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Abstract

In vitro display technologies such as mRNA display are powerful screening tools for protein interaction analysis, but the final
cloning and sequencing processes represent a bottleneck, resulting in many false negatives. Here we describe an
application of tiling array technology to identify specifically binding proteins selected with the in vitro virus (IVV) mRNA
display technology. We constructed transcription-factor tiling (TFT) arrays containing ,1,600 open reading frame sequences
of known and predicted mouse transcription-regulatory factors (334,372 oligonucleotides, 50-mer in length) to analyze
cDNA fragments from mRNA-display screening for Jun-associated proteins. The use of the TFT arrays greatly increased the
coverage of known Jun-interactors to 28% (from 14% with the cloning and sequencing approach), without reducing the
accuracy (,75%). This method could detect even targets with extremely low expression levels (less than a single mRNA
copy per cell in whole brain tissue). This highly sensitive and reliable method should be useful for high-throughput protein
interaction analysis on a genome-wide scale.
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Introduction

Protein display technologies [1], such as phage display [2],

ribosome display [3–5], DNA display [6] and mRNA display [7–9],

are powerful tools for construction and in vitro selection of large

libraries of genotype-phenotype conjugates. These libraries can be

affinity-screened via the protein moiety (phenotype) followed by

decoding of the nucleic acid moiety (genotype) to identify the selected

proteins. These display technologies have been employed not only

for directed evolution of novel proteins and antibodies [10–12], but

also for the screening of protein-protein [13,14], protein-drug [15],

and protein-DNA [16] interactions from randomly fragmented

cDNA libraries. Development of totally in vitro display techniques,

such as ribosome display [3–5] and mRNA display [7–9], based on

cell-free translation systems has extended the scope of previous

techniques for protein interaction analysis using living cells, such as

the yeast two-hybrid method [17] and biochemical methods coupled

with mass spectrometry [18], because the variety of testable

interaction conditions is greater, and the in vitro techniques are

applicable to cytotoxic proteins.

However, the display technologies have a common bottleneck in

the final step of identifying the specifically selected protein

sequences. The decoding is usually achieved by cloning and

DNA sequencing, but the following difficulties arise: 1) Only a

limited number of clones can be analyzed, and thus positive

candidates whose contents in the selected library are less than a

threshold determined by the number of analyzed clones are lost as

false negatives. 2) Positive sequences with low contents in a library

can be enriched by iterative rounds of affinity-selection, but lower-

affinity binders compete with higher-affinity binders and therefore

drop out of the screening. 3) DNA fragments which are injurious

to cloning hosts, e.g., cytotoxic sequences, may be lost. 4) Cloning

and sequencing of a huge number of copies of selected sequences is

redundant, cost-ineffective, and time-consuming. Although novel

high-throughput DNA sequencing methods that require no

bacterial cloning process have recently been reported [19], these

techniques are not yet widely available.

To overcome the above limitations, we examined the use of a

DNA microarray technique as an alternative to the cloning and

sequencing processes (Figure 1). The combinatorial use of a tiling

array [20] representing ORF sequences with in vitro display

technology would provide a completely in vitro platform for highly

sensitive and parallel analysis of protein interactions. It should be

possible to detect enrichment of cDNA fragments of selected

candidates even with low contents or low affinity. In this report, we

demonstrate a highly sensitive analysis employing a transcription-

factor tiling (TFT) array for identifying Jun-associated proteins

selected with an mRNA display technology, in vitro virus (IVV)

[21,22], and show that the use of tiling arrays is indeed superior to

the use of cloning and sequencing for decoding genetic

information of proteins enriched by in vitro selection.

Methods
IVV screening

Preparation of bait template and IVV template libraries, and

the procedure of IVV screening were described in detail in our

previous report [21]. Details are also given in Methods S1 online.

PLoS ONE | www.plosone.org 1 February 2008 | Volume 3 | Issue 2 | e1646



Design and construction of the TFT array
Oligonucleotide arrays were constructed photolithographically by

an oligo DNA microarray construction service (NimbleGen). The

sequences of 1,562 mouse transcription regulatory factors listed by

Gunji et al. [23], as well as 37 Jun-associated protein candidates

found in our previous studies [14,21,22], were collected from the

RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/) and Genbank

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db = Nucleotide)

databases. Both strands of the total of 1,599 mRNA sequences were

doubly represented by a total of 334,372 oligo DNA probes 50-mer

in length, with no gap between the probes (Figure 1).

Sample labeling, hybridization and signal detection
Biotin-labeling of the samples was performed by means of in vitro

transcription from an SP6 promoter at the 59-end of each cDNA

fragment in the libraries, as described [24], with some modifica-

tions. In this process, biotin-labeled sense-strand RNA fragments

were produced. Thus, only the antisense-strand probe set was

further analyzed in this study. The labeled samples from the bait

(+) and bait (2) screening were hybridized separately on the tiling

arrays. The hybridized tiling arrays were stained with Cy3-

Streptavidin (Amersham) and detection was done with a scanner.

Details are given in Methods S1 online.

Data analysis
Collected data from the tiling array were normalized with the

median correction algorithm. Ratios of signal values between the two

samples from bait (+) and bait (2) screenings were calculated (Data
S1 online). The ratio data were expressed as log2X (X is the actual

measurement). After signal measurement, specific signal peaks were

identified by the ‘‘Windowed Threshold Detection’’ algorithm in

SignalMap software (NimbleGen). This algorithm looks for at least

four data points that are above a threshold value within a window.

These points were grouped together and presented as a peak. We

used the following parameters in the algorithm: Peak Window Size,

300 bp; Percent of Peak Threshold, 20% of maximum data in each

mRNA sequence. The value of each peak was the maximum value of

the data points in that peak. Only reproducible peaks in the

duplicated data were collected as candidates for Jun interactors

(Table S1 online). A probe set for NM_183316 was not analyzed,

because the sequence of NM_183316 overlapped with that of

NM_025925 on the array.

Real-time PCR analysis
Real-time PCR was performed with SYBR Premix Ex Taq

(Takara) and protein-specific primer sets (Table S2 online) on the

LightCycler (Roche) as previously described [22]. The standard

Figure 1. Scheme of iterative screening for protein interactions using the IVV method and a tiling array. A cDNA library was transcribed
to an mRNA library, and then ligated with PEG Puro spacer [p(dCp)2-T(Fluor)p-PEGp-(dCp)2-puromycin] using T4 RNA ligase to prepare an IVV library.
In this study, bait protein fused with tandem affinity purification (TAP) tag was co-translated with the IVV library in a wheat germ extract cell-free
translation system. Complexes of bait protein and target IVV molecules were captured with affinity beads (IgG agarose) via the added TAP-tag. The
RNA portion of the captured IVVs was reverse-transcribed and PCR-amplified. Finally, screened cDNA libraries were labeled and hybridized with tiling
arrays as an alternative to cloning and sequencing (conventional IVV method).
doi:10.1371/journal.pone.0001646.g001
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template DNA for the quantitative analysis was PCR-amplified

from each selected sequence.

In vitro pull-down assay
Pull-down assay using the C-terminal fluorescence labeling

technique was performed as previously described [21], with some

modifications. The bait Jun and prey proteins were translated in

vitro separately. Only the preys were fluorescence-labeled in in vitro

translation. The bait and preys were incubated with affinity beads,

and captured prey proteins were electrophoresed and analyzed by

using a Molecular Imager FX (Bio-Rad). Details are given in

Methods S1 online.

Surface plasmon resonance analysis
SPR analysis was performed on a BIACORE3000 instrument with

a CM4 sensor chip conjugating anti-GST mAb (Biacore). GST-fused

candidate proteins were employed as ligands. Full-length mouse Jun

fused with a His-tag was employed as an analyte. The experiments

were performed under two conditions of analyte concentration

(500 nM and 250 nM). Details are given in Methods S1 online.

Results

Design of a transcription-factor tiling (TFT) array and
sample labeling

In affinity selection of protein interactions from randomly

fragmented cDNA libraries, relatively short cDNA fragments

encoding specific binding regions are often obtained. In order to

detect these fragments, we adopted a tiling array strategy for the

design of custom oligo DNA microarrays as follows: 1) Oligonucle-

otide probes of 50-mer in length were used. This is the preferred

length for microarray probes, because shorter probes result in low

sensitivity and longer probes produce non-specific signals [25]. 2)

There should be no gaps between the probes. A contiguous linear

series of data is required to recognize a signal peak in the algorithm

for tiling array analysis (in this case, at least 4 data points are needed

in a search window), so the probes must be densely arranged. 3)

mRNA sequences were employed for the tiling array. Only coding

regions are required for the purpose of protein-interaction analysis,

so other genomic sequences, e.g., introns, control regions and non-

coding RNAs, were not employed. In this study, we constructed

TFT arrays containing ,1,600 ORF sequences of known and

predicted mouse transcription-regulatory factors (334,372 oligonu-

cleotides) to analyze cDNA fragments from IVV screening for Jun (a

transcription factor)-interactors [21].

We also improved the method for labeling of cDNA samples.

Usually, double-stranded DNA samples for a tiling array analysis

are labeled by using random primers [26]. However, cDNA

fragments selected from a randomly fragmented cDNA library

[21] seem to be too short for efficient labeling by random priming.

Indeed, in a test analysis with a TFT array using the random

priming labeling method, we failed to detect all of the previously

detected candidates (data not shown). Therefore we employed

another labeling procedure [24], in which sense-strand labeled

RNAs were produced by one-step in vitro transcription using a SP6

promoter attached to cDNA fragments from IVV screening.

Identification of selected candidates using the TFT array
From the 5th-round DNA library of the IVV screening in the

presence and absence of a bait Jun protein, called bait (+) and bait

(2) screening, respectively [21], we obtained labeled RNAs and

hybridized them onto the tiling array. First, the ratios of the signal

intensities from the experiments in the presence and absence of

bait were calculated. The ratio data are presented in Data S1
online as a GFF formatted file. Next, we searched for signal peaks

in the data, as described in Methods. Only reproducible signal

peaks were collected (Table S1 online); the total number of peaks

was 647 on 545 mRNA sequences (some of the mRNA sequences

included multiple peaks). To distinguish between true positives and

false positives, specific enrichment of the selected candidates was

validated by real-time PCR. Among the top 10 percent of the

peaks (64 regions), specific enrichment of 35 peaks was confirmed

in the screening (white graph in Figure 2A; the signal intensity

and peak data of the 35 candidates are presented in Figure S1
online). The data indicate that the appropriate threshold for

distinguishing between true positives and noise in the microarray

signal is a signal ratio of 3,4.

The 35 candidates identified in the present study include all of

the 20 Jun-interactors identified in our previous studies using

conventional cloning and sequencing (Table 1) [21,22]. Further-

more, the 35 candidates include eight well-known Jun-associated

proteins, i.e., c-Maf, Fos, Jun, Atf7, Atf4, Jdp2, Atf3 and Fosl2

(Table 1), which is double the number in the previous study, in

which four known Jun-interactors were obtained (white graphs of

Figure 2B) [21,22]. In other words, 15 proteins including four

known Jun-interactors were newly detected using the TFT arrays.

Figure 2. Data from the tiling array. (A) The top 10% candidates were confirmed by real-time PCR. White and gray indicate numbers of enriched
and non-enriched candidates, respectively. (B) Numbers of known (white) and newly selected (gray) proteins from conventional sequencing and the
TFT arrays.
doi:10.1371/journal.pone.0001646.g002
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Verification of the newly found protein-protein
interactions

To confirm the physical association of the 11 newly discovered

candidates with Jun, we first performed in vitro pull-down assay.

Seven of the 11 tested candidates exhibited specific interaction

with the bZIP domain of Jun (Figure S2 online). The affinity of

the remaining four proteins, i.e., Cutl1, Myh11, Tax1bp1 and

Cebpz, for Jun may be weaker, because their enrichment ratios

(excluding that of Cutl1) in the IVV screening were lower than

those of others (Table 1). Thus, we next employed the surface

plasmon resonance (SPR) method, a highly sensitive analysis tool

for protein interactions. In this case, all of the candidates except

Tax1bp1 interacted with Jun in a concentration-dependent

fashion (Figure S3 online). Although most of the above tested

interactions seem to be very weak, we considered that the

interactions are true positives, because all of the candidates except

Cebpz contain leucine-heptad repeats in the selected regions, and

such repeats are an important motif for heterodimerization with

Jun. Further experiments in vivo will be required to examine the

physiological roles of these interactions.

Discussion

To evaluate the quality of the interaction data, coverage and

accuracy were calculated as follows. Jun interacts with many bZIP

superfamily proteins and structurally unrelated transcription

Table 1. Thirty-five selected proteins

Gene symbol
Cloning &
Sequencing Accession no. Signal ratio

Locus on mRNA
sequence (base)

Abundance ratio
in the initial
library (%)

Abundance ratio
in the 5th round
library (%) Enrichment

Nrbf2 + NM_025307.2 8.255 651…950 5.7E-4 4.8E-1 840

4732436F15Rik + XM_143418.3 8.134 2051…2300 1.1E-4 1.5E+0 14,000

c-Maf* - S74567.1 7.796 1805…2004 6.4E-5 5.2E-1 8,000

SNAP19 + NM_025925.1 7.734 1…250 1.6E-3 2.2E+1 14,000

Fos* + NM_010234.2 7.720 501…800 7.4E-5 1.5E+0 20,000

Mapre3 + NM_133350.1 7.714 601…950 9.2E-4 1.4E+0 1,600

Cspg6 + NM_007790.2 7.577 2151…2700 4.1E-4 1.0E+0 2,500

Kif5A (region C) + NM_008447.2 7.491 2251…2900 3.3E-3 4.3E+0 1,300

9130229H14Rik + XM_135706.4 7.487 51…400 1.6E-3 1.2E+0 730

Jun* + NM_010591.1 7.411 1701…1950 1.4E-4 4.3E-1 3,100

Mapk8ip3 + NM_013931.1 7.282 1351…1800 7.3E-4 5.3E-1 720

Creb3 - XM_131375.2 7.172 601…800 3.3E-4 2.6E-3 8

Kif5B (region C) - NM_008448.2 7.141 2801…3200 1.3E-3 1.2E-1 95

Nef3 + NM_008691.1 7.129 951…1300 8.2E-3 1.5E+0 190

Kif5C (region C) + NM_008449.2 7.106 2701…3200 2.2E-3 6.4E+0 2,900

Eef1d + NM_029663.1 7.083 1301…1750 5.5E-3 2.3E+0 420

Atf7* - NM_146065.1 6.999 1051…1300 2.7E-5 1.4E-1 5,000

Atf4* + NM_009716.1 6.991 1001…1300 5.4E-4 1.9E+0 3,500

Cutl1 - NM_009986.2 6.850 301…500 1.4E-3 3.2E-1 230

Jdp2* + NM_030887.2 6.768 451…700 7.1E-4 2.1E+0 3,000

Ofd1 - NM_177429.2 6.692 1752…2001 1.4E-4 2.6E-1 1,800

GFAP + NM_010277.1 6.551 901…1100 1.1E-3 8.8E-2 77

Kif5C (region N) + NM_008449.2 6.098 1201…1450 1.2E-2 5.2E+0 450

Psmc5 - NM_008950.1 5.961 51…300 3.5E-3 6.4E-2 19

Kif5B (region N) + NM_008448.2 5.937 1301…1550 6.4E-4 1.5E-1 230

Atf3* - NM_007498.2 5.574 401…950 1.1E-7 2.0E-2 180,000

B130050I23Rik + NM_153536.2 5.213 1151…1450 1.9E-4 1.5E-2 80

Cebpg - XM_133383.2 5.122 401…750 3.5E-5 2.7E-3 78

1200008A14Rik + NM_028915.1 4.623 1501…1750 3.6E-4 2.1E-1 600

Myh11 - NM_013607.1 4.343 3251…3650 1.4E-4 2.9E-4 2

Tax1bp1 - NM_025816.1 4.176 501…750 2.7E-3 1.0E-2 4

Myt1 - NM_008665.2 4.084 3251…3550 1.1E-5 1.3E-4 12

Fosl2* - NM_008037.3 3.935 401…750 2.1E-5 1.4E-2 670

Tef - NM_017376.2 3.467 851…1000 1.3E-4 1.1E-3 8

Cebpz - NM_009882.1 3.012 1451…1750 1.2E-4 3.7E-4 3

*Previously reported interactors with Jun.
doi:10.1371/journal.pone.0001646.t001
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factors in a binary fashion. Chinenov and Kerppola comprehen-

sively collected reported Jun-interactors in their review, and the

number of mammalian Jun-interactors was 51 at that time [27].

Of the 51 interactors, some lack the potential to bind with the bait

Jun protein in our experiment for various reasons. For example,

the SMAD interacting region of Jun [28] was deleted from our

bait protein construct, and NFAT family proteins require a DNA

fragment including the AP-1 sequence [TGA(C/G)TCA] and

NFAT recognition element (GGAAAA) for stable interaction with

Jun [29]. Also, the expression of some of the interactors, e.g., JunD,

Fra1, Batf, MafA, Nrl and NF-IL16, was not confirmed in the

cDNA library used in this study (data not shown). In all, 29 Jun-

interactors were expressed in the cDNA library and were expected

to bind with the bait Jun protein used here. Of these 29 proteins,

four (14%) and eight (28%) were detected by the conventional

sequencing and by the newly introduced TFT array method,

respectively. This is a remarkable increase and confirms the value

of our new methodology as a screening tool for protein

interactions. While the coverage was increased considerably, the

accuracy did not decrease. Specifically, the number of false

positives did not increase: the rates of confirmation of proteins by

in vitro pull-down assays in the previous and present studies were

75% and 74%, respectively. Further, we confirmed by SPR that

most of the unbound candidates in the pull-down assay actually

interacted with Jun. These results indicate that generation of false

positives in this novel method is low, and that the method is

practical. Undetected remaining interactors were considered to be

false negatives. Mismatching of the selection conditions, e.g., salts,

detergents, and pH, or the bait construct, e.g., length, region, and

tags, might inhibit these interactions.

For quantitative analysis, the abundance ratios of 35 specifically

selected candidates in the initial and screened cDNA libraries were

determined by real-time PCR, and the enrichment rates

(abundance ratio in the 5th round library per that in the initial

library) were also calculated (Table 1). The abundance of the 15

newly found candidates (excluding c-Maf, Cutl1 and Ofd1) was

less than the theoretical threshold determined from the results of

our previous study (an analysis of 451 clones) [21,22]. In order to

detect the least abundant candidate (Myt1; 1.361024% of the

screened cDNA library) by cloning and sequencing, it would have

been necessary to analyze at least 1.06106 clones. These results

indicate that our new method is more sensitive, higher-throughput

and more cost-effective than the previous method.

From the standpoint of the detection sensitivity, the combinatorial

use of the IVV method with TFT arrays provides an extremely

sensitive method for protein-interaction analysis, because even a very

weakly expressed target, Atf3, could be detected in this study. In the

cDNA library before IVV screening, the content of fragments of the

selected region of Atf3 was 1.261027%. If one mRNA molecule

existed per cell, the content of a fragment of the gene would be about

1.261025 to 5.961025% (we employed the parameters from a

reference for this calculation [30], and the details are given in

Methods S1 online). Thus, the content of Atf3 mRNA in the initial

library corresponds to about one molecule per 20 to 100 cells. This

suggests that Atf3 is expressed at a very low level in a cell type that is

a minor component of whole mouse brain tissue. It is noteworthy

that targets expressed at such low levels can be detected without the

need for a cell purification procedure, e.g., collection of somatic stem

cells by flow cytometry. The high sensitivity of our method may

allow access to targets which would be hard to analyze with other

existing tools, e.g., the TAP method [18].

Among the newly detected Jun-associated protein candidates,

Cebpg, Creb3, and Tef are intriguing proteins as Jun-associated

transcriptional regulators, because they contain basic regions near

the leucine heptad motifs, which are necessary for binding with

regulatory sequences on the genomic DNA; many known Jun-

associated proteins contain such structures. Cebeg is a member of

the CAAT/enhancer-binding protein (C/EBP) family, which is

one of the largest and most highly conserved groups of eukaryotic

transcription factors. Cebpg is known to interact with Cebpb, a

member of the C/EBP family, but the function of the protein is

not well understood [31]. Davydov et al. indicated that Cebpg

binds to the positive regulatory element-I (PRE-I) of the human

interleukin-4 gene by forming a heterodimer with Fos protein.

However, the interaction between Cebpg and Jun was not clearly

delineated [32]. Creb3 is also a transcriptional regulator belonging to

the cyclic AMP response element-binding (CREB)/activating

transcription factor (ATF) protein family. The bZIP region of Creb3

is strikingly similar to that of ATFa, a known partner of Jun [33]. Tef

is a member of the proline and acidic amino acid-rich basic leucine

zipper (PAR bZIP) transcription factor family. The PAR bZIP

proteins control circadian rhythms in tissues such as the suprachi-

asmatic nucleus and the liver. Mice deficient in all three PAR bZIP

proteins are highly susceptible to generalized spontaneous and

audiogenic epilepsies that are frequently lethal [34]. No information

is available about the functional relationship between Tef and Jun.

More detailed studies in vivo may reveal novel and unexpected

functions of Jun in combination with these proteins.

In summary, we have applied tiling array technology, which has

previously been used for ChIP-chip assays [26] and transcriptome

analyses [20], to protein-interaction analysis with an in vitro display

technique for the first time. Compared with previous results

obtained with cloning and sequencing [21,22], use of the tiling

array greatly increased the coverage of known Jun-interactors

from 14% to 28% without any decrease of accuracy (,75%). The

new method can also detect targets expressed at extremely low

levels. We believe that this highly sensitive and reliable method has

the potential to be used widely, because the tiling array method

can easily be extended to genome-wide scale, even though the

search space is limited in tiled sequences, and the method can also

be used in combination with other display technologies, such as

phage display and ribosome display.
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