of secondary neoplasies would be as well related to the ones of the

primary tumor. Their growth rate would be speeded (as discussed

for the MPE’s), albeit possibly also slowed down by host and other

restrictions. Unfortunately, to our knowledge, no recent data on

MPE’s are available. Further experimental evidence is, of course,

needed, in order to confirm the validity of our conjecture and, in

particular, to ascertain the dependence of the acceleration

parameter r on the passage number, which in Figure 5b has

been assumed to be linear on the basis of a limited number of data

[9].

Figure 5. Variation of the ‘‘acceleration’’ parameter r with the passage number. In (A) the experimental data from [9] have been plotted in
a semi-logarithmic plane and fitted, in a first approximation, with a linear function. For each passage n it is then possible to extract from the angular
coefficients the values of the acceleration parameter r, obtained experimentally (A) and theoretically (by collapsing together the four curves of
Figure 4A as done in Figure 4B).
doi:10.1371/journal.pone.0005358.g005

Table 3. U2 fitting parameters for the data from [10].

Data from [10] Spontaneous 1st transpl. 900th transpl.

b 20.030 20.035 20.134

c [61024] 0.109 0.115 0.219

a0c/b [61023] 20.906 20.812 20.929

The ‘‘spontaneous’’ growth curve was recorded differently from the successive
transplants (see Figure 6A compared to Figure 6B, 6C, and 6D). Hence a
different value of a0. Due to the very small values of c, the improvement
between U1 and U2 in Figure 6 is only marginal. The normalized values of the
acceleration parameter r for the three cases are 0.27, 0.36 and 1., respectively.
doi:10.1371/journal.pone.0005358.t003

Multipassage Tumor Growth

PLoS ONE | www.plosone.org 5 April 2009 | Volume 4 | Issue 4 | e5358



Figure 6. MPE results from McCredie et al. [10]. As many as 900 transplants of cells from the tumoral line C3H rat mammary carcinoma have
been performed, but the curves corresponding to only the original one, the first and the last (900th) transplant have been reported: (A–C),
respectively. For all of them the fits of the data corresponding to the classes U0, U1, and U2 have been included. There is an obvious improvement
when one goes from U0 to U1 and a much smaller one from U1 to U2. The latter, in fact, yelds an almost perfect agreement with the experimental
data. As in the case of Steel’s data, in (D) the growth curves are normalized and displayed as a single group of data vs. the rescaled time t. Here, as in
Figure 4B, a U2 curve gives an excellent fit to the regrouped data. It is indeed remarkable that after as many as 900 transplants the tumor still grows
with the same law (a part from the time ‘‘rescaling’’). The fitting parameters are reported in Table 3.
doi:10.1371/journal.pone.0005358.g006
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Supporting Information

Text S1 The Phenomenological Universalities Approach - The

Fromalism.

Found at: doi:10.1371/journal.pone.0005358.s001 (0.11 MB

DOC)
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