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Abstract

Motivation: Recent advances in single-cell RNA-sequencing (scRNA-seq) technologies promise to enable the study
of gene regulatory associations at unprecedented resolution in diverse cellular contexts. However, identifying
unique regulatory associations observed only in specific cell types or conditions remains a key challenge; this is par-
ticularly so for rare transcriptional states whose sample sizes are too small for existing gene regulatory network in-
ference methods to be effective.

Results: We present ShareNet, a Bayesian framework for boosting the accuracy of cell type-specific gene regulatory
networks by propagating information across related cell types via an information sharing structure that is adaptively
optimized for a given single-cell dataset. The techniques we introduce can be used with a range of general network
inference algorithms to enhance the output for each cell type. We demonstrate the enhanced accuracy of our ap-
proach on three benchmark scRNA-seq datasets. We find that our inferred cell type-specific networks also uncover
key changes in gene associations that underpin the complex rewiring of regulatory networks across cell types, tis-
sues and dynamic biological processes. Our work presents a path toward extracting deeper insights about cell type-

specific gene regulation in the rapidly growing compendium of scRNA-seq datasets.

Contact: bab@mit.edu or hhcho@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.
Availability and implementation: The code for ShareNet is available at http://sharenet.csail.mit.edu and https://

github.com/alexw16/sharenet.

1 Introduction

Understanding the intricate coordination of biomolecules underlying
transcriptional regulation, commonly represented as a gene regula-
tory network (GRN), is key to gaining mechanistic insights into the
diversity of cellular functions and phenotypes observed across differ-
ent cell types and biological states. Single-cell RNA sequencing
(scRNA-seq) (Gawad et al., 2016) has emerged as a powerful way
of profiling the transcriptomes of individual cells, rather than the
average of large populations of cells as in traditional bulk sequenc-
ing. scRNA-seq has already played a pivotal role in uncovering the
rich heterogeneity of gene expression patterns (Hie ef al., 2020),
enabling the decomposition of diverse populations of cells into their
component cell types (Bjorklund et al., 2016; Buettner et al., 2015;
Hie et al., 2019a) as well as de novo identification of rare cell types
(DeMeo and Berger, 2020; Griin et al., 2015; Hie et al., 2019b;
Jiang et al., 2016; Villani et al., 2017). We reasoned that scRNA-seq
could also enhance GRN inference by allowing for more accurate
assessment of covarying patterns among genes. The rapid growth of
scRNA-seq datasets spanning diverse tissues, organisms and condi-
tions thus provides an enticing opportunity for studying gene regula-
tory interactions at an unprecedented scale and resolution.

©The Author(s) 2021. Published by Oxford University Press.

Despite the large success of cell type identification analyses based
on scRNA-seq (Bjorklund ef al., 2016; Buettner et al., 2015; Griin
et al., 2015; Jiang et al., 2016), relatively few efforts have been
made to further characterize the cell types by inferring their underly-
ing GRNs. Although numerous methods for general GRN recon-
struction exist in the literature, including state-of-the-art tools such
as GENIE3 (Huynh-Thu et al., 2010) and PIDC (Chan et al., 2017),
a key challenge in applying these methods in a cell type-specific con-
text has been the severe lack of power when analyzing rare or
sparsely sampled cell types (Fig. 1a). This problem is further com-
pounded by the inherent sparsity of scRNA-seq data stemming from
both technical and biological factors (Angerer et al., 2017; Choi
et al., 2020), which naturally increases the number of samples
needed for accurate inference. Although increasing the number of
sequenced cells in a study partially mitigates this issue by obtaining
more cells from rare cell types, larger datasets also tend to reveal
additional rare cell types to be studied as well as fine-grain transcrip-
tional structure within a known cell type; both may still suffer from
similar sample size limitations, not to mention the burden of
increased experimental cost of sequencing more cells. Since the de-
tection and characterization of rare cell types is a prominent goal for
many single-cell studies (Griin et al., 2015; Jiang et al., 2016; Villani
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Fig. 1. Overview of ShareNet framework. (a) Analyzing gene regulatory interactions in individual cell types is challenging when only a small number of cells for a given cell
type have been profiled in a single-cell RNA sequencing experiment. (b) ShareNet shares information across cell types through a Bayesian framework to enhance the accuracy
of predicted regulatory interactions in each cell type. ShareNet adaptively chooses the information sharing structure that best explains the input data. GRN: gene regulatory

network

et al., 2017), these issues present a major hurdle in understanding
the regulatory patterns of rare, yet important transcriptional states.

We introduce ShareNet, a Bayesian information sharing frame-
work for increasing the accuracy of predicting cell type-specific
regulatory associations from single-cell transcriptomic data (Fig.
1b). Our framework draws upon the intuition that many of the regu-
latory interactions (and non-interactions) are shared across different
cell types, due to shared developmental lineages, regulatory pro-
grams, or biophysical constraints. Thus, by propagating information
across related cell types, we hope to reduce noise and boost the ac-
curacy of inferred GRNs in all cell types. Since we do not have full
knowledge of the sharing patterns underlying a given dataset, we
designed our framework to adaptively learn a multifactorial, infor-
mation sharing structure that best explains the data in all the study’s
cell types. Importantly, our framework is widely applicable, as it
can serve as an additional layer on top of existing state-of-the-art
network inference algorithms to enhance their accuracy in estimat-
ing the GRNs of all cell types in a dataset.

In our work, we demonstrate the effectiveness of ShareNet on a
range of scRNA-seq datasets at boosting the accuracy of GENIE3
(Huynh-Thu et al., 2010) and PIDC (Chan et al., 2017), two of the
top-performing algorithms from a recent single-cell network infer-
ence benchmarking study (Pratapa ez al., 2020), as well as standard
co-expression networks based on Pearson correlation. We also show
that ShareNet uncovers cell type-specific gene associations that
uniquely characterize the identity of cells within different tissue con-
texts and across differentiation trajectories.

As scRNA-seq datasets continue to uncover new rare cell types
and transcriptional states, the ability of ShareNet to accurately de-
termine higher-order transcriptional patterns in small subpopula-
tions of cells in a dataset will be increasingly crucial for scientific
studies. An open-source implementation of ShareNet is available at:
https://github.com/alexw16/sharenet.

2 Materials and methods

2.1 Overview of ShareNet

ShareNet produces improved estimates of regulatory associations by
leveraging both the redundancy and diversity of gene regulatory net-
work structures underlying the many transcriptional states observed
in a single-cell RNA-seq dataset. At its core is a compact set of cell
type-to-cell type sharing patterns that is learned directly from the
data. This set of sharing patterns determines the manner by which
each edge in a network for a specific cell type propagates informa-
tion about its presence or absence to the same edge in each of the
other cell types’ networks. By learning a collection of sharing pat-
terns rather than a single common pattern, ShareNet is able to

adaptively share information across cell types in a manner that spans
a broad range of possible cell type-to-cell type relationships rather
than being limited to a singular sharing structure. The flexibility
offered by this approach is especially useful for inferring networks,
as each edge may be specific to a particular cell type, shared across a
subset of related cell types or globally shared with all cell types de-
pending on the scope of biological functions with which the edge is
associated. Intuitively, ShareNet automatically learns and leverages
the specific sharing pattern that is most appropriate for each edge.
Furthermore, ShareNet is compatible with a broad range of existing
network inference algorithms to boost their accuracy in constructing
cell type-specific networks.

2.2 ShareNet's Bayesian model for information sharing
ShareNet minimally requires that the chosen algorithm outputs a
continuous score for each putative edge of interest in a network for
each cell type. A user would first apply his/her network inference al-
gorithm of choice to each cell type in a dataset to generate an initial
estimate of the edge scores for each cell type. ShareNet models these
initial network estimates as noisy observations of true underlying
edge scores, governed by a hierarchical Bayesian model that induces
similarities in predictions between similar cell types.

In this Bayesian model, the collection of latent cell type-to-cell
type information sharing patterns is represented as a mixture of
multivariate Gaussian distributions with K mixture components.

u;j ~ Categorical(1/K, ..., 1/K) (1)

zijlttij ~ N (g, Za;) (2)

Here, z;; is a C-dimensional vector, where C is the number of
cell types in a dataset. Each of the C-by-C covariance matrices
Xy,..., Xk represents a unique cell type-to-cell type sharing pattern,
with the off-diagonal entries in each covariance matrix capturing
potential positive or negative correlations in the predicted edge
scores between cell types.

For regularization, we place a Normal-Wishart (NW) prior over
each of the mean g, and the inverse covariance L' parameters
belonging to the K sharing patterns.

(”kazlzl) NNW(/"OvﬁO»‘Pﬂ/) (3)

Each element of the C-dimensional vector z;; = (zl(-_}), .. ,zf(;))

then serves as a parameter for a univariate Gaussian distribution
that describes the noisy distribution of an edge’s score from the
chosen network inference algorithm.
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) ~ N0 (4)

Here, e( 9 represents the observed score for the edge connecting
gene i to gene j in cell type c. In this setup, the mean z;; 9 of the
Gaussian is a latent variable that represents the true score of the
edge in an ideal scenario absent of noise. Note that the noise distri-
bution for each edge score is assumed to be Gaussian, a condition
that is approximately satisfied by a range of methods we consider in
this work (Supplementary Fig. S1). O tionally, one can model the
mean of each edge distribution as g( 17 )> where g(-) describes a link
function that provides further flex1b111ty for modeling the sharing
patterns of edge scores; all of our results are based on the default
configuration without this added non-linearity.

The variance parameter a< 92 captures the degree of variation in
the observed edge score. Importantly, the variation captured by ¢;°
represents the aggregate set of biological, technical and sample SlZC
factors that may contribute to noisy estimates of the edge score. A
more detailed discussion of this variance term is presented in the
next section.

2.3 Bootstrap estimation of edge-specific noise

distribution

The task of inferring cell type-specific gene regulatory networks
from single-cell transcriptomics data is challenging due to a wide
array of biological, technical and sample size factors. In our prob-
abilistic model, we characterize the cumulative effect of these factors
by estimating the standard deviation for each observed edge score in
a network with respect to the network inference algorithm of choice.
We empirically estimate the standard deviation by (i) generating a
bootstrap sample of cells for a particular cell type ¢ that contains the
same number of cells as all of the cells in that cell type, (ii) applying
the network inference algorithm of choice for the bootstrap sampled
set of cells and (iii) repeating (i) and (ii) across M trials. This process
generates M estimates of the network for cell type c. We then calcu-
late the sample standard deviation for each edge score across the M
trials. We denote this quantity as &tj for edge (i, j) in cell type c. We
use these terms in the last layer of our model as an estimate for the
standard deviation of the edge distributions. More prec1sel¥ we set
the ¢;7 term in the Gaussian distribution A (e ‘f») \zl(f , cr, ), from
which the edge score e</) is drawn, to be equal to a</ Networks
inferred for smaller cell type populations display higher edge score
standard deviations across various scRNA-seq datasets and network
inference algorithms (Supplementary Fig. S2), suggesting that infer-
ring networks using existing techniques is indeed underpowered for
rare cell types.

2.4 End-to-end generative model for likelihood analysis
Although ShareNet models only the predicted edge scores from the
network inference method of choice, we sought to further extend
the ShareNet model to obtain an end-to-end generative process for
calculating the likelihood of observed gene expression levels. We use
this full model, which we refer to as BVS (Bayesian variable selec-
tion), for holdout likelihood analyses in our benchmark experiments
to provide additional evidence for the utility of information sharing.
To this end, we frame the task of network inference as a variable se-
lection problem, in which the goal is to identify putative regulators
for target genes. In particular, we adapt a Bayesian approach pro-
posed by Carbonetto and Stephens (2012) for identifying causal var-
iants in genetic association studies and integrate ShareNet as a prior
for variable selection.

We denote the scRNA-seq expression values for a set of regula-
tor genes for cell type ¢ as X©). The expression of the corresponding
target genes y(© is modeled as a linear combination of the putative
regulators plus Gaussian noise:

o~ N(Zxﬁfzﬁ;;)yﬁ,;%cs), (5)
i

where ﬁ represents the coefficient of the linear model describing
the effect of regulator gene i on target gene j, and yf/) is a

corresponding binary indicator variable that indicates whether or
not regulator gene i is to be included in the network model for cell
type c¢. We also include the following ‘spike and slab’ priors
(Mitchell and Beauchamp, 1988) on ﬁf;) and yf‘,)

N ()
vi; ~ Bernoulli(g(z;})) (6)

_wvoeh i =1,

o)
B A
Y Oo(ﬂ,(-;))

i

. (7)
otherwise,

where do(-) denotes the Dirac delta function. Here, zfj) , like in the
previous section, is modeled as a draw from the mixture of multi-
variate Gaussians describing the set of cell type-to-cell type sharing
patterns we seek to leverage in ShareNet. We include the sigmoid
function g(x) =1/(1+¢™) in this setting in order to map the
Gaussian to a value between 0 and 1 for appropriate use as a
Bernoulli parameter. In the scenario where there is no information
sharing, the prior over y;;) is simply a Bernoulli distribution with
fixed hyperparameter 7.

2.5 Estimating posterior beliefs using variational

inference

Given our model, re-estimating the edge scores based on informa-
tion sharing reduces to calculating the posterior density of the latent
variables given the input data. Although exact inference is intract-
able, we can leverage variational inference to approximately solve
this inference task (Blei ef al., 2017). Briefly, the standard variation-
al inference approach involves reframing our problem of computing
the posterior as an optimization problem, in which we first propose
a family of variational distributions for approximating the true pos-
terior. We then identify the distribution within this family that most
closely resembles the posterior, using KL divergence as the optimiza-
tion objective.

q°(U) = afggniﬂ KL(q(U)[|p(Ule)) (8)
Here, p denotes the true model distribution, g denotes the vari-
ational distribution and U denotes the set of latent variables in our
model whose posterior distributions we aim to approximate. In the
ShareNet model, we have U = (u,£7!,u,2). Following standard
techniques, we assume that the variational distribution factorizes as

K N
q(ﬂ:ziluuaz) = Hq(ﬂkvzl:]) Hq(zn)q(un)’ (9)

k=1 n=1

where each subscript for u,, and e, maps to a unique edge (i, 7). In
addition, we restrict each of the factors in our variational distribu-
tion to take on the following distributions parameterized by the
accompanying variational parameters.

(o T ) = NW (e, I ag, Bos Be, 7) (10)
4(zn) = N (2ulfits,S.) (11)
q(u,) = Categorical(d,,) (12)

For BVS, we include the variables that define the linear model,
soU = (u,X7",u,2, B,7), and the corresponding model factorizes as

q(”7271ﬁuﬁz%p 7 Hq :ukvzk Hq Zn un ﬂrn‘yn) (13)

c
where q(B,,1.) = [1 q(/fif)#,(f)). We parameterize the variational

distributions for this approach in a similar manner as above and
also include the following distribution.
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2.6 Coordinate ascent optimization algorithm

In seeking to identify the variational distribution that best matches
the posterior, we minimize the KL divergence objective equivalently
by maximizing the ELBO (evidence lower bound), with respect to
the variational parameters. The ELBO objective can be expressed as
follows.

ELBO(q) = Ey[logp(u, X, u,2, )] — Egllogq(p, X, u,2)]  (15)

We optimize this quantity by coordinate ascent, which entails
setting the partial derivative of the ELBO with respect to each vari-
ational parameter to zero and then solving for the conditionally op-
timal update for each variational parameter. The resulting update
equations and the full derivation are provided in Supplementary
Materials.

Finally, to extract the enhanced networks from our model, we le-
verage the variational distributions to approximate key latent varia-
bles of interest. Specifically, note that Zj approximates the
posterior mean of z,(;), which represents the true edge score for a
chosen network inference algorithm. Hence, we use the learned rhl(;)
values as revised edge scores.

2.7 Datasets and pre-processing

We analyzed three scRNA-seq datasets that we refer to as the
BEELINE (Pratapa et al., 2020), Tabula muris (Schaum ez al., 2018)
and mouse blood lineage datasets (Pijuan-Sala ez al., 2019). The pre-
processed BEELINE dataset was made available online by the
authors, and we made no further modifications to this dataset. For
the Tabula muris and mouse blood lineage datasets, we first applied
a standard log(1 + x/100) transformation to the raw counts data
(provided in counts per million [CPM]) and removed genes that
were not expressed in at least 10% of cells in any cell type. In infer-
ring networks, we considered the set of genes defined by the union
of the set of genes that are annotated as transcription factors in the
AnimalTFDB database (Hu et al., 2019) and the set of 1000 genes
with the highest dispersion for each dataset (Satija ez al., 2015).

In order to assess the accuracy of networks inferred using
ShareNet, we compared networks estimated with and without
ShareNet to a collection of reference networks derived from a range
of existing molecular interaction databases. This collection of refer-
ence networks included (i) a functional interaction network derived
from the STRING database (Szklarczyk et al., 2018), (ii) a non-spe-
cific ChIP-seq network constructed using ChIP-seq data from the
DorothEA (Garcia-Alonso et al., 2019), RegNetwork (Liu et al.,
2015) and TRRUST (Han ef al., 2018) databases and (iii) multiple
cell type-specific ChIP-seq networks derived from ChIP-seq data
matched to each of the specific cell types represented in the scRNA-
seq dataset that we analyzed. For studying networks inferred from
the BEELINE scRNA-seq datasets, the cell type-specific ChIP-seq
networks used as reference were built using data from the ENCODE
(ENCODE Project Consortium, 2012), ChIP-Atlas (Oki et al.,
2018) and ESCAPE (Xu et al., 2014) databases. This set of
STRING, non-specific ChIP-seq and cell type-specific ChIP-seq ref-
erence networks were obtained from the BEELINE benchmarking
study (Pratapa et al., 2020). For the remaining scRNA-seq datasets
that we analyzed, the cell type-specific ChIP-seq networks were
obtained from ChIP-Atlas (Oki et al., 2018), and an edge was
defined for a transcription factor-target gene pair if a ChIP peak
called using MACS2 (Zhang et al., 2008) (g < 107°) for the tran-
scription factor was located within 5kb of the target gene’s tran-
scription start site.

2.8 Evaluation strategies

For each inferred network, we computed the area under the preci-
sion-recall curve (AUPRC) relative to each of these three sets of ref-
erence networks to quantify the agreement between the predicted

network and these reference networks. Similar to the BEELINE
benchmarking study, when comparing inferred networks to either of
the non-specific or specific ChIP-seq networks, we only considered
edges outgoing from transcription factors for which ChIP-seq data
was available.

In the case of our extended BVS model described in Section 2.4,
we are also able to evaluate the ability of the model to accurately
predict gene expression values for a network’s target genes. The lin-
ear predictor in BVS defines the relationship between each target
gene and a set of regulator genes, and we evaluated the effectiveness
of this predictor on unseen data by calculating the model’s posterior
predictive distribution with respect to held out data. To this end, we
split each cell type in a dataset into a training set comprising 80% of
cells in that cell type and held out the remaining 20% of cells as a
test. We trained our model on the training set and then calculated a
test log likelihood value for each target gene based on the posterior
predictive distribution.

2.9 Hyperparameter selection

The use of ShareNet involves the consideration of two hyperpara-
meters, the number of mixture components and the number of boot-
strapped samples used to estimate edge score uncertainties. While
the number of mixture components can be automatically learned via
a nested cross-validation procedure, we found that ShareNet’s per-
formance is generally robust to the number of mixture components,
as long as multiple mixture components are used (Supplementary
Fig. S3). We also determined that the standard deviation estimates
for a majority of edges converge in value upon approximately five
bootstrapped samples across Pearson correlation, GENIE3 and
PIDC (Supplementary Fig. S4). For the below experiments, we used
ten mixture components in our model and five bootstrapped samples
for calculating edge score uncertainties.

3 Results

3.1 ShareNet improves network inference accuracy on a
range of scRNA-seq datasets

3.1.1 BEELINE benchmark single-cell data

We first evaluated ShareNet on a set of well-defined scRNA-seq
datasets introduced in a recent study (Pratapa et al., 2020) to bench-
mark the state-of-the-art network inference algorithms. The evalu-
ation framework used in this study, called BEELINE, leveraged data
from five broad categories of mouse cell types: embryonic stem cells,
dendritic cells, erythroid cells, granulocyte-monocyte cells and
lymphoid cells. We asked whether one could exploit any similarity
in the network structures underlying these five cell types to simultan-
eously improve the accuracy of these networks. To that end, we
demonstrated the applicability of ShareNet on three common net-
work inference approaches: GENIE3 (Huynh-Thu ez al., 2010),
PIDC (Chan et al., 2017) and Pearson correlation.

We sought to evaluate the effectiveness of ShareNet in improving
the accuracy of networks inferred in small sample size settings. To
do so, we simulated various small sample size settings in the
BEELINE reference datasets by downsampling the population of
dendritic cells to population sizes of 50, 100 and 200 cells, while the
other four cell types’ populations were retained in full. For each of
the 50, 100 and 200 cell type population sizes, we inferred networks
for dendritic cells and for the remaining cell types with and without
ShareNet across the various network inference approaches.

Across all three network inference algorithms, we observed that
the inclusion of ShareNet produced networks that achieved higher
AUPRC overall compared to the corresponding networks inferred in
the setting without ShareNet (Fig. 2). This improvement in perform-
ance was most notable for the scenarios where dendritic cells were
downsampled most aggressively. For the 50 cell population size set-
ting, the three network inference algorithms predictably demon-
strated worse performance compared to in the larger 100 and 200
cell population size settings. However, when used with ShareNet,
the accuracy of networks inferred for the 50 cell population of
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Fig. 2. ShareNet improves network inference accuracy for small populations of den-
dritic cells in BEELINE benchmark single-cell RNA-seq datasets. We compared the
accuracy of dendritic cell networks generated based on Pearson correlation,
GENIE3 and PIDC, with and without ShareNet. Dendritic cell population is down-
sampled to 50, 100 and 200 cells to assess the effect of undersampling. Inferred net-
works are compared with reference networks obtained from STRING, non-cell
type-specific ChiP-seq data and cell type-specific ChIP-seq data. Overall, ShareNet-
augmented methods result in better agreement with reference networks as compared
to the original methods

dendritic cells not only consistently improved but in several instan-
ces also exceeded the accuracy of the networks inferred using 100
and 200 cells without ShareNet. This outcome was observed across
both the STRING and non-specific ChIP-seq as well as the cell type-
specific ChIP-seq networks. The only exception was the slightly
decreased accuracy of networks inferred using GENIE3 for cell type
population sizes of 50 and 100 when compared with the cell type-
specific ChIP-seq network. We hypothesize that this is due to the
considerably greater variability of bootstrapped GENIE3 edge
scores for these smallest populations of cells (Supplementary Fig.
S5). This greater uncertainty increases the degree of information
sharing across cell types, thus explaining the simultaneous decrease
of accuracy with respect to the cell type-specific ChIP-seq network
and increase of accuracy with respect to the STRING and non-spe-
cific ChIP-seq networks for these smaller cell type populations.

Overall, these results suggest that ShareNet propagates informa-
tion across cell types in a manner that benefits the discovery of both
cell type-specific and non-specific regulatory associations.
Furthermore, even though the remaining four cell types’ populations
were not downsampled and were represented by larger numbers of
cells, their respective networks also saw increases in accuracy in
some cases while consistently avoiding notable deterioration in per-
formance from sharing information with the downsampled dendritic
cells (Supplementary Fig. S6).

3.1.2 Tabula Muris and mouse blood lineage datasets

To demonstrate ShareNet on a broad range of use cases for single-
cell experiments, we tested on two other scRNA-seq datasets: (i) the
Tabula Muris dataset containing an extensive collection of cell types
isolated from 20 mouse organs and tissues (Schaum et al., 2018) and
(ii) a mouse blood lineage dataset consisting of cells along a differen-
tiation trajectory in early developmental stages that includes rare
transitional states (Pijuan-Sala et al., 2019).

Each cell in these datasets was previously assigned cell type
annotations based on known markers and genes, and we sought to
infer networks for the groups of cells corresponding to these annota-
tions. We inferred networks for each cell type across the three differ-
ent datasets using GENIE3, PIDC and Pearson correlation. Similar
to the benchmarking analyses performed on the BEELINE dataset,
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Fig. 3. ShareNet improves network inference accuracy for (a) Tabula Muris and (b)
mouse blood lineage single-cell RNA-seq datasets. We compared the accuracy of
networks generated based on Pearson correlation, GENIE3 and PIDC with (y-axis)
and without (x-axis) ShareNet. Different reference networks used for evaluation are
marked by different colors. We plot the ratio of the AUPRC metric relative to the
AUPRC associated with a random predictor to map the results from different refer-
ence networks onto a common scale. P-values indicate the statistical significance of
ShareNet’s improvement over the original methods calculated using the one-sided
Wilcoxon signed-rank test. ShareNet obtains significant improvement over the ori-
ginal methods in all but one comparison (Pearson on mouse blood lineage)

we used a variety of reference networks to assess the accuracy of the
inferred networks. We used the aforementioned STRING functional
interaction network and the non-specific ChIP-seq networks in our
analysis. In order to determine the accuracy of the inferred networks
in detecting cell type-specific regulatory interactions, we also
obtained ChIP-seq data from ChIP-Atlas (Oki et al., 2018) for as
many of the specific cell types identified in the Tabula Muris and
mouse blood lineage datasets as were available.

We then used these reference networks to compare the accuracy
of the cell type-specific networks estimated using the network infer-
ence algorithms alone to that of their corresponding networks esti-
mated with the inclusion of ShareNet. For the two datasets and
across the three network inference algorithms (six settings in total),
we observed that the networks inferred using ShareNet frequently
outperformed the baseline networks inferred in the absence of shar-
ing (Fig. 3). The improvement of ShareNet was statistically signifi-
cant in all of the settings (one-sided signed-rank test p < 107°), with
the sole exception of Pearson correlation on the mouse blood lineage
dataset. However, we note that Pearson underperforms the other
network inference algorithms without ShareNet on this dataset,
registering AUPRC ratio values (performance relative to a random
predictor) around 1 across the three reference networks, which like-
ly limits the benefits of information sharing.

For the Tabula Muris dataset, networks inferred using Pearson
correlation with ShareNet produced the highest AUPRC ratios, with
particularly striking performance gains with respect to the STRING
reference, especially given the high AUPRC ratios already attained
with Pearson correlation alone. For the mouse blood lineage, the
combination of GENIE3 and ShareNet yielded the highest AUPRC
ratios. The networks inferred using this method demonstrated con-
sistent improvements in accuracy when compared to the STRING
network and non-specific ChIP-seq networks in addition to
increased AUPRC ratios for a majority of the cell type-specific ChIP-
seq networks.

3.1.3 Holdout likelihood analysis
While quantifying agreement with reference networks provides a
valuable means to assess the overall quality of predicted regulatory
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associations, this approach is understandably limited given the lack
of comprehensive ground truth associations. As a complementary
approach to evaluating the utility of ShareNet, we set out to com-
pare the predictive power of learned networks with and without
ShareNet on previously unseen samples. We follow the intuition
that, if a model generalizes better to new data, the underlying regu-
latory associations in the model used for prediction are also more
likely to be real associations. To this end, we leveraged BVS, an
extended ShareNet model equipped with the ability to calculate the
likelihood of observed gene expression levels (see Materials and
methods). Note that the network inference methods considered in
previous sections (Pearson correlation, GENIE3 and PIDC) cannot
be used for this analysis due to their lack of a likelihood model.

For the BEELINE, Tabula Muris and mouse blood lineage data-
sets, we trained BVS with and without ShareNet, while holding out
20% of cells in each cell type for test likelihood calculation. We
observed that the average test log likelihood values from models
trained with ShareNet are consistently greater than or approximate-
ly equal to those from the model trained without it in the BEELINE
dataset (Fig. 4a). Higher likelihoods indicate that the model is more
effective at explaining gene expression patterns in the test data. The
substantial improvement in average test log likelihood observed for
mESC is noteworthy considering that mESC, at around 400 cells, is
one of the most undersampled among the five cell types.

For the Tabula Muris and mouse blood lineage datasets, which
feature more cell types and also a wider range of cell type population
sizes, we also observed consistent improvement in the test likelihood
across cell types for models trained with ShareNet compared to
models trained without it (Fig. 4b). Notably, for cell types that fea-
ture fewer cells, the improvements in the test log likelihood values
were the most pronounced. These results suggest that the informa-
tion transferred across cell types by ShareNet includes meaningful
biological patterns that help with the predictive modelling of gene
expression.

We note that BVS may also be used to infer networks by ranking
the edges according to the posterior inclusion probability p(yg;) le) of
a regulator gene i in the predictive model for a target gene ; in cell
type ¢ (Materials and methods). While BVS trained with and with-
out ShareNet yielded only modest network accuracy results com-
pared to Pearson, GENIE3 and PIDC across all our benchmark
datasets, sharing information using ShareNet resulted in consistent
accuracy improvements in the Tabula Muris and mouse blood lin-
eage datasets (Supplementary Fig. S7).

3.2 ShareNet improves comparisons of cell type-
specific regulatory associations across cell types and
contexts

ShareNet’s ability to identify cell type-specific regulatory associa-
tions with increased accuracy opens the door to a wide range of
analyses exploring the unique wiring patterns that underlie cellular
identity. We aimed to demonstrate this property on the Tabula
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Fig. 4. ShareNet improves holdout likelihood for (a) the BEELINE benchmark
scRNA-seq dataset and (b) the Tabula Muris and mouse blood lineage scRNA-seq
datasets. We compared the test log-likelihood for Bayesian variable selection (BVS)
models trained with and without ShareNet. Each dot in a scatterplot (b) corre-
sponds to a cell type in a dataset. Cell types represented by fewer than 200 cells
were colored in red to mark undersampled cell types. ShareNet consistently led to
higher likelihoods, most notably for cell types with limited sample sizes (mESC in
(a) and red dots in (b))

Muris dataset, which consists of more than 100,000 cells from 20
organs and tissues (Schaum ez al., 2018). From this vast collection of
cells, we isolated all cell types that contained at least 100 cells,
resulting in 52 cell types. We applied ShareNet on Pearson correl-
ation networks, which achieved the best performance in our above
analyses of this dataset. To understand what types of sharing pat-
terns confer this improved accuracy, we examined the mixture com-
ponents that are learned by our model and that define the manner in
which cell types propagate information to one another. We identi-
fied the covariance matrix associated with the highest mixture
weight in our model and clustered the cell types according to the
corresponding correlation matrix. We observed that cell types that
belong to the same broader cell type category based on annotations
are clustered together (Fig. 5a), suggesting that the sharing patterns
that are automatically learned by ShareNet capture biologically
meaningful similarities among the cell types.

In addition to recapitulating known cell type categories,
ShareNet enables us to perform more accurate comparisons of
related cell types in different resident tissues. The Tabula Muris
dataset includes mesenchymal stem cells (MSCs) isolated from the
adipose tissue, trachea, limb muscle and diaphragm of mice. We
sought to explore the specific differences in networks between these
four types of MSCs with different tissues of origin. First, to assess
the quality of MSCs networks produced by ShareNet, we examined
the differences in the networks reconstructed with ShareNet and in
its absence. Across a range of thresholds for retaining the top edges
in each network, we identified the set of edges that are uniquely
identified when using ShareNet relative to the baseline use case in its
absence and vice versa. We then performed gene ontology (GO) en-
richment analysis of genes ranked by their occurrence in these sets in
an effort to characterize the signals either gained or removed as a re-
sult of information sharing (Eden ez al., 2009). Overall, we observed
that the edges that are uniquely identified by ShareNet are consist-
ently enriched for GO biological processes (Fig. 5b), including terms
associated with differentiation and development (Supplementary
Fig. $8). In contrast, the edges that are uniquely identified without
ShareNet tend to have considerably less functional enrichment,
implying that ShareNet omitted edges that are more likely to be
spurious rather than functional cell type-specific interactions.

To compare the MSC networks produced by ShareNet across
different tissues of origin, we took the top 1% of edges from each
network and retained only the unique edges that were not included
in the other MSC networks. GO enrichment analysis of these unique
edges revealed significant enrichment for differentiation and devel-
opment pathways that characterize the matching tissues from which
each of the MSC populations were isolated (Fig. 5¢). Notably, three
of the four tissue-specific pathway enrichments (fat, limb muscle,
diaphragm) could not be detected when using the networks inferred
without ShareNet. These results provide further evidence that our
method not only reduces the relevance of potential false positive
edges in gene regulatory networks but also retains important regula-
tory associations that uniquely define the specific cell types that they
represent.

3.3 ShareNet uncovers temporal regulatory changes

during early mouse blood development

To demonstrate the utility of ShareNet for studying the rewiring of
regulatory associations in dynamic biological processes, we lever-
aged it to reconstruct cell type-specific networks in the early mouse
blood lineage. We used the aforementioned mouse blood lineage
dataset, which contains erythroid (Ery), haemato-endothelial (Hae),
blood progenitor (BP), endothelial (EC) and mixed mesodermal
(Mes) cells collected from whole mouse embryos between the E6.5
and E8.5 stages of early embryonic development (Pijuan-Sala et al.,
2019) (Fig. 6a). We used GENIE3 with ShareNet to infer networks
for these cell types, as this combination yielded the strongest per-
formance for this dataset in our results above. A closer look at the
sharing patterns automatically learned by ShareNet revealed that
the captured relationships among cell types cohere with expert-
annotated labels based on marker genes and their underlying
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Fig. 6. ShareNet enhances the detection of dynamic changes in regulatory associations along the early mouse blood differentiation trajectory. (a) Coarse graph abstraction of the mouse
blood lineage produced by the PAGA algorithm (Wolf et al., 2019). Nodes correspond to specific cell types and are colored by the general cell type categories. Mes: mesodermal cells,
Ery: erythrocytes, Mk: megakaryocytes, Hae: haemato-endothelial progenitors, EC: endothelial cells, My: myeloid cells. (b) Cell type—cell type sharing patterns learned by ShareNet for
the mouse blood lineage dataset. The correlation matrices of the mixture components with the highest mixture weights are depicted. Rows and columns are ordered by hierarchical clus-
tering and colored by general cell type categories to which the 24 represented cell types belong. Learned sharing patterns are consistent with known cell type categories, and different com-
ponents capture distinct sharing patterns. (c) The number of stably added, stably removed and unstable edges along the differentiation path from mesodermal to erythroid cells, for
varying proportions of top edges included in the networks. ShareNet enhances the discovery of persistent shifts while suppressing unstable associations that are likely due to noise. (d)
Temporal trajectories of inferred edge scores along the path from mesodermal to erythroid cells for ShareNet-GENIE3 (top) and GENIE3 without ShareNet (bottom). Displayed set of
curves represent a random subset of stably added edges in the ShareNet output. Each trajectory is min-max normalized. ShareNet reveals persistent activation of regulatory associations
that are obscured without ShareNet.

trajectory (Fig. 6b). Furthermore, different mixture components cap-
tured distinct sharing patterns, which merit further exploration.
Using the inferred networks, we sought to investigate the regula-
tory rewiring patterns that define the part of the trajectory spanning
the differentiation of Mes cells to Ery cells in the primitive wave of
Ery cell formation (Pijuan-Sala et al., 2019). To do so, we examined
our inferred cell type-specific networks for the 10 cell types along
the shortest path between Mes and Ery cells, based on the associ-
ation graph constructed by the PAGA algorithm (Wolf et al., 2019).
From this chain of networks, we aimed to identify regulatory
interactions that are reliably activated or deactivated during the

course of differentiation as a means of detecting persistent shifts in
regulatory dynamics that confer cellular identity. We first searched
for stably added edges in networks that are absent in the earliest
Mes cells but emerge in an intermediate cell type along the trajec-
tory, upon which they are stably maintained across the successive
cell types until the terminal Ery cells. Across a range of percentage
values that determine the proportion of putative edges to retain in
each network, we found that the number of edges that meet this cri-
terion is consistently higher in the networks inferred using ShareNet
and GENIE3 compared to GENIE3 on its own (Fig. 6¢). In addition,
the underlying edge scores associated with this set of stably added
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edges demonstrated a clear increasing trend along the differentiation
path, consistent with the fact that these edges are of increasing rele-
vance to cells as they approach the erythroid lineage (Fig. 6d). On
the contrary, the edge scores for the same set of edges in the
GENIE3 networks do not show this trend and change erratically
from cell type to cell type. In searching for edges that are stably
removed across the differentiation trajectory, the set of networks
inferred using ShareNet also presented notably more of these edges
(Fig. 6¢). Lastly, edges that are unstable, which we define to be those
that change activity status more than four times over the course of
the path of ten cell types, are more highly represented in the set of
networks inferred in the absence of ShareNet. Given the limited
plausibility of these unstable associations, we believe this observa-
tion reflects the higher noise levels in the underpowered GENIE3
networks; ShareNet is noticeably less affected by this potential
artifact.

Furthermore, GO enrichment analysis on genes ranked by their
occurrence in the set of stably added edges revealed enrichment for
erythrocyte development (GO: 0048821, FDR ¢ =1.53 x 1073),
while a similar analysis performed on the GENIE3 networks with-
out ShareNet revealed no such enrichment. In exploring the genes
that are most implicated in these stably added edges, we found that
Tall, Fam210b and Vgli4, three genes are known to be implicated in
erythroid differentiation, are among the top 10 most frequently
occurring genes. Tall is an essential transcription factor for erythro-
poiesis (Hall et al., 2003; Wu et al., 2014) and is involved in the acti-
vation and repression of a number of erythroid-specific target genes
(Lausen et al., 2010). Similarly, Fam210b and Vgll4 are critical in
regulating erythroid heme synthesis in terminal erythropoiesis
(Wang et al., 2020; Yien et al., 2018). These results suggest that
sharing information across cell types enhances our ability to detect
meaningful patterns of network rewiring that are informative of the
dynamics governing transitions in cellular identity.

3.4 Runtime and memory usage

The BEELINE, Tabula muris and mouse blood lineage datasets
spanned a broad range of dataset sizes. The average total runtime
for ShareNet was 2min, 116 min and 411 min for the BEELINE,
mouse blood lineage and Tabula muris datasets, respectively. Peak
memory usage was approximately 664 MB, 11.9 GB and 111 GB
for the same three datasets. All methods were run on a 2.40 GHz
Intel Xeon E5-2695v2 central processing unit. A more in-depth dis-
cussion on the dataset factors affecting runtime and memory usage
as well as future optimization strategies for reducing the computa-
tional burden can be found in Supplementary Materials.

4 Discussion and future work

The growing use of scRNA-seq data to characterize the diversity of
cell types and cell states within populations of cells has led to the
discovery of many new cell types. An important next step in compre-
hensively characterizing these cell types beyond their gene expres-
sion signatures is the elucidation of the underlying gene regulatory
network structures that drive their unique expression profiles. In
order to handle the issue of small samples sizes for cell types that are
rare and underrepresented, we have presented ShareNet as a frame-
work for automatically leveraging the overlap in network structures
across similar cell types to improve estimations of cell type-specific
networks. We have demonstrated that propagating information
across cell types increases the accuracy of inferred networks in a
range of datasets and experimental settings. As a result, we have
been able to employ ShareNet to more finely characterize individual
cell types from scRNA-seq datasets with respect to gene regulatory
networks instead of just gene expression.

Our work drew inspiration from previous methods that lever-
aged joint inference of multiple related tasks to increase power for
tasks that typically would be underpowered on their own. One do-
main in which such methods have been developed is statistical genet-
ics. For example, Mash (Urbut ez al., 2019) is a powerful method
for jointly estimating effect sizes for genetic associations across

multiple conditions. Similar to our approach, Mash allows for a
broad range of patterns of correlation among conditions, albeit
restricted to a weighted average of pre-defined sharing patterns. For
the task of inferring gene regulatory networks, several approaches
have been developed for jointly estimating multiple networks, not-
ably for bulk RNA-seq analysis, by linking networks from different
species (Castro et al., 2019; Koch et al., 2017) or different points of
time along a linear biological process (Ahmed and Xing, 2009; Song
et al., 2009). For each of these methods, though, the manner in
which information is transferred between networks must be pre-
specified and/or is highly restrictive. With single-cell datasets, the re-
lationship between cell types is often unknown a priori, as many cell
types are being detected for the first time. Furthermore, the diversity
of cell types that appear in single-cell datasets presents a need to ac-
count for a wide range of possible sharing patterns. ShareNet
addresses these idiosyncrasies of single-cell datasets, building upon
the insights from the aforementioned related works.

Recent advancements in single-cell technologies have been made
to simultaneously measure different biological aspects of individuals
cells, including spatial gene expression, chromatin accessibility, and
morphology (Zhu et al., 2020). The integration of these multi-modal
datasets (Singh et al., 2020) in a manner similar to ShareNet would
serve as an exciting next step for characterizing the intricate rela-
tionship between gene regulatory relationships and cellular identity
in greater detail.

Data Availability: All data used in the study are publicly available.
The BEELINE, Tabula muris, and mouse blood lineage datasets can
be accessed at the following URLSs, respectively: https://zenodo.org/re
cord/3701939#.YJIHKy1h1bU, https://tabula-muris.ds.czbiohub.org,
and https://github.com/MarioniLab/EmbryoTimecourse2018.
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