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ABSTRACT

Long-read whole-genome sequencing analysis of
DNA methylation would provide useful information
on the chromosomal context of gene expression
regulation. Here we describe the development of a
method that improves the read length generated by
using the bisulfite-sequencing-based approach. In
this method, we combined recently developed enzy-
matic base conversion, where an unmethylated cy-
tosine (C) should be converted to thymine (T), with
nanopore sequencing. After methylation-sensitive
base conversion, the sequencing library was con-
structed using long-range polymerase chain reac-
tion. This type of analysis is possible using a mini-
mum of 1 ng genomic DNA, and an N50 read length of
3.4–7.6 kb is achieved. To analyze the produced data,
which contained a substantial number of base mis-
matches due to sequence conversion and an inac-
curate base read of the nanopore sequencing, a new
analytical pipeline was constructed. To demonstrate
the performance of long-read methylation sequenc-
ing, breast cancer cell lines and clinical specimens
were subjected to analysis, which revealed the chro-
mosomal methylation context of key cancer-related
genes, allele-specific methylated genes, and repeti-
tive or deletion regions. This method should convert
the intractable specimens for which the amount of
available genomic DNA is limited to the tractable tar-
gets.

INTRODUCTION

In mammals, cytosine (C) in CpG dinucleotides is pre-
dominantly modified by DNA methyltransferases to 5-
methylcytosine (mC) (1). C methylation plays the most piv-
otal role in epigenetic regulation of gene expressions. Ac-
tive promoters are supposed to be mostly unmethylated, but
gene expression repression is often mediated by mC. DNA-
methylation-mediated gene expression regulation plays var-
ious roles in many aspects of biological processes, such
as normal development and disease progression. A well-
studied case involves the imprinting of the maternal or pa-
ternal genes in normal cells, where the gene locus, an ar-
ray of gene loci, or even the whole X chromosome is col-
lectively methylated and thus silenced. In cancers, genomic
DNA (gDNA) is supposed to be generally hypomethylated,
whereas some specific regions harboring tumor suppressor
gene loci are often hyper-methylated (2). In either normal
or disease circumstances, DNA methylation is supposed to
occur in a relatively wide genomic region. However, our
current knowledge of DNA methylation remains a patch-
work of fragmented information obtained from short-read
sequencing. Comprehensive elucidation of DNA methyla-
tion on chromosomal-level allelic backgrounds has yet to
be attained.

This is partly due to the limitations of commonly em-
ployed analytical methods for DNA methylation. Detec-
tion of mC from unmethylated C is commonly achieved
through bisulfite sequencing, which involves converting un-
methylated C to uracil (U) via a chemical reaction of the
bisulfite treatment (3). As this reaction is conducted in a
chemically harsh condition, a substantial portion of DNA
is fragmented and degraded. Therefore, it is difficult to ob-
tain and analyze intact DNA fragments that are sufficiently
long for subsequent long-read sequencing (4). It is also sug-
gested that a severe bias is introduced in the representa-
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tion of gDNA during the bisulfite reaction process, which
skews the equal distribution of the generated sequence in-
formation (5). To address these problems, relatively non-
destructive methods for base conversion have recently been
developed (6,7). The novel enzymatic methyl sequencing
method, named ‘EMseq,’ utilizes oxidation of the TET en-
zyme from methylcytosine (mC) and hydroxymethylcyto-
sine (hmC) to carboxyl cytosine (caC) for protection, and
deamination by the APOBEC enzyme for conversion from
unmethylated C to U (6). Subsequently, unmethylated C is
sequenced as thymine (T), in a process that is similar to
bisulfite sequencing. Since this is an enzymatic reaction,
which is conducted in a much milder condition, fragmen-
tation, and representation bias of material DNA should
be less severe. In fact, enzymatic conversion of unmethy-
lated cytosines allows for the production of long DNA frag-
ments that are unattainable through bisulfite conversion
(6,8). While the standard methods of WGBS and EMseq
are unable to distinguish between mC and hmC, the modi-
fied methods can detect either mC or hmC (8,9).

We wondered if the EMseq approach may enable long-
read whole-genome analysis of DNA methylation. For the
purpose of long-read sequencing, we employed a nanopore
sequencer. A nanopore sequencer can potentially read
DNA molecules that are longer than 100 kb (10). It has also
been reported that modifications in DNA and RNA can
be detected from the electric signal patterns observed for
mC of DNA and RNA, hmC of DNA, and unmethylated
C (11,12). In fact, several tools based on machine learning
have been developed (13–15). However, detection accuracy
of mC is usually less than 90%, which hinders precise in-
terpretation of the obtained data (14). Moreover, this direct
detection method requires the gDNA of 0.5–1 �g as a start-
ing material, which is not practically available for many bio-
logical targets. Recently, the efficacy of lrTAPS, which com-
bines a base-conversion method of mC or hmC and long-
read sequencing, and LR-EMseq, which combines EMseq
and long-read sequencing, was studied (8,16). LrTAPS and
LR-EMseq employed a locus-specific polymerase chain re-
action (PCR) and did not apply whole-genome analysis.

Here, we describe the development of a new method
for whole-genome methylome analysis using long-read se-
quencing, which could be performed from 1 to 100 ng of in-
put DNA. We combined the nanopore sequencing and EM-
seq methods, in which base-converted DNA through an en-
zymatic reaction, EM, was sequenced using the nanopore
sequencer (designated as nanoEM hereafter). To analyze
the nanoEM data, a bioinformatics pipeline was required
and, thus, was developed, starting from long-read map-
ping of the mostly C–T converted bases from generally
error-prone data. For validation and comparison purposes,
we also conducted whole-genome sequencing (WGS) us-
ing PromethION, from which methylation was called by di-
rectly resolving electric signals, whole-genome bisulfite se-
quencing (WGBS) and EMseq using a short-read Illumina
sequencer. To demonstrate the performance of the devel-
oped method, we applied nanoEM analysis for methylation
analysis of breast cancers. We first analyzed two cell lines,
MDA-MB-231 (MB231) and BT474. The MB231 cell line is
derived from a so-called triple-negative-type breast cancer,
in which none of the estrogen receptor (ER), progesterone

receptor (PGR), or human epidermal growth factor recep-
tor 2 (HER2) was expressed. The BT-474 cell line is derived
from a luminal B breast cancer, in which PGR, HER2, and
ER are expressed. These cell lines were selected to repre-
sent cells of relatively high and low methylation statuses for
MB231 and BT474 cells. Later, we further demonstrate its
performance using two clinical breast cancer specimens.

MATERIALS AND METHODS

Cultivation of breast cancer cell lines

MDA-MD-231 (ATCC, HTB-20) (17) and BT-474 (ATCC,
HTB-20) (18) were cultured in L15 medium and RPMI
medium (FUJIFILM Wako Pure Chemical) containing
L-glutamine supplemented with 10% FBS (Corning) and
1× Antibiotic-Antimycotic (Thermo Fisher Scientific), re-
spectively.

Clinical specimens

Informed consent was obtained from all patients. This study
was approved by the Clinical Ethics Committee of St. Mar-
ianna University School of Medicine (IRB#: 2297-i103)
and the Research Ethics Committee of the University of
Tokyo (IRB#: 18-235). The fresh frozen clinical specimens
of breast cancer and matched normal tissues that were used
in this study were obtained from St. Marianna University
School of Medicine Hospital. Cases 7 and 8 were ‘ER-
negative, PGR-negative, and HER2-positive,’ and ‘ER-
positive, PGR-positive, and HER2-negative’ breast cancer,
respectively, as diagnosed from a histopathological view-
point. The specimen for Case 7 was identical with the spec-
imen that was used in our previous study (19).

Extraction of gDNA

We extracted gDNA from the cultured cells and the clinical
specimens using the MagAttract HMW DNA Kit (Qiagen)
or smart DNA prep (a) (Analytik Jena) according to the
manufacturer’s instructions. Extracted gDNA was quan-
tified using Genomic DNA ScreenTape assay and a 2200
TapeStation system (Agilent Technologies). We only used
gDNA for which the DNA integrity number (DIN) was ∼9
except for the tumor tissue of Case 8, for which the DIN
was 6.6.

Enzymatic methyl sequencing using a short-read sequencer

gDNA of the cell lines was fragmented using an M220
Focused-ultrasonicator (Covaris) with the following set-
tings: 50 W peak incident power, 20% duty factor, 200 cy-
cles per burst, and 60 s treatment time. Then, 200 ng of
fragmented DNA was applied in the preparation of a li-
brary for EMseq. The EMseq libraries were prepared us-
ing the EMseq Kit (NEBNext Enzymatic Methyl-seq Kit;
New England BioLabs) according to the manufacturer’s in-
structions. Briefly, the end of the fragmented DNA was re-
paired and dA-tailed. An EMseq adapter was ligated to the
end-prepped DNA. Then, mC and hmC of the ligated DNA
were oxidized using the TET2 enzyme to protect against
the deamination reaction. To convert umC to U, umC of
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the oxidized DNA was deaminated by the APOBEC en-
zyme. The deaminated DNA was amplified by four cycles of
PCR using Q5U Master Mix and primers for the Illumina
sequencer. The amplified libraries were purified using sam-
ple purification beads according to the purification protocol
for longer insert sizes. The libraries were quantified using a
High Sensitivity DNA Kit and Bioanalyzer (Agilent Tech-
nologies). Pair-end sequencing of 150 bp was performed us-
ing the NovaSeq 6000 system (Illumina).

WGBS using a short-read sequencer

gDNA of the cell lines was fragmented using an M220
Focused-ultrasonicator (Covaris) with the following set-
tings: 50 W peak incident power, 200% duty factor, 200 cy-
cles per burst, and 75 s treatment time. The WGBS library
was prepared from 200 ng of fragmented DNA, utilizing the
EMseq Kit for end prep, adapter ligation, and PCR as well
as the EZ DNA Methylation-Gold Kit (Zymo Research)
for bisulfite conversion. Briefly, end prep and adapter lig-
ation were performed according to the protocol of the EM-
seq Kit. The adapter-ligated DNA was treated by bisulfite
and deaminated according to the protocol of the EZ DNA
Methylation-Gold Kit. The bisulfite-converted DNA was
amplified in four cycles of PCR using Q5U Master Mix and
primers for the Illumina sequencing. The amplified libraries
were purified using sample purification beads according to
the purification protocol for standard insert sizes. The li-
braries were quantified using a High Sensitivity DNA Kit
and Bioanalyzer (Agilent Technologies). Pair-end sequenc-
ing of 150 bp were performed using the NovaSeq 6000 sys-
tem (Illumina).

WGS using a short-read sequencer

gDNA of clinical samples was fragmented by focused-
ultrasonicator M220 (Covaris) with the following settings:
50 W peak incident power, 20% duty factor, 200 cycle per
burst, and 75 s treatment time. The WGS library was pre-
pared from 100 ng of the fragmented DNA, using TruSeq
Nano DNA Library Prep Kit (Illumina) according to the
manufacturer’s instructions. The libraries were quantified
using High Sensitivity DNA Kit and Bioanalyzer (Agilent
Technologies). Pair-end sequencing of 150 bp were per-
formed using NovaSeq6000 system (Illumina).

WGS using a nanopore sequencer

WGS of the two cell lines and clinical samples using
PromethION was performed as described previously (10).
Then, 1–1.5 �g of the high-molecular-weight gDNA was
used to prepare the PromethION library. The libraries
were prepared using a Ligation Sequencing Kit (SQK-
LSK109, Oxford Nanopore Technologies) according to the
manufacturer’s protocol. The prepared libraries were se-
quenced using PromethION flow cells (FLO-PRO002, Ox-
ford Nanopore Technologies). The sequencing data were
base called using Guppy.

Nanopore enzymatic methyl sequencing (nanoEM)

gDNA was fragmentated using g-TUBE (Covaris) by dou-
ble centrifugation at 4700 g for 1 min. Then, 1–100 ng of

fragmented DNA was oxidized and deaminated in four re-
action tubes using the NEBNext Enzymatic Methyl-seq Kit
(New England BioLabs) following the manufacturer’s in-
structions. The ends of the fragmented DNA were repaired
and dA-tailed. An EMseq adapter was ligated to the end-
prepped DNA. Then, the mC and hmC of the ligated DNA
were oxidized using the TET2 enzyme to protect against the
deamination reaction. To convert umC to U, the umC of
the oxidized DNA was deaminated by the APOBEC en-
zyme. For beads purification after APOBEC conversion,
the deaminated DNA was eluted by nuclease-free water.
The eluted DNA was amplified using EMseq Index primers
of the NEBNext Enzymatic Methyl-seq Kit and KOD Multi
& Epi (TOYOBO) (1 cycle of 2 min at 94◦C; 16 cycles of 10
s at 98◦C, 30 s at 62◦C, and 10 min at 68◦C; 1 cycle of 10 min
at 68◦C, held at 4◦C) or KOD One PCR Master Mix (TOY-
OBO) (12–21 cycles of 10 s at 98◦C, 5 s at 57◦C, and 15 min
at 68◦C, held at 4◦C). The amplified DNA was purified us-
ing 1× volume of AMPureXP beads (Beckman Coulter) or
a DNA Clean & Concentrator-5 Kit (Zymo). Size selection
of the purified DNA was performed using 0.82–0.9× vol-
ume of ProNex Size-Selective Chemistry using the ProNex
Size-Selective DNA Purification System (Promega).

From 200 to 1000 ng of the size-selected DNA, the library
for PromethION (Oxford Nanopore Technologies) was pre-
pared with a 1D Ligation Sequencing Kit (SQK-LSK109,
Oxford Nanopore Technologies) following the manufac-
turer’s instructions. Then, 100–300 ng of the prepared li-
braries was inputted to PromethION. The sequencing data
was base called using Guppy.

SNP calling

For single nucleotide polymorphism (SNP) calling, we uti-
lized public WGS data from the Cancer Cell Line Ency-
clopedia (CCLE) (20). The raw sequence data were ob-
tained from the Sequence Read Archive with the following
accession numbers: SRR8652107 for MDA-MB-231 and
SRR8639205 for BT-474. The adapter sequence and bases
with low quality were trimmed using Trim Galore v 0.6.0
(https://github.com/FelixKrueger/TrimGalore) with the fol-
lowing parameters: ‘–quality 20 –phred33 –stringency 3 –
length 20 –illumina –paired –trim1.’ The trimmed reads
were aligned to a human reference genome GRCh38.p12
using BWA v0.7.17-r1188 with the default parameters (21).
The reads derived from PCR duplicates were removed us-
ing MarkDuplicates of Picard tools v2.0.1 and samtools
v1.9. SNPs were called using HaplotypeCaller of GATK
v4.0.12.0. We conducted base quality score recalibration us-
ing BaseRecalibrator of GATK with dbSNP, mills indel,
and 1000 Genomes Project Phase I indel calls as known
sites. We also performed base quality score recalibration us-
ing ApplyBQSR of GATK.

Data analysis of WGBS and EMseq using a short-read se-
quencer

The sequence reads of WGBS and EMseq were adapter-
trimmed using Trim Galore v0.5.0 (https://github.com/
FelixKrueger/TrimGalore) with the default parameters.
The trimmed reads were aligned to GRCh38.p12 using Bis-
mark v0.22.1 with the following parameters: ‘–multicore 10

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore


e81 Nucleic Acids Research, 2021, Vol. 49, No. 14 PAGE 4 OF 14

-X 1000.’ The reads that originated from PCR duplicates
were removed using deduplicate bismark with the default
parameter (22). The methylation information was extracted
with a bismark methylation extractor using the follow-
ing parameters: ‘–multicore 10 –ignore 11 –ignore 3prime
1 –ignore r2 5 –ignore 3prime r2 2 –gzip –bedGraph –
buffer size 90G.’

Methylation calling from the nanoEM dataset

We mapped nanoEM data to reference the genome by using
the bismark-like method (22). First, we converted all C/Gs
in the human reference genome to T/As. Second, we con-
verted all C/Gs in the sequencing data to G/As. Third, we
mapped the converted sequencing data to the converted ref-
erence genome by using minimap2 (version 2.16-r922) with
the ‘map-ont’ option (23). Finally, we chose the best unique
alignment by mapping the quality. We detected methylated
or unmethylated C by using the sambamba mpileup com-
mand (version 0.7.1, default parameters) with CpG sites ex-
tracted from the reference genome (24). The scripts and the
detailed explanations of our pipeline used for data analy-
ses of nanoEM is available in a GitHub repository at https:
//github.com/yos-sk/nanoEM.

Methylation calling from the PromethION WGS dataset

We mapped PromethION WGS data to a human refer-
ence genome, GRCh38.p12, by using minimap2 (version
2.16-r922). Then, we extracted the mapping results using a
threshold of mapping quality greater than 20. We indexed
fastq data with fast5 data and called CpG methylation by
using the call-methylation function of nanopolish version
0.11.1 (https://github.com/jts/nanopolish) with a pretrained
6-mer DNA model for R9.4 chemistry. Then, we calculated
the frequency of methylated C.

RESULTS AND DISCUSSION

Comparison between EMseq and WGBS

First, to evaluate the EM conversion, we conducted whole-
genome EM Sequencing using an Illumina sequencer. For
the purpose of comparison, we also performed WGBS us-
ing the same material. For this analysis, we used the two
breast cancer cell lines, MDA-MB-231 (MB231) and BT-
474 (BT474). An average of 473 741 078 read pairs, which
is at ×47 coverage of the human genome, was obtained
(Supplementary Table S1). Overall, the methylation rates
in the CpG context as measured by EMseq and WGBS
were 53.3% and 55.1% in MB231 and 82.5% and 84.9%
in BT474, respectively (Figure 1A). The observed methy-
lation rates were consistent between EMseq and WGBS.
The methylation rates (0.13–0.23%) at the CpH sites (H =
A/C/T), which are believed to be rare in most mammalian
cells except for neuronal, embryonic, and germ cells (25),
were detected in both analyses, validating the accuracy of
conversion in both methods (Figure 1A). Then, we com-
pared the number of CpGs that were covered by five reads
or more. Out of the total of 58,351,766 CpG sites in the
human genome, except for chromosome Y, 19 228 301–27

160 869 (33.0–46.5%) of the CpGs were covered by WGBS,
but 52 425 592–55 125 978 (89.8–94.5%) of CpGs were de-
tected using EMseq (Figure 1B and Supplementary Figure
S1). EMseq covered more CpH sites than WGBS (Supple-
mentary Figure S2A). To consider the dependency of cov-
erage on the sequencing depth, we serially diluted the reads
and compared the number of covered CpG sites, depending
on the given sequencing depth between methods. We con-
firmed that, generally, EMseq showed higher CpG coverage
than did WGBS (Supplementary Figure S3A). In particu-
lar, whereas WGBS showed significantly low coverage on
CpG islands (CGIs) because of the possible representation
bias against the GC-rich regions during library construc-
tion, EMseq showed less bias at those particularly biologi-
cally relevant sites (Supplementary Figure S3B). In a com-
parison between coverage and GC content, WGBS had a
poorer coverage in high GC content than EMseq (Supple-
mentary Figure S4).

We also compared the methylation of each CpG site be-
tween the two methods. Pearson’s correlation between them
was 0.95 and 0.92 in MB231 and BT474, respectively (Fig-
ure 1C). We found a highly consistent methylation rate of
CpG commonly covered by EMseq and WGBS around the
CGI, WGBS generally showed significantly higher methyla-
tion rates than did EMseq at CGIs, and found higher methy-
lation rates at CGIs, an artefact of biased coverage in fa-
vor of highly methylated CGIs, than on their neighboring
regions (Figure 1D and Supplementary Figure S5). These
results suggests that lowly methylated CGIs are under-
represented in WGBS (Supplementary Figure S3C). Previ-
ous studies have suggested a correlation between the gene
expression level and the CpG methylation level, indicated
by a positive correlation at the gene body and a negative cor-
relation around the transcriptional start sites (TSSs) (1,26).
Using the RNA-seq datasets of BT474 and MB231 in the
Cancer Cell Line Encyclopedia (CCLE) (27), we selected
highly expressed transcripts, which we defined as those hav-
ing an expression value of more than 10 transcript per mil-
lion (TPM). We plotted the average methylation rate of the
CpG sites at gene bodies and the transcription start sites for
these highly expressed genes. We observed that the methy-
lation rate was generally high for the gene body and low for
the TSS (Figure 1E). WGBS also had significantly higher
methylation rates than did EMseq around the TSS where
CGIs are located. This is consistent with previous concerns
that an unmethylated C-rich sequence is likely to be prefer-
entially degraded during the bisulfite reaction (5).

A total of 181 670 and 75 471 CpH sites were detected to
be methylated (≥90%) by EMseq on BT474 and MB231,
respectively (Supplementary Figure S2B). Most of those
methylated CpH sites were also found to be methylated
by WGBS (Supplementary Figure S2C). Previous studies
showed that methylated CpH sites were preferentially lo-
cated within gene bodies (3,28,29). We examined and found
that more than half of the methylated CpH sites detected by
each method were also located within gene regions (Supple-
mentary Figure S2B), thus should precisely represent the
CpH methylation sites. From these results, we concluded
that EMseq should be highly compatible with WGBS with
a less biased representation than should WGBS (6).

https://github.com/yos-sk/nanoEM
https://github.com/jts/nanopolish
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Figure 1. Comparison among EMseq, WGBS, and nanoEM. (A) The average cytosine methylation rate by CpG and CpH contexts (H = A/C/T), which
were measured by EMseq, WGBS, and nanoEM. Cytosines covered by at least five reads were used for calculation. (B) Venn diagrams of the CpG sites,
regardless of their modification status, that were covered by at least five reads using EMseq, WGBS, and nanoEM. (C) The correlation of the methylation
rate of CpG with EMseq, WGBS, and nanoEM. Pearson’s correlations are shown in the graphs. (D, E) Average methylation rate of the CpG sites covered by
at least five reads around CGIs and gene bodies of active transcribed genes expressed >10 transcript per million (TPM) using each method (top). Average
methylation rate of CpG sites commonly covered in EMseq, WGBS, and nanoEM (bottom). The plots were prepared using deeptools v 3.4.2 (49). CGI
and gene body were scaled to 3000 and 5000 bp by deeptools, respectively. The coordinates of CGI and transcript model of Gencode v33 were obtained
from the University of California–Santa Cruz (UCSC) Table Browser (50) and the website of Gencode (51). The expression values per Gencode transcripts
were obtained from the website of Cancer Cell Line Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle) (27).

NanoEM; Long-read sequencing of the EMseq library

Then, we attempted to develop a new procedure for li-
brary construction, by which the EM-converted DNA tem-
plates should be subjected to long-read sequencing using
a nanopore sequencer, PromethION of Oxford Nanopore
Technologies (Figure 2A). To construct the sequence li-
brary, 50 ng gDNA of MB231 and BT474 at the average
length of ∼10 kb, which should be a reasonable parameter
for many clinical cancer specimens, was prepared. End re-
pair, adapter ligation, and mC oxidation using the TET en-
zyme for protection were performed, followed by the deam-
ination of C using APOBEC. For the subsequent PCR,
we employed KOD, because KOD showed the highest ca-

pacity for amplification of longer DNA fragments among
the tested PCR enzymes (Supplementary Figure S6). The
size of the amplified DNA ranged between 200 and 15 000
bp (Figure 2B and Supplementary Figure S6). To elim-
inate short DNA fragments, size fractionation was per-
formed using the ProNEX Size-Selective Purification Sys-
tem (ProNEX) (Supplementary Figure S7 for the condi-
tion optimization). After size fractionation using ProNEX,
base-converted long DNA (∼600 ng) was used for the li-
brary preparation using the PromethION sequencer. Fur-
ther details are shown in the Materials and Methods sec-
tion. For further reduction of the input DNA amount, we
also prepared a base-converted amplicon from 1 and 10 ng
of DNA prepared from MB231. Enough DNA (200–400

https://portals.broadinstitute.org/ccle
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Figure 2. Development of whole-genome nanoEM. (A) A schematic view of nanoEM. (B) Electropherograms of long amplicon of MB231 prepared by
the Enzymatic Methyl-seq Kit and KOD Multi & Epi before and after size selection. Quantification was performed using a Genomic DNA Kit with 2200
TapeStation. (C) Sequence length distributions of nanoEM of 1D pass reads. N50 length of each datasets were shown in graphs. (D) The 1D pass reads of
nanoEM on MB231 were aligned to the reference human genome using minimap2 (23). Base mismatch is shown for each read. The reads are shown in the
Integrative Genomics Viewer (IGV) (52).

ng) was obtained for preparation of the nanopore libraries
(Supplementary Figure S8).

We conducted two runs and one run of nanoEM using 50
ng DNA for the MB231 and BT474 cells, respectively. The
1D pass reads of 15.9 and 9.9 M or 73 and 42 Gb (x24 and
14 of human genome) in total read bases, were obtained, re-
spectively. The N50 read lengths were 5.3 and 5.2 kb, respec-
tively (Figure 2C and Supplementary Table S2). To evaluate
whether the base conversion was correctly detected by na-
noEM, the reads were aligned to the human genome first by
minimap2 (Figure 2D). Generally, C-to-T or G-to-A (in the
reverse strand) substitutions were observed as expected.

Developing an analytical pipeline for nanoEM

To analyze the obtained sequence data, a specially designed
bioinformatics pipeline was needed. Owing to the base con-
version, nanoEM reads should contain a C-to-T or G-to-
A substitution for most of the bases in the original strand
and complementary strand, respectively. This was not ex-
pected for the usual alignment tools for long-read sequenc-
ing, where the base call was originally error prone (Fig-
ure 3A). In particular, it was difficult to align the nanoEM
reads at C-rich regions, such as the CGIs (Figure 3A and
B), where the above two problems should be merged. In
fact, when the reads were aligned to the human reference
genome using minimap2 (23) as the default setting, a num-
ber of uncovered regions appeared. Although 81%–84% of
reads were aligned, the coverage at the CGIs were frequently
low (Figure 3A and B and Supplementary Table S2).

To overcome this difficulty, we employed an algorithm
in which the sequence reads should be aligned to the ref-

erence genome, which are treated with a C-to-T or G-to-
A conversion (Supplementary Figure S9). As this strategy
is employed by most of the standard analytical pipelines
of WGBS, such as Bismark (22), we adopted the Bismark
strategy for minimap2 (Figure 3C). The reference genome
was firstly processed with C-to-T or G-to-A conversions. A
new reference genome was prepared by combining the two
reference genomes with C-to-T or G-to-A conversions. The
reads with C-to-T or G-to-A conversions were aligned to
the new reference genome. When both C-to-T reads and a
G-to-A reads derived from the same read were aligned, we
judged this as multi-mapping, and selected the best align-
ment according to mapping score. Those cases that gave the
highest mapping quality values were selected. For details,
see the Materials and Methods section. C-to-T or G-to-A
SNPs in CpG sites should cause a miss-calling of methy-
lation status. However, the frequency of miss-calling caused
by these SNPs was quite limited on MB231 and BT474; only
1.0 and 1.2% of the CpG sites were overlapped with the cor-
responding SNPs. Therefore, we considered that the effect
of SNPs on methylation calling should be limited (Supple-
mentary Table S3).

Using the developed pipeline, 90% and 89% of nanoEM
reads on MB231 and BT474, respectively, were aligned
(Supplementary Table S2). The average aligned length of
the reads from MB231 and BT474 were 4.6 and 4.3 kb, re-
spectively. The mapping rate increased by 6–8% compared
with that of the original minimap2 (Supplementary Table
S2 and Figure 3A). Although these numbers may not be
large, the recovered regions included many of biologically
important regions, such as CGIs. In fact, by using this ap-
proach, a higher mapping rate and coverage of the CGI were
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Figure 3. Development of pipeline for analysis of long-read sequencing of base conversion. (A) Alignment result around PGK1 genes using minimap2
and our pipeline. Red and yellow colors on aligned reads represented substitution to T and A, respectively. (B) Coverage depth around CGIs when using
minimap2 or our pipeline is shown. These graphs were prepared using deeptools (49). (C) Schematic view of the data analysis pipeline developed for this
study.

achieved than those achieved solely using minimap2 (Fig-
ure 3B; also note that this approach may be useful for long-
read WGBS sequencing using a PacBio sequencer, SMRT-
BS (30)).

Evaluation of nanoEM

To further evaluate the performance of nanoEM, we com-
pared the obtained results with those obtained from short-
read WGBS and EMseq using the Illumina sequencer. The
detected overall methylation rate of CpG was almost con-
sistent between the long-read (45.7% and 79.2% on MB231
and BT474, respectively; Figure 1A) and short-read meth-
ods, although that of nanoEM in MB231 was somewhat
lower than that of the short-read methods. The methylation
rate of CpH in nanoEM was ∼1%, which showed that un-
methylated C was nearly completely converted even when
long DNA fragments were applied to enzymatic conver-
sion, considering the error rate of nanopore sequencing.
The number of CpG sites that were covered by at least five
reads were 23 000 293 (39.4%) and 8 091 388 (13.9%) for
MB231 and BT474, respectively, out of 58 351 766 CpG
sites in the human genome (Figure 1B and Supplementary
Figure S10). In MB231, for which the sequencing depth
of nanoEM and WGBS was almost equal (Supplementary
Tables S1 and S2), nanoEM showed slightly higher CpG
coverage than did WGBS (Figure 1B). To further compare
the performance of each of the methods, we examined how
many of the CpG sites which overlapped repetitive elements
were uniquely covered by each of the methods (Supple-
mentary Table S4). In previous studies, it was shown that
long-read sequencing can cover repetitive elements more ef-
ficiently than short read sequencing (31). NanoEM had a
higher overlapping rate with long repetitive elements, such
as LINE and SVA than other methods. The overall differ-
ence may also reflect the fact that nanoEM covered long

repetitive regions, in which short reads had poorer cover-
age, due to the multiple mapping. In a comparison of cov-
erage and GC content, although WGBS showed the most
biased distribution as mentioned above, nanoEM and EM-
seq also showed moderate bias (Supplementary Figure S4).
We found that nanoEM and EMseq showed the lowest bias
among PCR-based methods. The observed overall methy-
lation rates of the CpG sites were highly consistent between
nanoEM and short-read methods (WGBS: R = 0.91 and
0.87; EMseq: 0.94 and 0.90 on MB231 and BT474, respec-
tively) (Figure 1C). When we focused on the methylation
rate around the CGIs and gene regions, we found similar
methylation patterns of CpG, which were commonly cov-
ered by nanoEM, WGBS, and EMseq, for all methods (Fig-
ure 1D). As for the methylation rate of all CpG within
CGIs and around TSS, nanoEM as well as EMseq showed,
to some extent, a lower methylation rate than did WGBS,
which may suggest that nanoEM and short-read EMseq
were able to cover low methylated CGIs with higher effi-
ciency than was WGBS able to.

Reducing the starting material

To reduce the amount of starting material, nanoEM li-
braries were prepared from 1 and 10 ng gDNA and were
subjected to sequencing analysis. Although the number of
CpG sites covered by at least five reads were comparable,
between 10 and 1 ng input (11 370 815 [19.5%] and 10 988
803 [18.8%]), 1 ng input showed some biased distribution
on CpG coverage (Supplementary Figures S10 and S11A).
To assess the difference in PCR artifacts by the amount of
starting material, we estimated the PCR duplicate rate by
each condition according to the amount of starting mate-
rial (Supplementary Figure S12). Starting material of 50 ng
and 10 ng showed low (1.1–1.9%) and moderate (13.5%) du-
plicate rates, respectively, and that of 1 ng showed a high du-
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plicate rate (46.0%). The number of PCR duplicates, which
possibly originated from the same molecule was about two
copies on average, was detected for 50 ng condition. It in-
creased in proportion with a decreasing amount of the start-
ing DNA. We considered that starting with ∼50 ng DNA,
the effects of the PCR duplicates should be very small.
However, with even lower input amounts, removing dupli-
cates would be more important to provide accurate esti-
mates of methylation rate. The observed overall methylation
rates of the CpG sites with 10 ng input were highly consis-
tent with short-read WGBS (R = 0.87), in contrast to 1 ng
(R = 0.78) (Supplementary Figure S11B). Although CGI-
specific low methylation within CGIs could be confirmed
in both datasets, numerous PCR duplicate reads were gen-
erated in 1 ng (Supplementary Figure S11C). On the basis
of these results, we concluded that nanoEM can be carried
out from 1 ng of starting DNA, but >10 ng is preferable to
avoid amplification bias. Vaisvila et al. described that 100
pg of genomic DNA was the minimum input for EMseq (6).
But they also showed that coverage of CpG sites decreased
by reducing the input amount of genomic DNA from 10
ng, and the number of CpG sites covered by at least five
reads is almost zero in libraries prepared from 100 pg, of
which sequencing depth was probably saturated (59–92 Gb)
(6). Therefore, we considered the practical input amount for
EMseq should be 10 ng, which is at the same level as na-
noEM (Supplementary Figures S10–S12). As a result, we
believe that even we started with a similar requirement for
the material, far richer information was represented by 3–
7 kb read length rather than 300–500 bp fragment (from
nanoEM and EM-seq, respectively), as described later.

Comparison with the direct methylation call

We compared the results obtained from the direct methyla-
tion call from nanopore sequencing using nanopolish (13).
We performed non-PCR nanopore WGS of the cell lines
using PromethION. From MB231 and BT474, 5.9 and 11
M of reads, which were 51 and 101 Gb (x17 and 33 of hu-
man genome), were obtained at the N50 read length of 23
and 21 kb, respectively (Supplementary Table S5 and Sup-
plementary Figure S13A). As expected, the length of the
nanoEM reads was a quarter of that of nanopore WGS.
For direct methylation calling, nanopolish, which distin-
guishes the electrical signals between the methylated and
unmethylated C in the raw sequence data, called ‘squiggle,’
(13) was used. Nanopolish utilizes a 6-mer model of CpG
motifs trained using a hidden Markov model. In this case,
we considered the CpG sites giving a positive value in the
log-likelihood ratio by nanopolish to be putative methylated
sites. Using nanopolish analysis, the methylation rates of
CpG appeared as 55.5 and 79.8% on MB231 and BT474,
respectively (Supplementary Figure S13B). These numbers
were quite similar to those obtained using short-read meth-
ods (Figure 1A). The number of CpG sites that covered at
least five reads by nanopolish (24 174 358 [41.4%] and 44
260 634 [75.9%] on MB231 and BT474, respectively) was
higher than that of nanoEM (Supplementary Figures S10
and S13C), which reflects an advantage over the PCR-free
procedure. In a comparison of coverage and GC content,
nanopore WGS produced the most uniform coverage by

GC content as expected (Supplementary Figure S4). The
correlation of the detected methylation rate of CpG sites
was generally high between short-read methods and nanop-
olish (WGBS: R = 0.90 and 0.84; EMseq: 0.93 and 0.90
on MB231 and BT474, respectively) (Supplementary Figure
S13D–F). NanoEM showed slightly higher correlation with
WGBS than nanopolish (WGBS: R = 0.91 and 0.87; EM-
seq: 0.94 and 0.90 on MB231 and BT474; Figure 1C). High
correlation was also observed between nanoEM and nanop-
olish (R = 0.89 and 0.84 for MB231 and BT474, respec-
tively; Supplementary Figure S14). For MB231, nanoEM
data represented 23 000 293 (39.4%) of CpG sites covered
by at least five reads from the 73 Gb of the sequencing
yield (Figure 1B and Supplementary Table S2). On the other
hand, the nanopolish data represented 24 174 358 (41.4%)
of CpG and covered by at least five reads from the 53 Gb
of the sequencing yield (Supplementary Figure S13C and
Supplementary Table S5). We considered that the fact that
the 1.4-fold more sequencing depth (73 Gb versus 53Gb)
yielded a similar coverage (39.4% and 41.4%, respectively
for nanoEM and nanopolish) was derived from the PCR
bias (Supplementary Figures S4 and S12). The results from
the sequencing analysis of the libraries, which were con-
structed by varying PCR cycles, are shown in Supplemen-
tary Figures S12. Also, note that the degree of the PCR bias
varied between samples, depending on not only PCR cy-
cles but also the conditions of the initial samples and/or the
overall methylation status of the samples. Importantly, for
nanopolish, it is difficult to increase the coverage by increas-
ing the sequencing depth. It requires 0.5–1 �g of gDNA per
run, while nanoEM can repeat the sequencing analysis us-
ing the same amount of genomic DNA.

To further evaluate nanoEM, we calculated the over-
all precision and recall for three categories regarding the
methylation rate, low level (<25%), high level (>75%), and
middle level (Supplementary Table S6). In all categories of
MB231 and BT474 data, precisions and recalls of the na-
noEM datasets were comparable to or slightly higher than
those of the nanopolish datasets. In addition, we calculated
the per-read accuracy of methylation calling on 10 000 reads
extracted randomly from the nanoEM and the nanopolish
datasets against the WGBS dataset (Supplementary Figure
S15). Both datasets had high accuracy, from 80% to 100%,
and the nanoEM datasets were comparable to the nanop-
olish datasets. Overall, the results are generally highly con-
sistent. Although the overall cover rate of the CpG sites in
nanoEM was lower, it was probably caused by PCR bias.
However, we consider that its influence is at an acceptable
level in considering that the analysis was made from a lim-
ited amount of DNA material.

Viewing the long methylation data

We visualized CpG methylation patterns and observed
them for specific cases. First, for highly representative cases
of key cancer-related genes, the cases of the HER2 gene
and PGR genes are shown in Figure 4A and B, respectively.
Note that, in both cases, the entire region of CGI is covered
by single reads. BT474 harboring HER2 gene amplification
(32) showed higher coverage on the HER2 gene locus than
did MB231 (Figure 4A). A high methylation rate of the CGI
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Figure 4. Methylation patterns of several genes and regions. (A) The nanoEM reads aligned to the HER2 gene on MB231 and BT474 are shown in the IGV
in bisulfite mode in the top panel (52). Heatmap of the methylation rate, measured by nanoEM, nanopolish, short-read WGBS, and EMseq, is shown in the
middle panel. Color bar of the methylation rate. The CGIs and the RefSeq transcripts are shown in the bottom panel. (B) The nanoEM reads of MB231
and BT474 aligned to the CGIs of the PGR gene are shown in the top panel. The location of CGIs is shown in the bottom panel. (C) The nanoEM reads
aligned to the GRB10 gene are shown. Heatmap of the methylation rate, measured by nanoEM, nanopolish, short-read WGBS, and EMseq, is shown in
the middle panel. The CGIs are shown in the bottom panel. (D) The nanoEM reads aligned to the MEST gene are shown. The heterozygous SNP (C to G)
is shown in the box. Heatmap of the methylation rate, measured by nanoEM, nanopolish, short-read WGBS, and EMseq, is shown in the middle panel.
The CGIs are shown in the bottom panel. (E) The nanoEM reads of MB231 mapped to the large deletion that was reported in a previous study (36). Split
alignments of single reads are linked by lines. (F) The nanoEM reads of BT474 aligned to LINE1 located in HECTD2 intron is shown in the top panel.
The read coverage by EMseq and WGBS is shown in the bottom panel.
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in MB231 and low methylation of that in BT474 were de-
tected by nanoEM, which were consistent with that of other
methods (Supplementary Figure S3C and Figure 4B). For
the second examples, the cases of the GRB10 and MEST
genes are shown (Figure 4C and D). These two genes are
known as so-called imprinted genes (33,34). For each case, a
clear allele-specific methylation pattern was observed. This
information was not resolved as an ‘intermediate’ methy-
lation when the short-read data was analyzed. Moreover,
in MB231, a heterozygous SNP (C/G) was detected in the
CGI of genes, and the only C allele was detected as methy-
lated. Because MEST is known as a paternal expressed gene,
it is assumed that the C allele and G allele are located on
a maternal chromosome and a paternal chromosome, re-
spectively. For the third example, we attempted to show
whether the methylation pattern on regions with structural
variations (SVs) and repetitive regions can be detected by
nanoEM. Owing to the general difficulty of aligning short
reads to SVs, the methylation patterns of their surround-
ing regions have not been well characterized (35). We found
that a heterozygous large deletion (∼8 kb) within an in-
tron of the DPP6 gene, which was also identified in a previ-
ous study (36), was covered by nine nanoEM reads (Figure
4E) in MB231. For the last example, we analyzed the na-
noEM reads that were aligned to repetitive sequences. In
an intronic region of the HECTD2 gene resided two tan-
dem LINE1 elements (Figure 4F). Although neither EM-
seq nor WGBS could completely cover this region, nanoEM
was able to analyze this region. Therefore, nanoEM is a
unique method that can be used to detect methylation pat-
terns around SV and repetitive sequences.

Application to clinical samples

To evaluate the feasibility of nanoEM for clinical spec-
imens, we applied nanoEM to two pairs of tumor and
matched normal tissues of breast cancer specimens. Cases
7 and 8 were ‘ER-negative, PGR-negative, and HER2-
positive’ and ‘ER-positive, PGR-positive, and HER2-
negative’ breast cancer, respectively, as diagnosed from a
histopathological viewpoint (Supplementary Figure S16).
Case 7 was obtained from our previous study on spatial
transcriptome analysis (19). We prepared the converted
DNA from 25 or 100 ng of gDNA and sequenced it using
PromethION. We obtained 5 924 844–20 134 343 of 1D pass
reads (Supplementary Table S2). The N50 read length was
5.8–7.6 kb except for the tumor tissues of Case 8 (3.4 kb),
for which the DIN before fragmentation was quite low (6.6)
compared with that of other tissues (∼9.0). A number of
short DNA fragments was retained even after size selection,
which was attributed to degradation causing a short DNA
fragment. For Cases 7, we performed WGS using Prome-
thION and called methylation by nanopolish for the pur-
pose of validation (Supplementary Table S5). For Case 8,
only 25 ng of genomic DNA was available after dissecting
the tumor part of the tissue and removing short fragments
(Supplementary Table S2). Therefore, we could not employ
nanopolish in the first place (For another example of the
case for which sufficient amount of DNA was not available
see Supplementary Figures S16 and S17).

We similarly called methylation from nanoEM reads us-
ing our pipeline. The detected methylation rates of CpG
were 50.7–73.4% and 76.0–78.0% for tumor and normal tis-
sues, respectively (Figure 5A). Although similar methyla-
tion rates between the tumor and the normal samples were
detected for Cases 7, the lowest methylation rate (50.7%)
was detected for the tumor tissue of Case 8, in which a
higher proportion of cancer cells was shown, compared
with that of the tumor tissue of Case 7. Because of the high
contents of hypomethylated cancer cells, the tissue might
show a low methylation rate (Supplementary Figure S16).
In the HER2-positive tumor tissue of Case 7, a higher read
coverage of the HER2 locus was observed compared with
that of the matched normal tissue (Figure 5B). We detected
differential methylated regions (DMRs) between normal
and tumor samples for Cases 7 and 8 using metilene (37).
Then, 14 and 173 of DMRs were detected in Cases 7 and 8,
respectively (Supplementary Table S7). For example, there
was a higher methylation rate of CMYA5 in the tumor tis-
sue of Case 7 (Figure 5C). CMYA5 was predicted to be
an oncogene and potential prognosis indicator of the over-
all survival rate in breast cancer (38,39) and might be re-
pressed in the tumor tissue of Case 7 via enhanced methy-
lation. The TSLP gene showed a lower methylation rate in
the tumor tissue of Case 7 than that in the normal counter-
part (Figure 5D). It is known that TSLP promotes tumor
cell survival and is important for metastasis in breast can-
cer (40). CGIs of ZNF503 and ZNF217 were less methy-
lated in the tumor tissue of Case 8, compared with that in
the normal counterpart (Figure 5E and F). It is shown that
ZNF503 promotes proliferation and metastasis of breast
cancer cells by repressing GATA3 (41). ZNF217 was shown
to promote epithelial–mesenchymal transition and invasion
in human mammary epithelial cells and is considered to be a
biomarker of poor prognosis in breast cancer (42). Further
intensive studies on the methylation of these gene, particu-
larly with their chromosome background, would deepen the
molecular etiology of these cancers. Last, we also attempted
to detect the methylation of SV in tumor tissues in Case 7.
The large deletion was detected by nanoEM in the tumor
tissue of Case 7 (Figure 5G). Interestingly, CpG upstream
of the large deletion was unmethylated, although the allele
without large deletion was mostly methylated. That could
be confirmed by nanopore WGS (Supplementary Figure
S18). It might be possible that low methylation was caused
by the deletion or vice versa.

CONCLUSIONS

Here, we present nanoEM, a new method for long-read
whole-genome methylation analysis. NanoEM is a combi-
nation of previous methods. Therefore, the methodologi-
cal novelty of this method itself may not be at the high-
est rank. Nevertheless, we believe the practical impact that
this method will give to various applications should be sub-
stantial. We summarized advantages and disadvantages of
methods for whole-genome methylation analysis in Supple-
mentary Table S8. We combined nanopore long-read se-
quencing and enzymatic base conversion using APOBEC,
which can be implemented from a small amount of DNA
(Supplementary Tables S8 and S9). Initially, on the basis of
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Figure 5. Applications to clinical samples. (A) The average cytosine methylation rate by CpG, measured by nanoEM. Cytosines covered by at least five
reads were used for the calculation. (B–F) Examples of DMRs between tumor and normal tissues of Case 7 (B and C) and Case 8 (D and F). nanoEM reads
of tumor and normal tissues aligned to each region are shown in the top panel. The location of transcript models and CGIs is shown in the bottom panel.
Average methylation rate of CpG covered by at least five reads is shown in the middle panel. (G) Methylation patterns detected by nanoEM visualized
using the IGV (52). Reads with and without deletion are shown separately. The unmethylated region specific to reads with deletion is shown in the box.

the comparison between WGBS and EMseq using an Illu-
mina sequencer, EMseq showed higher CpG coverage and
less bias than did WGBS. Using 1–100 ng of gDNA, we pre-
pared long EMseq-converted DNA by optimizing a proto-
col for long PCR and DNA size selection from breast can-
cer cell lines and clinical specimens. The converted DNA
was sequenced using a nanopore sequencer, PromethION.
Then, 5.9–20.1 M of 1D pass reads of 3.4–7.6 kb N50 length

was generated by using single flow cells of PromethION. We
constructed a new pipeline for methylation analysis utiliz-
ing base-converted long reads. Our pipeline analyzes the ob-
tained reads more efficiently, particularly at CGIs, than did
a previous approach solely by using minimap2. The methy-
lation rate detected by nanoEM was comparable with that
by EMseq and nanopore WGS. Using cell lines, we demon-
strated the methylation status and chromosome context of
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two breast cancer-related genes, HER2 and PGR, and two
imprinted genes, GRB10 and MEST, were precisely ana-
lyzed. We also showed that nanoEM can detect methyla-
tion patterns around SV and repetitive regions, in which
short reads are difficult to align. Using clinical samples,
we detected the tumor-specific methylation status of four
breast cancer-related genes, TSLP, CMYA5, ZNF503 and
ZNF217. We also detected a tumor-specific large deletion
and the differential methylation pattern between the alleles
with and without the large deletion. It is unknown whether
methylation is controlled at the chromosome level in most
cancers, particularly at the site of chromosome rearrange-
ments, including gene fusions.

Long-read methylation analysis would determine the
methylation patterns on long single DNA molecules. By
the obtained long read data, allele-biased methylation pat-
terns will be more clearly detected. In fact, by the long-read
methylation analysis using nanoEM methods, we could dis-
sect the methylation pattern of imprinting genes and struc-
tural variations in an allele-sensitive manner (Figures 4C–E
and 5G). We were also able to detect the methylation within
repetitive sequences (Figure 4F). These pieces of informa-
tion may have been overlooked by the short-read sequenc-
ing method. We believe this information should be vital be-
cause it is known that aberration of methylation in imprint-
ing regions and long repetitive elements is critical for can-
cer (43). For cancerous structural variations, they are also
known to cause carcinogenesis occasionally. Due to the dif-
ficulty in the sequence alignments of short-read sequences
(44), the methylation status of these regions is still primarily
elusive.

While direct calling from nanopore WGS has the poten-
tial to distinguish between mC and hmC on the same DNA
molecule, nanoEM cannot distinguish between them (6,11).
By adapting modified protocol of EMseq without TET ox-
idation of mC for protection from APOBEC deamination
(8), nanoEM should be able to detect hmC. NanoEM can
use as little as 10ng of DNA and produce reads in the 3.4–
7.6 kb N50 lengths range (Supplementary Table S2). In
contrast, nanopolish, which reads methylation from native
DNA without the need for costly enzymatic or chemical
conversion processes, obtains N50 read lengths that were
∼4× longer but requires ∼1 ug of DNA (Supplementary
Table S5). Nanopore sequencing requires 150 fmol of DNA,
corresponding to around 500 ng at 5 kb, as input for sample
preparation. If 500 ng of DNA is available, it might be more
advantageous to choose direct calling from nanopore WGS
which does not require pretreatment for long-read methyla-
tion analysis. EM-seq using short-read sequencer produce
higher coverage than other PCR-based methods, except for
the regions, in which it is difficult to map short-reads, such
as repetitive regions and SV. Although short-read sequenc-
ing has a cost advantage, the cost of long read sequencing
is going down (45). In the near future, we expect the cost of
long-read sequencing will be comparable to that of short-
read sequencing.

For tissues with low tumor cellularity, the sequence reads
originating from the cancer genome was usually embedded
among the reads from the normal genome of the surround-
ing normal cells (Supplementary Figures S16 and S17). As
shown in Supplementary Figure S17, if sequencing depth

was enough, the aberrantly methylated reads derived from
cancer cells can be detected even from the tumor with low
tumor cellularity, and it is difficult to find them from short
reads. If more than 100 ng of gDNA is available, it is possi-
ble to increase the coverage of sequencing by repeating the
sequencing analysis of nanoEM, which would not be pos-
sible for nanopore WGS (nanopolish). In fact, the tumor
cell-enrichment of a clinical specimen by microdissection
typically leads to the DNA yield ranging from 50 to 300
ng (46). This amount of gDNA can be used for nanoEM
but not for nanopolish. More generally, the surgically dis-
sected samples are not always large enough to extract 1 �g
of genomic DNA. If the most optimistic case were assumed
where the tumors are packed with cancer cells, ∼1 mm3 hu-
man tissue would be needed to extract 1 �g of gDNA (47).
Among a cohort of Stage I HER2-positive breast cancers,
7% of patients were diagnosed as T1mi tumors (48). For
these cases, the maximum diameter is less than 1 mm. Even
if assuming all the procedures were conducted ideally, with-
out any loss, only 10 ng of gDNA would be extracted from
0.01 mm3 (a usually expected size) of the tissue (Supplemen-
tary Table S9). Therefore, an attempt to analyze most T1mi
tumors using the nanopolish method would be theoretically
impossible, which would leave our knowledge of early-stage
cancers blank. Even for larger tumors than T1mi, a large
part of the tumor tissue should be usually used for patho-
logical and other diagnoses to benefit patients. For the re-
search purpose, a small remaining part should be used, lim-
iting the available amount of the starting material. We be-
lieve that long-read methylation analysis using nanoEM of
a wide range of specimens from which is difficult to pre-
pare an adequate amount of DNA, including very small
samples (smaller than 1 mm3) of early-stage cancer tissues
and biopsies for various cancer types, would deepen our un-
derstanding of epigenomic regulation and its disturbance in
cancers. In addition to cancers, nanoEM may enable long-
read methylation analysis of rare cells, such as oocytes and
early embryos.
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and E-GEAD-408, respectively. The clinical samples were
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Dessimoz,C. and Sedlazeck,F.J. (2019) Structural variant calling: the
long and the short of it. Genome Biol., 20, 246.

45. Logsdon,G.A., Vollger,M.R. and Eichler,E.E. (2020) Long-read
human genome sequencing and its applications. Nat. Rev. Genet., 21,
597–614.

46. Liu,H., McDowell,T.L., Hanson,N.E., Tang,X., Fujimoto,J. and
Rodriguez-Canales,J. (2014) Laser capture microdissection for the
investigative pathologist. Vet. Pathol., 51, 257–269.

47. Austin,M.C., Smith,C., Pritchard,C.C. and Tait,J.F. (2016) DNA
yield from tissue samples in surgical pathology and minimum tissue
requirements for molecular testing. Arch. Pathol. Lab. Med., 140,
130–133.

48. Parsons,B.M., Uprety,D., Smith,A.L., Borgert,A.J. and Dietrich,L.L.
(2018) A US registry-based assessment of use and impact of
chemotherapy in stage I HER2-positive breast cancer. JNCCN J.
Natl. Compr. Cancer Netw., 16, 1311–1320.
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