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Abstract
Background: Several supervised and unsupervised learning tools are available to classify functional
genomics data. However, relatively less attention has been given to exploratory, visualisation-
driven approaches. Such approaches should satisfy the following factors: Support for intuitive
cluster visualisation, user-friendly and robust application, computational efficiency and generation
of biologically meaningful outcomes. This research assesses a relaxation method for non-linear
mapping that addresses these concerns. Its applications to gene expression and protein-protein
interaction data analyses are investigated

Results: Publicly available expression data originating from leukaemia, round blue-cell tumours and
Parkinson disease studies were analysed. The method distinguished relevant clusters and critical
analysis areas. The system does not require assumptions about the inherent class structure of the
data, its mapping process is controlled by only one parameter and the resulting transformations
offer intuitive, meaningful visual displays. Comparisons with traditional mapping models are
presented. As a way of promoting potential, alternative applications of the methodology presented,
an example of exploratory data analysis of interactome networks is illustrated. Data from the C.
elegans interactome were analysed. Results suggest that this method might represent an effective
solution for detecting key network hubs and for clustering biologically meaningful groups of
proteins.

Conclusion: A relaxation method for non-linear mapping provided the basis for visualisation-
driven analyses using different types of data. This study indicates that such a system may represent
a user-friendly and robust approach to exploratory data analysis. It may allow users to gain better
insights into the underlying data structure, detect potential outliers and assess assumptions about
the cluster composition of the data.

Background
Systems biology is a data- and knowledge-driven disci-
pline, which heavily relies on automated tools to support
the generation and validation of hypotheses. Such tasks
aim to provide novel and meaningful views of the func-

tional relationships between biological components at
different complexity levels. Over the past seven years hun-
dreds of methods have been reported to analyse these
data, with an emphasis on gene expression data classifica-
tion [1,2]. More recently, the analysis of gene regulatory
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and protein-protein networks has started to attract contri-
butions from computer and physical sciences [3-5]. All of
these tasks are linked by a need for comparing, classifying
and visualising information.

The ever-increasing number and sophistication of tech-
niques may represent an obstacle to achieve more mean-
ingful and rigorous data analysis and discovery tasks. One
important problem is that users may not have the time
and knowledge required to adequately understand the
dynamics and operation of several tools. These deficien-
cies have been reflected, for example, in a lack of sound
practices for assessing the statistical significance of results
and for selecting the most suitable data sets and classifica-
tion models [6,7]. On the other hand, the emergence of
multiple data sets and prediction models represents an
opportunity for developing an integrative data mining
paradigm, which is already significantly improving several
predictive tasks in systems biology [5,8,9].

The problem domains mentioned above have mainly
concentrated on the application of statistical and machine
learning models for classification tasks. Emphasis has
been placed on the development of supervised and unsu-
pervised classification methods [2,10,11], as well as on
the application of statistical tools for assessing the quality
of classification results [12,13]. Relatively fewer efforts
have been reported on data visualisation techniques to sup-
port exploratory analysis. It has been shown that informa-
tion visualisation techniques may support predictive data
mining applications, including data clustering [14-16].
These tasks should complement each other in order to
achieve higher levels of knowledge integration and under-
standing. Furthermore, visualisation-based exploratory
methods may support: a) the identification of key patterns
in the data, and b) the selection of the most adequate
models for data pre-processing and/or classification. The
former task refers to the recognition of key groups of data,
outliers and features based on computationally-inexpen-
sive, user-friendly and robust analyses. Its outcomes may
offer guidance to conduct the latter task by gaining a bet-
ter insight into the high-level structure and relationships
found in the data. Such an exploratory, visualisation-
based approach may generate useful alternative views for
supporting a more intelligent and meaningful application
of classification models.

One of the traditional approaches to functional genomics
information visualisation has been the application of
clustering-based visualisation techniques. Such an
approach mainly consists of two steps: a) the implemen-
tation of a clustering algorithm, and b) the display of the
obtained clusters. The resulting clusters may be visualised
by generating, for example, dendrograms [16], other hier-
archical structures [17] and maps [14,18,19], which high-

light or summarise similarity relationships between
groups of data. Clustering-based visualisation has become
a fundamental tool for analysing gene and protein expres-
sion data. Different variations of hierarchical clustering,
Kohonen Self Organising Maps (SOM) and Self-Adaptive
Neural Networks (SANN) are relevant examples of tech-
niques belonging to this approach. Their capabilities and
applications have been widely reported [2,15,20]. They
have been successfully tested on several classification and
decision support problems. However, its application to
visualisation-driven exploratory analysis is limited by sev-
eral problems: Many of these techniques are not capable
of explicitly and automatically detecting cluster bounda-
ries; some of them are critically sensitive to several learn-
ing parameters that need to be selected by the user; some
of these solutions were not originally designed to tackle
cluster-based visualisation tasks of massive collections of
data described by several thousands attributes; and they
traditionally require assumptions about the inherent
structure of the data, which may not be always possible in
exploratory data analyses. Clustering visualisation has
also become an important task for the analysis of protein-
protein interaction networks. Clustering is a fundamental
mathematical property of networks, which allows the
identification of key connectivity patterns. Such patterns
may be associated with significant functional behaviours
and modularity [3]. Moreover, it allows researchers to
identify relevant areas for further statistical or experimen-
tal analyses. For instance, hierarchical clustering of net-
work nodes (proteins) has been applied to detect
functional modules in S. cerevisiae [3]. Each node may be
represented by a vector of connectivity values that reflects
the node's interactions with other network members.
Graph theoretic approaches have also been applied to
detect significant clusters of interconnected proteins [21].

Another important data visualisation approach, which
may be applied to clustering-based analysis, comprises
the application of non-linear mapping techniques. They are
based on the idea of transforming the original, n-dimen-
sional input space into a reduced, m-dimensional one,
where m<n. These methods are also known as non-linear
projection methods or multidimensional scaling (MDS) meth-
ods [22]. They mainly aim to optimize a function, M,
which reflects key aspects of the distance structure of the
original n-dimensional space. Thus, these methods aim to
preserve such global properties in the transformed, m-
dimensional space. This principle has been followed by
several models including those proposed by Kruskal
[23,24] and Sammon [25]. Principal component analysis
(PCA) [26] is another relevant technique for reducing n-
dimensional data. In this case the resulting transforma-
tion accounts for the greatest variation of the original
space, but without preserving the distances observed
between the points in the n-dimensional space. MDS,
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including Sammon's mapping, applications to gene
expression analysis have been reported, which highlight
their advantages for supporting the detection of clusters
[27]. PCA may not be directly used to visualise clusters.
But it may be applied as a pre-processing procedure, and
its resulting components may be used as inputs to cluster-
ing and supervised classification models [28].

Although widely investigated techniques, such as SOM
and Sammon's mapping, are usually useful to visualise
clusters of high-dimensional data, they present several
limitations. For example, the SOM may be highly sensi-
tive to its training parameters, which have to be defined by
the user. It also requires the user to define map topologies,
and it does not provide automated mechanisms for cluster
boundary detection. Its limitations for data exploratory
analysis, particularly in relation to data topology preserva-
tion, have been stressed in [29]. These and other limita-
tions, as well as adapted solutions, have been discussed in
[14,15]. Sammon's method may include several data
overlaps when the n-dimensional input space contains
noisy or weakly discriminatory information [30].
Depending of the size of the input data (number of
points), the number of learning iterations and computa-
tional facilities available, Sammon's mapping might be
computationally expensive. Empirical analyses have
shown that Sammon's mapping may easily get stuck at
local optima [30]. Moreover, it has been demonstrated
that this method may be sensitive to the initialisation
scheme applied [19,31].

This paper assesses an alternative, non-linear mapping
technique which aims to address key limitations exhibited
by traditional methods. Its application to clustering-
driven exploratory analysis of gene expression data is
investigated. Furthermore, it provides the basis for an
interactome network clustering visualisation system. The
following section summarises relevant results.

Results
A relaxation method for non-linear mapping was imple-
mented to visualise relevant similarity relationships in
data originating from gene expression and interactome
data. Such a method was designed by Chang and Lee [32]
to address key limitations observed in methods such as
those proposed by Sammon [25] and Kruskal [23,24].
These techniques are related because they aim to achieve
a space reduction by preserving the structure of local dis-
tances in the data. However, unlike those traditional map-
ping techniques, the method assessed in this paper adapts
a pair of points in the transformed m-dimensional space
at every processing step, instead of adapting all points at
every step. Thus, the term "relaxation" is taken from the
relaxation method for linear equalities [32]. Chang's and
Lee's method showed to outperform Sammon's mapping

both in terms of cluster detection effectiveness and com-
putational efficiency. A mapping iteration is defined as a
complete sequence of adaptation steps involving pairs of
points, p(i,j), for each i ≠ j (see Methods for a more
detailed description). In this study a point may encode a
biological sample described by a gene expression profile
(e.g. tumour sample), or a protein described by its inter-
action profile. Figure 1 summarises the mapping mecha-
nism of this approach.

Analysis of gene expression data
Analyses were performed on three publicly available
expression data sets. The first one includes 38 samples
from a known leukaemia study [33], which are repre-
sented by 50 expression values. The samples are catego-
rised into two classes: Acute myeloid leukemia (AML) and
acute lymphoblastic leukemia (ALL). This data set has been
previously validated by several experimental and in silico
methods. It may be considered as an adequate example
for illustrating basic capabilities of clustering algorithms.
The second data set includes samples originating from
small, round blue-cell tumours (SRBCT) [28]. These data
consisted of 63 samples categorised into four classes:
Ewing family of tumors (EWS), rhabdomyosarcoma (RMS),
Burkitt lymphomas (BL) and neuroblastomas (NB), which
are represented by the expression values of 2308 genes
with suspected roles in processes relevant to these
tumours. The third data set offers another example of gene
expression analysis complexity: A data set consisting of a
relatively small number of samples described by thou-
sands of gene expression values, without incorporating
pre-processing by feature selection or transformation pro-
cedures. This application comprises 20 samples described
by 9504 gene expression values for both normal brain and
a pharmacological model of Parkinson's disease [34]. The
reader is referred to the section of Methods for a more
detailed description of the data and their prediction tasks.

Several experiments were performed on each data set to
assess possible, key advantages and limitations of the
mapping approach introduced above. Each experiment
requires an input file storing a matrix, A, where each entry,
aij, represents an expression value, j, for a sample, i. The
user needs to define only one learning parameter, the
number of mapping iterations, as defined above. The out-
put of the algorithm is the projection of the K samples rep-
resented in A on the reduced m-dimensional space.
Mappings were analysed for m = 2 and m = 3, which
allowed the generation of 2D and 3D visual displays.
Experiments were also conducted for several numbers of
mapping iterations. The results facilitated a high-level
understanding of fundamental similarity relationships
between the samples, which are also consistent with pre-
vious research. Three important exploratory data analysis
tasks were accomplished: The automated, unsupervised
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detection of clusters relevant to the natural class structure
of the data sets; the visualisation of a coherent preserva-
tion of local similarity (distance) relationships between
samples; and the identification of potential outliers.

Figure 2 depicts mapping results for the leukaemia data.
Panels (a) to (d) show results for 0, 1, 10 and 100 map-
ping iterations respectively. Circles are used to represent
the samples. Labels '0' and '1' refer to ALL and AML sam-
ples respectively. In the initialisation of the mapping proc-
ess (0 iterations) the samples are randomly assigned to
positions in the 2D space. After 10 iterations there is a
clear indication of separation of samples belonging to dif-
ferent classes. With 100 iterations the ALL samples are

clustered on the upper left side of the map, and the AML
samples are clustered at the bottom of this map. Such
clusters were also distinguished in different experiments.
As a consequence of the random initialisation process,
clusters may occupy different areas on the resulting maps
for different experiments using the same number of itera-
tions. Nevertheless, the system correctly separated sam-
ples in different experiments with more than 20
iterations.

Figure 3 shows resulting maps for the SRBCT data with
100 mapping iterations. These data were pre-processed as
explained in the section of Methods. EWS, RMS, BL and
NB samples are represented by symbols '1', '2', '3' and '4'

Relaxation method for non-linear mappingFigure 1
Relaxation method for non-linear mapping. The input to the algorithm is a collection of K points described in an n-
dimensional space. A mapping iteration refers to a complete sequence of adaptation steps involving pairs of points, p(i,j). A 
point may encode a biological sample described by a gene expression profile (e.g. tumour sample), or a protein described by an 
interaction profile.
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respectively. It suggests that the mapping process was able
to identify key similarity relationships. Samples belong-
ing to the same class tend to cluster together. For example,
EWS samples are mainly located at the bottom of the map.
RMS samples are clustered on its left side. The sample '1'
(x: 0.54, y: -1.79) that was located on the left side of Figure
3 far from the EWS cluster (its natural class) was consist-
ently mapped in this fashion by different experiments.
Moreover, this sample was also displayed closer to RMS
samples for different experiments, which might suggest a
significant relationship between such a sample and the
RMS class. Furthermore, a previous study using more
sophisticated, supervised learning models showed that
this sample may be difficult to correctly classify [35]. This

suggests that the map shown in Figure 3 highlights a
potential outlier in the EWS class data.

Additional experiments using a smaller number of SRBCT
classes (only EWS, RMS, BL) were performed. This was
mainly done to explore the possibility of obtaining alter-
native graphical views of the data. Results are in general
consistent with the results produced with 4 classes: Sam-
ples belonging to the same class were clustered together.
However, these experiments allow a clearer graphical dif-
ferentiation of classes on the resulting maps. Figure 4
depicts an example obtained with 100 mapping itera-
tions. For this and other experiments, it was also possible
to detect the outlier that was observed in Figure 3. Such an

Visualisation of clusters in leukaemia data for different numbers of mapping iterationsFigure 2
Visualisation of clusters in leukaemia data for different numbers of mapping iterations. Panels (a) to (d) show 
results for 0, 1, 10 and 100 mapping iterations respectively. Circles are used to represent the samples on the maps. Labels '0' 
and '1' refer to ALL and AML samples respectively.
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EWS sample is located at the top of the map shown in Fig-
ure 4.

SOM-based analyses using the SOM Toolbox [36,37] were
also implemented to establish comparisons. Figure 5
shows the unified distance matrix (U-matrix) and the label
map (panel on the right side) for a representative result.
The section of Methods describes the construction of these
maps. The SOM was able to correctly cluster the SRBCT
samples. However, these standard SOM visualisation
techniques do not provide clear information on sample-
to-sample similarity relationships. Moreover, they do not
adequately facilitate a direct visualisation of the distribu-

tion of samples assigned to each node and their associa-
tions. Additional file 1 includes the frequency map, which
is another standard SOM visualisation technique, for
these results.

Figure 6 shows results obtained by applying Sammon's
mapping. Symbols '1', '2' and '3' represent classes EWS,
RMS and BL respectively. This approach is able to detect
class differences between samples. Sammon's mapping
also isolated the EWS sample suggested above as a possi-
ble class outlier (right side of the map). Figure 3 (near x:
1.2, y: -1.5) suggests another sample '1' as a potential out-
lier. However, the Sammon's mapping did not clearly

Resulting maps for the SRBCT dataFigure 3
Resulting maps for the SRBCT data. EWS, RMS, BL and NB samples are represented by symbols '1', '2', '3' and '4' respec-
tively. 100 mapping iterations.
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depict it as a potential outlier because in this case, unlike
Figure 3, this sample is located closer to class '1' samples
(Figure 6, near x: 0, y: 0.4).

3D Mapping analyses were also implemented for this
SRBCT application. Additional files 2 and 3 compare the
results originating from the relaxation non-linear and
Sammon's mapping methods. Both methods displayed
coherent partitions of the data, which are consistent with
the 2D mapping results presented above. Moreover, 3D
mappings also suggest relatively strong similarities
between EWS and RMS samples because of their proxim-
ity on the maps.

Figure 7 displays a relaxation non-linear map of the Par-
kinson's disease model data. Parkinson's disease and Nor-
mal samples are identified by symbols '1' and '2'
respectively. After 100 mapping iterations, results suggest
that the method is able to differentiate between these
classes. Parkinson's disease samples mainly fall on the
upper region of the map (y > 0), and 7 (out of 10) Normal
samples are located below that area. Figure 8 shows SOM-
based results, which adequately distinguish between
classes. It also indicates that a few Normal samples may be
closer to Parkinson's samples than to the main group of its
own class. Figure 8 may offer a clearer graphical discrimi-
nation between classes. However, the SOM-based results

Resulting maps for the SRBCT data considering only 3 classesFigure 4
Resulting maps for the SRBCT data considering only 3 classes. EWS, RMS and BL samples are represented by symbols 
'1', '2', '3' respectively. 100 mapping iterations.
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are more dependent on the user's selection of an opti-
mum set of learning parameters (see Methods). Addi-
tional file 4 shows the frequency map for these results.
Although the separation of clusters is less clear, Sammon's
mapping (Figure 9) was in general capable of grouping
same class samples. In this figure symbols '1' and '2' rep-
resent Parkinson's disease and Normal samples respec-
tively. 3D maps originating from relaxation non-linear
and Sammon's mapping methods are depicted in Addi-
tional files 5 and 6 respectively. Both techniques offer
alternative, but consistent exploratory views of the cluster
structure of this data set.

Analysis of interactome networks
As a way of promoting alternative, potential applications
of the methodology presented, this section illustrates an

example of exploratory data analysis of interactome net-
works. The approach proposed encodes a network as a
graph of interconnected nodes. For a network consisting
of N nodes, the mapping tool (from now on referred to as
interClust) requires an N × N matrix, B, as the input data.
In this symmetrical matrix each element, bij, represents the
connection strength between nodes i and j in the graph.
Such values may also be interpreted as weights represent-
ing the relevance of the interaction between a pair of pro-
teins, e.g.: number of hits observed in interaction
experiments or a path distance between two nodes on the
graph (indirect interactions). Thus, each row in B may be
seen as the connectivity profile for a node, i. That is, the con-
nectivity profile of a node becomes this node's coordi-
nates in the n-dimensional, input space. An
accompanying tool, inBuilder, automatically generates

SOM-based analyses on the SRBCT dataFigure 5
SOM-based analyses on the SRBCT data. U-matrix and label map (panel on the right side). U-matrix depicts the distances 
between neighbouring map units using a grey scale. In the label map a node represents a class based on a majority voting strat-
egy for the samples associated with this node. EWS, RMS and BL samples are represented by symbols '1', '2', '3' respectively. 
Additional file 1 shows its frequency map.
Page 8 of 21
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:13 http://www.biomedcentral.com/1471-2105/6/13
such a network representation from a list of pairwise pro-
tein-protein interactions and their respective connection
strengths predefined by the user. The section of Methods
provides more information about design and operation
aspects of this approach.

Before testing this approach on a real interactome data set,
a simple example of a network (Figure 10) is used to illus-
trate its application. In this figure the length of the links
does not reflect distances or connection strengths. All of
the direct connections are considered equally. This net-
work comprises 25 nodes forming 4 main clusters. In this
case a cluster is defined as a compact group of intercon-
nected nodes. Figure 11 shows the results obtained by

applying interClust to this network with 20 iterations. This
map clearly distinguishes the clusters of the network.
Moreover, it preserves local interaction relationships: i.e.
if two nodes have similar connectivity profiles in the orig-
inal space (Figure 10), then they are also close to each
other in the resulting map. Adequate cluster visualisations
were also obtained in experiments with more than 5
iterations.

This algorithm was tested on the chromatin interactome
in C. elegans. It includes 303 proteins and 349 interac-
tions. This data set regroups interactions of proteins
involved in transcriptional regulation at the chromatin
level. This functional module is of major interest because

Sammon's mapping analyses on the SRBCT dataFigure 6
Sammon's mapping analyses on the SRBCT data. Symbols "1", "2" and "3" represent classes EWS, RMS and BL 
respectively.
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it is at the crossroads of many biological processes such as
development, sex determination, cellular differentiation
and proliferation. Its misregulation may have strong con-
sequences such as tumorigenesis or developmental
defects [38]. This data set includes both retested [39] and
non-retested protein interactions obtained by high-
throughput two-hybrid screens (unpublished data). Fig-
ure 12 displays resulting relaxation maps, at different
regions and levels of detail, obtained with 100 iterations.

Figure 12 indicates a separation of proteins according to
their connectivity patterns. The network encoding scheme
and the non-linear mapping algorithm applied distin-
guished highly-connected proteins (hubs) from the other
components of the network. Hubs are located in the outer

regions of the map. The farther a node is from the centre,
the more connections it has. Figure 13 displays a partial
view of a region enriched by hubs, which is well-separated
from the main group of proteins. The hubs are also rela-
tively well-separated between them. It reflects the fact that
such proteins share very few direct, interacting proteins in
common.

Additional file 7 depicts some of the hubs automatically
isolated by the mapping algorithm, as well as a few nodes
located near the centre of the map (F15A2.6, C34E10.5,
C14B9.6). These diagrams were drawn using the Inter-
Viewer tool [40]. A closer examination of a group of pro-
teins located in the outer regions of the map (Figures 12
and 13), for example, reveals that they are involved in key

Relaxation non-linear mapping of the Parkinson's disease model dataFigure 7
Relaxation non-linear mapping of the Parkinson's disease model data. Parkinson's disease and Normal samples are 
identified by symbols '1' and '2' respectively. 100 mapping iterations.
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processes such as mitosis and meiosis. This differentiation
indicates that such hubs may act as connection
components between different biological processes. This
is not a surprising finding, but it highlights the capacity of
the algorithm to automatically detect some of the most
biologically-relevant proteins only on the basis of their
connectivity profiles. Seven of these hubs (Y2H9A.1,
F56C9.1, F11A10.2, T12D8.7, Y113G7B.23, Y37D8A.9,
C53A5.3), for instance, show a significant enrichment of
phenotypes obtained by depletion of the transcripts by
RNA interference (5.6-fold enrichment compared to
genome-wide levels [41]). Moreover, four of these hubs
(F56C9.1, F11A10.2, T12D8.7, C53A5.3) are strongly
linked to embryonic lethality (Emb) by exhibiting a 6-fold

enrichment of this property in relation to genome-wide
levels [41].

Further analyses on the map suggest that neighboring
nodes may reflect functional similarity relationships
between the corresponding proteins. One example is illus-
trated in Figure 14 (upper area), which focuses on the
region surrounding T20B12.2, also known as Tbp-1, a key
component of the Polymerase II holoenzyme. In this
region it is possible to identify several components of the
core Polymerase II enzyme, as well as several related
families (histones acetylases and deacetylases, nucleo-
somes positioning enzymes of the Swi/snf family) that
share similar phenotypes. There is a strong enrichment of

SOM of the Parkinson's disease model dataFigure 8
SOM of the Parkinson's disease model data. U-matrix and label map (panel on the right side). U-matrix depicts the dis-
tances between neighbouring map units using a grey scale. In the label map a node represents a class based on a majority voting 
strategy for the samples associated with this node. Additional file 4 shows its frequency map.
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phenotypes such as embryonic lethality or problems in
growth. These phenotypes (like embryonic lethality) are
often attributed to proteins with high connectivity. Only
eleven (out of twenty seven) proteins examined in this
region exhibit wild type phenotype when they are
depleted. This cluster shows a 5.4-fold enrichment of phe-
notypes, a 5.1-fold enrichment of Emb phenotype, and a
33.3-fold enrichment of sterile progeny phenotype in
comparison to genome-wide levels [41]. This cluster also
exhibits significant associations with sterility, growth
defect and problems in larval development. Additional

file 8 describes the composition of this representative
cluster.

Discussion
With regard to gene expression data, the relaxation non-
linear mapping method was capable to support an auto-
mated, unsupervised detection of relevant clusters of sam-
ples. Results demonstrated that it may also be useful for
the visualisation of local similarity relationships between
samples and the identification of potential outliers. In
general its performance was comparable to Sammon's

Sammon's mapping of the Parkinson's disease model dataFigure 9
Sammon's mapping of the Parkinson's disease model data. Symbols "1" and "2" represent Parkinson's disease and 
Normal samples respectively.
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mapping. One cannot of course expect that a single
method would always be able to accurately map different
types of high-dimensional data. However, the application
of both techniques is recommended as a reliable
approach to data exploratory analysis. In this study they
offered consistent views of the problems under analysis.
SOM, as well as many other cluster analysis techniques,
may be more suitable for application after first gaining an
adequate insight into the structure and organisation of the
data. Such a global understanding may be facilitated
through the application of different non-linear mapping
methods.

Even though a comparison with existing network cluster-
ing methods was not implemented, preliminary results

suggest that the approach proposed might represent a
useful tool for interactome network visualisation and
clustering. It distinguished key hubs and facilitated the
identification of functionally relevant clusters. It showed
that, not surprisingly, most of the hubs detected are essen-
tial for the normal development, behaviour and reproduc-
tion of C. elegans by exhibiting an enrichment of
phenotypes obtained from RNA interference. This can be
explained by the fact that the partners connected to these
hubs are involved in numerous fundamental processes
such as mitosis or meiosis. Hence, the modification of the
network caused by the absence of a hub may have strong
consequences on the topology of the network and the
organisation of the cellular processes. Isolation of func-
tional clusters (e.g. chromosome condensation and

Example of a network characterized by a number of clustersFigure 10
Example of a network characterized by a number of clusters. The length of the links does not reflect distances or 
connection strengths. All of the direct connections are considered equally.
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segregation of the transcriptional core process) is essential
to investigate relationships between groups of proteins or
modules. Modules playing a role in the same process (e.g.
chromosome condensation and segregation during the
mitosis) also tended to be interrelated in the clustering
analysis. This underlies the fact that these modules are
also functionally interconnected and are interdependent
to stringently regulate the cellular processes. Without
these connections the process may be misregulated and
generate aberrant behaviour (i.e. oncogenesis if the mito-
sis is not well regulated). In this way, interactions that
connect these modules are likely to be at the intersection
of several biological processes and to regulate the correct
succession of events in a cellular process (e.g. condensa-
tion of chromosomes before segregation). We do not

claim that the tool reported can be used as an interaction
prediction technique. The example analysed aims to illus-
trate the application of exploratory data analysis for
detecting regions, which may be biologically meaningful
and relevant for assessing the outcomes from protein-pro-
tein interaction prediction techniques. Such patterns may
be useful for guiding future computational or experimen-
tal analyses to validate interaction hypotheses. Meaning-
ful patterns may be associated, for example, with
functionally enriched regions, as shown in this paper.
Moreover, because of the limitations regarding predictive
accuracy and coverage exhibited by existing single-source
techniques, it is important to offer user-friendly tools that
may help scientists to detect possible, spurious associa-
tions. Future research should include a more exhaustive

A resulting map after applying interClust to the network shown in Figure 10Figure 11
A resulting map after applying interClust to the network shown in Figure 10. Clusters are identified and local inter-
action relationships tend to be preserved. 20 mapping iterations.
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statistical description of all possible hub candidates
detected by the mapping process for this and other net-
work examples. Statistical and functional attributes repre-
sented by this method should be compared with previous
findings from large-scale, comprehensive studies. Such an
investigation was not implemented here because it is out-
side the main scope of this paper.

The preservation of local distance structures is an impor-
tant property to interpret the non-linear mapping tech-
niques studied here. This is the main goal of their data
transformation mechanisms. It basically means that the
distance between two points, dmij, in the transformed m-
dimensional space should be very similar to dnij (their dis-
tance in the original n-dimensional data) if dnij is small.

However, if dnij is relatively large, dmij is not required to be
similar to dnij. A fundamental difference between the
relaxation non-linear and the original Sammon's map-
ping methods is that the former adapts a point-to-point
distance at every processing step, instead of adapting all of
the distances at every step.

For relatively small data sets the computing times
required by the Java-based implementation of the relaxa-
tion non-linear mapping method were comparable to
those obtained from Matlab® implementations of SOM
and Sammon's techniques, i.e. in the order of seconds.
But for larger data sets, e.g. Parkinson's disease data, the
non-linear mapping method may run in the order of min-
utes. This of course depends on the number of mapping

Relaxation map for the chromatin interactome networkFigure 12
Relaxation map for the chromatin interactome network. Each panel depicts different regions and levels of detail, 
obtained with 100 iterations.
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iterations and memory resources available. This concern
may be addressed by implementing an optimised version
of the software, perhaps using another programming lan-
guage. Another important solution is the implementation
of a frame method [32], which has demonstrated to
improve the computational efficiency of the algorithm
without significantly compromising its data structure
preservation capabilities. We also intend to expand this
and related research within an open-source data analysis
and visualisation platform, such as the TIGR Multiexperi-
ment Viewer [42].

An important aspect of future research is the adaptation of
the relaxation non-linear mapping method to perform
tasks beyond exploratory data analysis. A desirable prop-

erty would be its capacity to generalise solutions for new
samples in an incremental fashion. That is, the system
should be able to add new samples to a map without hav-
ing to re-generate it. One possible solution is the applica-
tion of an artificial neural network to interpolate and
extrapolate the mapping as illustrated by Mao and Jain
[43]. It is also important to develop hybrid systems to
combine the strengths and advantages demonstrated by
various mapping techniques [44]. A two- stage approach,
for example, represents a feasible solution. In this
approach a data set may be firstly partitioned into a set of
Voronoi spaces using clustering techniques such as k-
means and SOM, and then independent mapping projec-
tions may be performed on each area. It has been sug-
gested that such a hybrid model may be advantageous

Partial view of chromatin interactome mapFigure 13
Partial view of chromatin interactome map. Its shows a region enriched by hubs, which is well-separated from the main 
group of proteins.
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especially when dealing with massive data sets [45]. Other
investigations will involve the assessment and compari-
son of related techniques [46,47]

The mapping algorithm successfully recognised key topo-
logical properties and functional relationships in an
interactome network based on a graph encoding scheme,
which only considers direct interactions. Moreover, it con-
sidered all graph connections as equals. Nevertheless, it
would be important to implement applications in which
the network encoding values, bij, may also reflect non-
direct, shared interactions. This may be done, for example,
by defining a graph distance function between network
nodes. Another input representation scheme may exploit
information relevant to the significance or confidence

assigned to the interactions based on experimental
evidence.

Since cellular networks are organized in a modular fash-
ion, the identification of these modules is crucial to
understand relationships between biological processes
and offer a higher-order, more accessible representation
of the interactomes. The clustering approach proposed in
this paper provides a meaningful, simplified representa-
tion of complex interactomes. This representation may
significantly facilitate exploratory analysis of networks for
non-specialists in bioinformatics. This type of analysis is
fundamental to detect key network components, such as
hubs, which are implicated in many physiological
disorders. Identifying these hubs and their associated

Identification of key functional components based on cluster visualisationFigure 14
Identification of key functional components based on cluster visualisation. The region surrounding protein T20B12.2 
includes several components of the core polymerase II enzyme, as well as several related families that share similar phenotypes. 
See Additional file 8 for further descriptions.
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clusters is also an important step toward the functional
annotation of these proteins, as well as for obtaining pos-
sible explanations of their involvement in a specific dis-
ease. The cluster visualisation tool, interClust, may
represent a useful technique to analyse other protein-pro-
tein interaction networks including a future human inter-
actome. For instance, it may be applied to isolate proteins
linked to a human pathology and to associate them with
a cluster or functional modules (e.g. the transcriptional
core complex of the Polymerase II enzyme). Another
important component of future research is the adaptation
of network clustering methods to take into account spa-
tio-temporal aspects of interactions based on, for exam-
ple, microarrays, in-situ hybridization or protein
localization data. Non-linear mapping methods may also
be applied to support the annotation of unknown pro-
teins. This may be done by assigning a protein to a func-
tional role that is significantly associated with the cluster
under consideration. Furthermore, it is of course funda-
mental to compare this network clustering methodology
with existing techniques. Thus, such approaches may aid
researchers in the design of further experiments and the
selection of more sophisticated bioinformatics analyses.

Conclusions
This research studied a user-friendly cluster visualisation
approach that is able to support the generation of biolog-
ically meaningful outcomes. It represents an effective and
robust exploratory data analysis technique. Comparisons
indicate that applying more than one mapping approach
may improve the confidence of results. Moreover, this
may facilitate the generation of alternative, meaningful
views of the data. Relaxation non-linear and Sammon's
mapping techniques may be more suitable for exploratory
data analysis tasks than SOM.

This study did not aim to add another algorithm to the
existing collection of supervised and unsupervised classi-
fication tools. This methodology is not reported as a com-
peting solution to clustering algorithms. Our study shows
how an exploratory data analysis approach based on non-
linear mapping can support the identification of relevant,
biologically-meaningful patterns. We do not argue that
the methodology proposed should necessarily offer more
accurate results in relation to existing classification solu-
tions. We recommend this methodology as a first step
towards understanding complex data mining problems in
functional genomics. Such an exploratory approach may
also facilitate the selection of more sophisticated methods
and highlight possible, critical features for successfully
implementing clustering-based studies. This research
indicates that the outcomes originating from an explora-
tory, pattern visualisation method may be as meaningful
as those produced by more sophisticated classification
approaches, i.e. SOM. Moreover, the methodology pro-

posed does not require the user to define multiple learn-
ing parameters.

Exploratory analysis frameworks may facilitate a better
insight into a data set before applying more sophisticated,
problem-specific classification or predictive models. Such
an insight may be achieved by helping users to recognise
key features of the underlying structure of the data, detect
potential outliers or anomalies and test assumptions
about the cluster composition of the data.

An adaptation of the relaxation non-linear mapping tech-
nique, interClust, represents a promising solution to aid
researchers to recognise key connectivity and functional
patterns in interactome networks. Further research is
underway to continue assessing its application to this
area.

Methods
Data
The leukaemia data set includes 38 samples originating
from [33]. Each sample is represented by 50 expression
values. The samples are categorised into two classes: Acute
myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL). The original data sets and experimental protocols
can be found at the Broad Institute Web site [48]. For each
feature standardisation was applied by subtracting each
value from the mean and dividing it by the standard
deviation.

The SRBCT data consisted of 63 samples categorised into
four classes: Ewing family of tumors (EWS), rhabdomyosar-
coma (RMS), Burkitt lymphomas (BL) and neuroblastomas
(NB), which were represented by the expression values of
2308 genes. The dimensionality of the SRBCT expression
samples was reduced by applying PCA. It has been shown
that the application of PCA is important to facilitate an
adequate discrimination of samples in this data set. The
10 dominant PCA components for each case were used as
the input to the analysis techniques as suggested by [28],
who applied a supervised learning approach to classify the
samples after reduction by PCA. Using the raw data (with-
out PCA) the relaxation non-linear mapping was not able
to adequately depict differences between the samples. The
original data sets and experimental protocols can be
found at the National Human Genome Research Institute
Web site [49].

The Parkinson's disease data include 20 samples
described by 9504 gene expression values for both normal
brain (10 samples) and a pharmacological model of Par-
kinson's disease [34]. M. musculus was the organism studied
in this disease model. The data are available at The Gene
Expression Omnibus [50] (accession number GDS22).
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Additional files 9 to 11 include, respectively, the leukae-
mia, SRBCT and Parkinson's disease data analysed in this
paper.

The network of interactions was derived from the chroma-
tin interactome in C. elegans. It contains 303 proteins and
349 interactions. It comprises components of the
Polymerase II holoenzyme, histones modifying enzymes,
nucleosomes positioning proteins and several proteins
containing domains known to be essential to this process
such as the chromodomain, the bromodomain or the SET
domain. This is an early version of the chromatin interac-
tome, which includes a number of retested [39] as well as
non-retested interactions determined by a stringent high-
throughput two-hybrid screen. It also contains several
interologs [38,51]. A combination of experimental and
bioinformatic factors (reporter genes used for the pheno-
typic tests, number of hits per interactions, a blast e-value
less than 1E-10, a PHRED score >20 for 15% of the ISTs
(interaction sequence tags) and the frame verification
method) were used to provide optimal accuracy. It is
known that the two-hybrid approach has the tendency to
generate more false positives than the pull-down/Mass
spectrometry approach, for example. However, in the data
set analysed the rate of false positives is reduced by using
more reporter genes (up to 4 genes, unlike traditional
large scale two-hybrid screens which commonly use 2
genes). Using 4 reporter genes can reduce the rate of false
positives up to 50%. Additional file 12 contains this data
set.

Algorithms and tools
The relaxation non-linear mapping algorithm is summa-
rised in Figure 1 and details on its design are reported in
[32]. The adaptation of a pair points, i and j, in the trans-
formed, m-dimensional map is implemented as follows.
Given two points, Pmi and Pmj, in the m-dimensional
map, the adjusted new values, Pmnew, i and Pmnew, j, are cal-
culated using:

where dnij and dmij represent the Euclidean distances
between the points, i and j, in the n- and m-dimensional
spaces respectively.

The SOM results were obtained using the SOM Toolbox,
which is a Matlab® implementation [36,37]. Each training
process consists of two phases. The following parameters
were used. Initial learning rates equal to 0.5 (first phase)

and 0.05 (second phase). Learning rates were controlled
by an inverse-of-time function. The SOM neighborhood
radius starts covering one fourth of the map size. The
number of training epochs was equal to 10 times the
number of map nodes (first phase). For the second phase
it was equal to 4 times the number of training epochs in
the first phase. A U-matrix depicts the distances between
neighbouring map units by displaying a grey scale. In a
label map a SOM node represents a class based on a
majority voting strategy for the samples associated with
this node. In case of a draw, the first class encountered is
used. Empty nodes are not labeled. The Sammon's map-
ping analyses were implemented using the SOM Toolbox
with 100 mapping iterations, iteration step size equal to
0.2 and the Euclidian distance.

For the interaction data set, the tool inBuilder was used to
transform it into interClust input format. The cross-plat-
form tools interClust and inBuilder are available for aca-
demic researchers on request from the authors.

Graphical outputs for the relaxation maps were obtained
with the proprietary software Statistica©. Additional file 7
was created using InterViewer [40], which is freely availa-
ble at [52]. Analyses were performed on a PC with a Pen-
tium® 4 CPU.
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Additional File 1
SOM frequency map for SRBCT data It shows the distribution of sam-
ples, X(Y), over each node in Figure 5, where X represents the class label 
and Y stands for the number of Class X samples assigned to the corre-
sponding node.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-13-S1.bmp]

Additional File 2
3D visual display originating from relaxation non-linear mapping – 
SRBCT data EWS, RMS and BL samples are represented by symbols '1', 
'2', '3' respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-13-S2.bmp]
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Additional File 5
3D Relaxation non-linear mapping of the Parkinson's disease model 
data Parkinson's disease and Normal samples are identified by symbols 
'1' and '2' respectively.
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Additional File 6
3D Sammon's mapping of the Parkinson's disease model data Symbols 
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Additional File 7
Examples of key hubs in the interactome It depicts some of the hubs 
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Click here for file
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Description of protein cluster obtained from Figure 14
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Additional File 9
Leukaemia data set analysed in this paper Log ratios are used to repre-
sent the expression levels. The last column shows the class labels.
Click here for file
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Additional File 10
SRBCT data set analysed in this paper Log ratios are used to represent 
the expression levels. The last column shows the class labels.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional File 11
Parkinson's disease data set analysed in this paper Log ratios are used 
to represent the expression levels. The last column shows the class labels.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-13-S11.txt]

Additional File 12
Chromatin interaction network in C. elegans The last column shows 
the connection strength in the graph. All connections are considered 
equally.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-13-S12.txt]
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