
Vol:.(1234567890)

Journal of Neurology (2022) 269:4440–4451
https://doi.org/10.1007/s00415-022-11086-y

1 3

ORIGINAL COMMUNICATION

Validity of cingulate–precuneus–temporo‑parietal hypometabolism 
for single‑subject diagnosis of biomarker‑proven atypical variants 
of Alzheimer’s Disease

Valeria Isella1,5   · Cinzia Crivellaro2 · Anna Formenti1 · Monica Musarra2 · Sara Pacella2 · Sabrina Morzenti3 · 
Francesca Ferri1 · Cristina Mapelli1 · Francesca Gallivanone4 · Luca Guerra2 · Ildebrando Appollonio1 · 
Carlo Ferrarese1

Received: 30 December 2021 / Revised: 14 March 2022 / Accepted: 15 March 2022 / Published online: 26 March 2022 
© The Author(s) 2022, corrected publication 2022

Abstract
The aim of our study was to establish empirically to what extent reduced glucose uptake in the precuneus, posterior cingulate 
and/or temporo-parietal cortex (PCTP), which is thought to indicate brain amyloidosis in patients with dementia or MCI due 
to Alzheimer’s Disease (AD), permits to distinguish amyloid-positive from amyloid-negative patients with non-classical AD 
phenotypes at the single-case level. We enrolled 127 neurodegenerative patients with cognitive impairment and a positive 
(n. 63) or negative (n. 64) amyloid marker (cerebrospinal fluid or amy-PET). Three rating methods of FDG-PET scan were 
applied: purely qualitative visual interpretation of uptake images (VIUI), and visual reading assisted by a semi-automated 
and semi-quantitative tool: INLAB, provided by the Italian National Research Council, or Cortex ID Suite, marketed by GE 
Healthcare. Fourteen scans (11.0%) patients remained unclassified by VIUI or INLAB procedures, therefore, validity values 
were computed on the remaining 113 cases. The three rating approaches showed good total accuracy (77–78%), good to 
optimal sensitivity (81–93%), but poorer specificity (62–75%). VIUI showed the highest sensitivity and the lowest specific-
ity, and also the highest proportion of unclassified cases. Cases with asymmetric temporo-parietal hypometabolism and a 
progressive aphasia or corticobasal clinical profile, in particular, tended to be rated as AD-like, even if biomarkers indicated 
non-amyloid pathology. Our findings provide formal support to the value of PCTP hypometabolism for single-level diagnosis 
of amyloid pathophysiology in atypical AD, but also highlight the risk of qualitative assessment to misclassify patients with 
non-AD PPA or CBS underpinned by asymmetric temporo-parietal hypometabolism.
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Introduction

Research criteria for the diagnosis of Alzheimer’s Disease 
(AD), in the Mild Cognitive Impairment (MCI) or dementia 
stages [1–3], incorporate biomarkers in the diagnostic pro-
cess, converging on the recommendations about the use of 
the so-called pathophysiological biomarkers, namely Posi-
tron Emission Tomography with ligands for cerebral amy-
loid deposits (amy-PET) and Aβ, Tau and phospho-Tau in 
cerebrospinal fluid (CSF), but diverging on the role of brain 
18-fluorodeoxy-glucose PET (FDG-PET). According to the 
National Institute of Neurological and Communicative Dis-
orders and Stroke and Alzheimer’s Disease and Related Dis-
orders Association (NINCDS-ADRDA) [2], in the absence 
of markers of Aβ deposits, a specific FDG-PET pattern, i.e. 
hypometabolism in the Precuneus, posterior Cingulate and 
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posterior Temporo-Parietal (PCTP) regions, may be used as 
a marker of an underlying AD pathophysiology. On the other 
hand, the International Working Group (IWG) [3] classifies 
PCTP hypometabolism as a topographical marker, which 
maps spreading of neurodegeneration but lacks sufficient 
pathophysiological specificity.

The link between AD and PCTP hypometabolism has 
received robust support in the literature, crucially also from 
case reports and group studies including AD patients with 
post-mortem or in vivo positive markers of amyloidopathy 
[4–16]. These regions are highly interconnected and hyper-
active hubs of the default mode network, and seem to be 
particularly vulnerable to Aβ aggregation due to their high 
metabolic demands [17]. Remarkably, PCTP hypometabo-
lism has been demonstrated not only in the classical, amnes-
tic, type of AD, but also in its atypical presentations, i.e. 
the frontal [13, 14], linguistic [13–16] and visuospatial [7, 
13–15] variants. However, only a limited number of studies 
have so far assessed the validity of PCTP hypometabolism as 
an index of amyloidopathy at the single patient-level in sam-
ples with a neuropathological or biomarker-based diagnosis 
of AD [18–23]; moreover, only one study [24] considered 
a mixed, amnestic and atypical, pool of amy-positive (A+) 
and amy-negative (A − ) patients.

The current study was designed to fill this literature gap 
and test the validity of PCTP hypometabolism for single-
subject diagnosis of Aβ-related cognitive deficits in a spe-
cific clinical scenario: diagnostic work up of referrals to 
a tertiary memory clinic, with a focus on atypical presen-
tations of AD, in various disease stages. All patients had 
undergone amy-PET or CSF as pathophysiological biomark-
ers, which were used as gold standard for a clinico-biologi-
cal diagnosis of AD.

Recent consensus recommendations from the European 
Association of Nuclear Medicine and European Academy 
of Neurology (EANM-EAN) [25], emphasised the useful-
ness of semi-automated processing to assist visual reading, 
thus we also compared the validity of PCTP assessed with 
a purely qualitative approach, consisting in the visual inter-
pretation of uptake images (VIUI), with two automated tools 
that allow semi-quantification of FDG-uptake and compari-
son with an age-matched database of healthy controls.

Materials and methods

Participants

We reviewed medical records (incorporating neurological 
examination, MiniMental State Examination—MMSE—
score and neuroimaging reports) of subjects referred for 
cognitive disturbances to the memory clinic of San Gerardo 
Hospital, Monza, between January 2015 and January 2020. 

Criteria for eligibility were the following: (1) diagnosis of 
dementia or MCI according to NINCDS-ADRDA criteria, 
or of preclinical AD defined as an asymptomatic condition, 
at the time of FDG-PET, with biomarker evidence of AD 
pathology, or converted to MCI/dementia at follow-up [1–3]; 
(2) availability of brain FDG-PET scan performed as part 
of the routine diagnostic work up within six months from 
neurological assessment; (3) availability of a physiopatho-
logical biomarker for amyloid status (amyloid-PET or Tau/
Aβ ratio in CSF) performed for research purposes, or pres-
ence of a genetic mutation for a neurodegenerative disor-
der. Individual, syndrome-level diagnoses did not take into 
account the results of brain FDG-PET scan and were based 
on standardised criteria for amnestic AD [2], Posterior Corti-
cal Atrophy (PCA) [26], behavioural variant Frontotemporal 
Dementia (bFTD) [27], Dementia with Lewy Bodies (DLB) 
[28], Corticobasal Syndrome (CBS) [29], Primary Progres-
sive Aphasia (PPA) [30], or Progressive Supranuclear Palsy 
(PSP) [31].

Exclusion criteria were evidence of moderate-to-severe 
vascular burden on structural neuroimaging or history of 
other neurological disorders, major psychiatric diseases, 
brain injury, mental insufficiency, substance abuse, severe 
medical conditions.

All participants were unpaid volunteers and gave written 
informed consent for participation. The study was approved 
by our institution's ethics committee, Comitato Etico Bri-
anza, and was carried out in accordance with the ethical 
standards of 1964 Declaration of Helsinki and its later 
amendments.

Acquisition and processing of FDG‑PET scans

All scans were acquired with the same General Electric Dis-
covery LS PET/CT scanner in our Nuclear Medicine Unit, 
within 6 months from the neurological assessment.

Patients were instructed to fast for at least 6 hours. 
Before the exam, they were measured blood glucose levels 
(whole sample’s mean levels: 105.0 ± 19.6 mg/dL), and then 
received an intravenous bolus of approximately 200 MBq of 
18F-FDG. After lying supine in a quiet, dimly lit room for 
approximately 45 min, they were transferred to the scanner. 
First, a CT scan was performed for attenuation correction, 
then PET images were acquired for 15 min, with a thickness 
of 3.27 mm and a matrix of 128 × 128 pixels. Subsequent 
image reconstruction followed an ordered subset expectation 
maximisation (OSEM) algorithm.

Processing of PET images with INLAB

INLAB is a validated automated service for analysis of 
PET images [32] based on Statistical Parametric Mapping 
(SPM; http://​www.​fil.​ion.​ucl.​ac.​uk/​spm) developed by the 

http://www.fil.ion.ucl.ac.uk/spm
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Bioimaging Lab of the Italian National Research Council 
(https://​www.​ibfm.​cnr.​it/), and freely available online. Indi-
vidual patients’ PET scans are uploaded as DICOM files 
archived together in.zip format. They are reoriented along 
the anterior–posterior commissure, spatially normalised to 
an FDG-PET dementia-specific template [33], smoothed 
with an isotropic 3D Gaussian kernel of 8 mm FWHM, and 
proportionally scaled to a whole-brain mean intensity value. 
Pre-processed images are then tested for relative hypome-
tabolism by comparison with a reference group of 112 
healthy controls [34], using the two sample t-test design of 
SPM5, including age as covariate. Cluster-level significance 
threshold is set at p < 0.05 FWE-corrected, and only clusters 
with a minimum size of 100 voxels are retained. Areas of 
significant hypometabolism are finally displayed as areas of 
black and white shading on a three-orientation ‘glass brain’, 
as well as in a colour statistical parametric map. A table 
reporting set-, cluster- and voxel-level statistics and anatomi-
cal coordinates of significant clusters is also produced. All 
outputs can be downloaded as .pdf documents (Fig. 1).

Processing of PET images with Cortex ID Suite

Cortex ID Suite is a software package developed and mar-
keted by GE Healthcare (Waukesha, WI, USA) that com-
putes individual patients’ mean FDG-uptake for cerebellum 
and pons, also used as reference regions for scaling, and 12 
supratentorial, bilateral regions of interest (ROI): lateral and 
mesial prefrontal cortex, anterior and posterior cingulate, 
sensorimotor cortex, precuneus, superior and inferior pari-
etal lobe, lateral and mesial temporal cortex, lateral occipital 
cortex, and primary visual cortex. Patients’ mean values are 
compared with those of an inbuilt dataset of scans from 294 
healthy controls. Results of this comparison are shown in 
a colour map projected on a 3D stereotactic surface, with 
manipulable colour scale, and also expressed as Z-scores 
displayed in a table, with a Z-score ≤  − 2.0 as cutoff for 
significant hypometabolism. All outputs can be downloaded 
as .pdf documents (Fig. 1).

Rating of PET images

PET images were all assessed by one rater, M.M., a Nuclear 
Medicine specialist with over 20 years of experience reading 
PET scans, who was blinded to clinical diagnosis and bio-
marker status. For the VIUI rating procedure, a second, inde-
pendent, rater, S.P., a last-year resident in Nuclear Medicine, 
was involved, with the aim to evaluate inter-rater reliability 
between two assessors with different levels of expertise.

VIUI was based solely on visual inspection of qualitative 
images, which were displayed on a terminal on which ori-
entation (axial, coronal, and sagittal) and colour scale could 
be manipulated (Fig. 1). INLAB rating was based on visual Fi
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inspection of colour statistical parametric maps and glass 
brain images, and on semi-quantitative indices provided by 
SPM. Cortex ID Suite rating was based on visual inspection 
of 3D colour maps and on the Z-scores computed by the 
software.

The rater was asked to focus on PCTP regions, rate them 
as normal/hypometabolic/unclassifiable, and made a judge-
ment about whether or not the observed pattern reflected 
a diagnosis of AD. Specifically, following criteria similar 
to those applied in previous studies [21, 22, 35], images 
consistent with AD were agreed upon a priori to show 
hypometabolism in the precuneus/posterior cingulate and/
or temporo-parietal regions, either restricted to these areas, 
or clearly predominant in these areas than in the frontal, 
fronto-parietal or occipital regions.

The three ratings (VIUI and evaluation of INLAB and 
Cortex ID Suite outputs) were performed in three distinct 
sessions, blinded to the results of prior ratings.

Statistical analysis

Statistical analysis was performed with SPSS version 27.0 
(IBM Corp., Armonk, NY, USA) or MedCalc Statistical 
Software version 20.027 (MedCalc Software bv, Ostend, 
Belgium; https://​www.​medca​lc.​org; 2020).

Comparisons between A+ and A − cases were carried out 
with Student’s t-test for continuous variables (age, disease 
duration, MMSE score) and Chi-square test for categorical 
variables (sex), setting threshold for significance at p < 0.05.

Total accuracy, sensitivity, specificity and positive and 
negative predictive values (PPV, NPV) were calculated as 
measures of the validity of PCTP hypometabolism to clas-
sify correctly A+ and A − cases. They were computed for 
each of the three PET scans rating methods. Positive and 
negative Likelihood Ratios (+ LR, − LR) were also cal-
culated, with the formulas: sensitivity/(100—specificity), 
(100—sensitivity)/specificity. A +LR value > 1 means that 
a positive test is more likely to occur in patients with the 
condition (i.e. Aβ pathology) than in those without the con-
dition, while a − LR value < 1 means that a negative test 
is more likely to occur in patients without the condition 

than in those with the condition. Differences in accuracy 
between the three rating methods were tested for statistical 
significance by computing receiver-operating characteris-
tic (ROC) curves and comparing the areas under the curve 
(AUC) using DeLong et al. methodology [36], in MedCalc.

Fleiss kappa was run to determine the degree of concord-
ance between the three rating methods, and Cohen’s kappa 
was run to measure inter-rater reliability for VIUI.

Results

Characteristics of the study sample

From an initial pool of 150 patients meeting inclusion cri-
teria, we excluded 23 cases due to the reasons detailed in 
Fig. 2.

The final study sample was, therefore, composed by 127 
patients, whose general features are shown in Table 1. They 
all met criteria for MCI or dementia, except three, who 
were in a preclinical disease stage: all three complained of 
word finding difficulties at the time of FDG-PET, and later 
converted to PPA (n. 2) or (CBS) (n. 1). Sixty-three out 
of 127 (49.6%) were A+ and 64 A − (Table 1). The two 
groups showed overlapping age (t = 0.014, p = 0.989) and 
sex distribution (x2 = 0.378, p = 0.593); mean MMSE score 
(t = − 1.916, p = 0.058) and disease duration (t = 1.859, 
p = 0.066) were marginally not significant. CSF (with Tau/
Aβ ratio ≥ 1.0 as cutoff for amyloid positivity [37]) was the 
most frequent biomarker, being available in 94/127 (74.0%) 
cases (40 A+ and in 54 A − ). There were only three cases 
of genetic mutations: one Presenilin 1 and one Presenilin 2 
presenting as PCA, and one Progranulin presenting with pre-
dominant language deficits. The remaining 30 patients (19 
A+ and 11 A − ) had PET with amyloid tracer as biomarker 
([18F]Flutemetamol in 13 cases, [18F]Florbetapir in 12, and 
[18F]Florbetaben in 10, analysed qualitatively in most cases). 
Within the A+ group, the amnestic and PCA presentations 
accounted for more than half of all cases, while the most 
prevalent phenotypes within the A − group were CBS and 
PPA, followed by bFTD (overall significance for comparison 

Fig. 2   Flowchart of patients 
enrolment in the study

https://www.medcalc.org
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of proportion of the different syndromes between the two 
groups: x2 = 42.372, p = 0.0001). Within each clinical 
syndrome, the proportion of A+ patients was as follows: 
9/26 PPA (34.6%), 9/25 CBS (36.0%), 20/24 amnestic AD 
(83.3%), 17/18 PCA (94.4%), 4/15 bFTD (26.7%), 1/6 DLB 
(16.7%), 1/5 not otherwise specified syndrome (20.0%), 0/5 
PSP, and 2/3 subjective complaints (66.7%).

Results of analyses on FDG‑PET ratings

In 14 out of 127 patients (11.0%), PET scans could not be 
rated as positive or negative by VIUI (n. 9), on INLAB 
images (n. 1), or by both VIUI and INLAB procedures (n. 
4), while Cortex ID Suite allowed to reach a clear-cut con-
clusion in all cases. Their main demographic, clinical and 
PET imaging features are reported in the Supplementary 
material. Most (11/14, 78.6%) were A − patients for which 
the two raters could not rule out significant PCTP hypome-
tabolism, and approximately half of them showed impair-
ment of language.

Inter-rater reliability for VIUI was calculated on all 127 
cases, while validity values were calculated on the 113 
patients whose scans could be rated as either normal or 
hypometabolic.

Inter‑rater reliability for VIUI

Cohen’s k indicated high agreement between the two Nuclear 
Medicine physicians in defining presence/absence of PCTP 
hypometabolism (0.83 [95% CI 0.70 to 0.97], p = 0.000).

There were 11 discordant ratings: four scans were rated as 
AD-like by M.M. and as negative by S.P., three were rated 
as AD-like by S.P. and as negative by M.M., and four were 
rated as AD-like (two) or negative (two) by M.M. and as 
unclassifiable by S.P.

Agreement between the three rating methods

VIUI showed moderate agreement with both rating of 
INLAB maps and rating of Cortex ID Suite maps (Table 2). 
In most of the 21 discrepant cases, PCTP regions were rated 
as hypometabolic on VIUI and as normal in INLAB images 
(n. 16, 88.9%) and Cortex ID Suite images (n. 14, 66.7%).

Between the two automated methods, agreement was 
strong (Table 5), and the majority of the 11 discrepancies 
(n. 9, 81.8%) were scans rated as AD-like on Cortex ID Suite 
output and as normal on INLAB output.

Results of validity analysis

Total accuracy of PCTP hypometabolism in classifying A+ 
and A − cases was around 77% for all three rating proce-
dures (Table 3). Sensitivity and NPV were generally high 
(ranging from 81 to 93% and from 79 to 89%, respectively), 
while specificity and PPV were generally lower (ranging 
from 62 to 75% and from 72 to 77%, respectively). +LR 
ranged from 2.4 to 3.2, and − LR from 0.25 to 0.11. VIUI 
showed the highest sensitivity, NPV and − LR, while rating 
of INLAB images showed the highest specificity, PPV and 
+LR.

Table 1   Demographic and 
clinical characteristics of the 
study cohort

All values are means ± standard deviation, unless otherwise stated
a Later diagnosed one with corticobasal syndrome and the other with primary progressive aphasia
b  Later diagnosed with primary progressive aphasia

Total sample Amyloid-positive Amyloid-negative
n. 127 n. 63 n. 64

Age 69.3 ± 8.3 69.3 ± 8.9 69.3 ± 7.8
Sex—n. men (%) 72 (56.7%) 34 (54.0%) 38 (59.4%)
MiniMental State Examination 22.9 ± 5.2 22.0 ± 5.4 23.8 ± 4.9
Years from onset to FDG-PET 2.5 ± 1.6 2.8 ± 1.7 2.3 ± 1.5
Clinical syndrome—n. (%):
 Primary progressive aphasia 26 (20.5%) 9 (14.3%) 17 (26.6%)
 Corticobasal syndrome 25 (19.7%) 9 (14.3%) 16 (25.0%)
 Amnestic presentation 24 (18.9%) 20 (31.7%) 4 (6.2%)
 Posterior cortical atrophy 18 (14.2%) 17 (27.0%) 1 (1.6%)
 Behavioural fronto-temporal dementia 15 (11.8%) 4 (6.3%) 11 (17.2%)
 Lewy body disease 6 (4.7%) 1 (1.6%) 5 (7.8%)
 Not otherwise specified 5 (3.9%) 1 (1.6%) 4 (6.2%)
 Progressive supranuclear palsy 5 (3.9%) 0 5 (7.8%)
 Subjective cognitive complaints 3 (2.4%) 2 (3.2%)a 1 (1.6%)b
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Comparison of AUCs between the three rating methods 
(Fig. 3) did not show significant differences (p = 0.9277 
between VIUI and INLAB, p = 0.8611 between VIUI and 
Cortex ID, p = 0.7182 between INLAB and Cortex ID).

Characteristics of misclassified cases

A total of 40 patients were misclassified by one or more 
of the three rating methods: 28 were false positive, i.e. 
A − cases whose PCTP regions were rated as hypometa-
bolic, and 12 were false negative, i.e. A+ cases without evi-
dence of significant PCTP hypometabolism.

Table 4 shows the main characteristics of the 12 false-
negative cases, seven of which were false negative for two or 
more rating methods. These patients were overall relatively 
old: 11/12 (91.7%), were above 70 years of age and their 
mean age (74.5 years ± 3.1) was 5 years older than the entire 
study sample’s. They also were in an initial disease stage: 
eight (66.7%) showed a maximum symptoms duration of 
2 years, and seven (58.3%) had an MMSE score ≥ 26/30. 
Finally, they showed diverse clinical presentations, but the 
amnestic phenotype was slightly prevalent (n. 5, 41.7%).

In all eight misclassified cases with CSF as biomarker, the 
Tau/Aβ ratio was well above cutoff for amyloid positivity. 
As to FDG-PET scans, most patients (n. 8, 66.7%) showed 
hypometabolism in the fronto-temporal or fronto-parietal 
regions.

Table 5 displays the main characteristics of the 28 cases 
misclassified as false positive, half of which were false 
positive for two or more rating methods. Fifteen (53.4%) 
were below 70 years of age, and 11 (39.3%) had a pre-senile 
onset. The great majority were in an early disease stage or 
were only mildly impaired (n. 20, 71.4%, had an MMSE 

Table 2   Results of Fleiss kappa analysis for the three FDG-PET rating procedures

VIUI  visual interpretation of uptake images

INLAB VIUI

Positive Negative

 Positive 59 2
 Negative 16 36

Agreement: 84.1%
κ = .67 [95% CI, .60 to .74] (p = .000)

Cortex ID Suite VIUI

Positive Negative

 Positive 61 7
 Negative 14 31

Agreement: 81.4%
κ = .60 [95% CI, .52 to .68] (p = .000)

Cortex ID Suite INLAB

Positive Negative

 Positive 59 9
 Negative 2 43

Agreement: 90.3%
κ = .80 [95% CI, .74 to .86] (p = .000)

Table 3   Validity in identifying amyloid-positive and amyloid-nega-
tive patients of hypometabolism at the level of precuneus, posterior 
cingulate and temporo-parietal regions

Values are displayed for all three rating methods
VIUI visual interpretation of uptake images

VIUI INLAB Cortex ID Suite

n. True positive 54 47 50
n. True negative 34 41 37
n. False positive 21 14 18
n. False negative 4 11 8
Sensitivity 93.1% 81.0% 86.2%
Specificity 61.8% 74.6% 67.3%
Positive predictive value 72.0% 77.1% 73.5%
Negative predictive value 89.5% 78.9% 82.2%
Total accuracy 77.9% 77.9% 77.0%
Positive likelihood ratio 2.44 3.18 2.63
Negative likelihood ratio 0.11 0.25 0.21
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score ≥ 24, and n. 24, 85.7%, a score ≥ 20). Two pheno-
types were prevalent: 11 patients (39.3%) had CBS and 8 
(28.6%) PPA; the next more frequent diagnosis was DLB (n. 
4, 14.3%). Notably, in addition to the cases of progressive 
aphasia, six more patients, five with CBS and the patient 
with the Progranulin mutation, also showed remarkable lan-
guage deficits. The great majority of these patients (n. 21, 

75.0%) had CSF as biomarker. Only in one case (FP22) was 
the Tau/Aβ ratio close to the cutoff for amyloid positivity.

With regard to FDG scans, in most of these patients, 
hypometabolism within the PCTP system encompassed the 
temporo-parietal carrefour (n. 13, 46.4%) or the precuneus/
posterior cingulate and the parietal cortex (n. 10, 35.7%), 
and was asymmetric (n. 20, 71.4%), with a left-hemisphere 

Fig. 3   Receiver-operating characteristic curves and areas under the curve (AUC) for the three rating methods

Table 4   Individual demographic and clinical characteristics of amyloid-positive cases without significant precuneus, posterior cingulate and 
temporo-parietal (PCTP) hypometabolism (false negative, FN)

AMN amnestic, bFTD behavioural fronto-temporal dementia, BIL bilateral, CSF cerebrospinal fluid, CBS corticobasal syndrome, L left, DLB 
dementia with Lewy bodies, MMSE MiniMental State Examination, NOS not otherwise specified, PCA posterior cortical atrophy, PPA primary 
progressive aphasia, R right, SD semantic dementia
Misclassified by avisual interpretation of uptake images
b INLAB
c Cortex ID Suite

Age Syndrome Months
onset-PET

MMSE Biomarker Tau/Aβ
ratio

Summary of hypometabolic regions

FN1abc 73 SD 12 28 PET – L > R Basal temporal cortex
FN2abc 74 DLB 30 23 PET – BIL insular and occipito-parietal cortex
FN3abc 76 AMN 24 26 CSF 3.08 R > L fronto-temporal cortex
FN4abc 76 bFTD 24 16 CSF 1.75 R fronto-temporal cortex
FN5bc 73 AMN 12 26 CSF 2.32 BIL frontal cortex
FN6bc 77 PCA 12 26 PET – BIL fronto-parietal cortex
FN7bc 73 PCA 48 27 CSF 2.75 BIL fronto-parietal, occipital and 

mesial temporal cortex
FN8b 76 CBS 16 28 CSF 1.62 L > R fronto-parietal cortex
FN9b 73 AMN 48 22 PET – L fronto-temporal cortex
FN10b 78 AMN 36 27 CSF 1.41 R mesial temporal cortex
FN11b 78 NOS PPA 24 18 CSF 1.65 L > R Ant cing, left par, mes occipital
FN12c 67 AMN 12 24 CSF 1.42 L fronto-parietal and occipital cortex



4447Journal of Neurology (2022) 269:4440–4451	

1 3

Table 5   Individual demographic and clinical characteristics of amyloid-negative cases with significant precuneus, posterior cingulate and tem-
poro-parietal (PCTP) hypometabolism (false positive, FP)

n.a. not available (results of CSF analysis were reported as ‘indicative of Alzheimer’s Disease’ but no numerical value was provided)
AMN Amnestic, bFTD behavioural fronto-temporal dementia, BIL bilateral, CSF cerebrospinal fluid, CBS corticobasal syndrome, L left, LBD 
Lewy body disease, MMSE MiniMental State Examination, NOS not otherwise specified, PCA posterior cortical atrophy, PPA primary progres-
sive aphasia, R right, SD semantic dementia
Misclassified by: avisual interpretation of uptake images
b INLAB
c Cortex ID Suite
d Predominant impairment of speech

Age Syndrome Months
onset-PET

MMSE Biomarker Tau/Aβ ratio Summary of hypometabolic regions

Outside PCTP Within PCTP

FP1abc 73 CBSd 48 26 PET – L > R fronto-temporal cortex L > R all areas
FP2abc 76 CBS 12 26 CSF 0.78 L > R fronto-temporal cortex L precuneus, L > R

Temporo-parietal cortex
FP3abc 64 CBS 48 25 CSF n.a – Precuneus/cingulate, R > L 

parietal cortex
FP4abc 55 CBSd 18 23 CSF 0.14 L > R frontal cortex L > R precuneus and temporo-

parietal cortex
FP5abc 79 CBS 12 20 CSF 0.51 BIL frontal cortex Precuneus/cingulate, BIL 

parietal cortex
FP6abc 74 DLB 42 15 CSF 0.45 – BIL all areas
FP7abc 67 AMN 18 21 CSF 0.38 BIL frontal cortex BIL all areas
FP8abc 73 AMN 72 26 CSF 0.79 – Precuneus/cingulate, L > R 

parietal cortex
FP9abc 70 Logopenic PPA 48 25 CSF 0.85 – L > R all areas
FP10abc 68 NOS PPA 24 30 CSF 0.11 L inferior temporal cortex L temporo-parietal cortex
FP11abc 68 Progranulind 48 15 Genetics – L fronto-temporal cortex L temporo-parietal cortex
FP12ab 58 CBSd 12 27 CSF 0.26 BIL frontal cortex Precuneus/cingulate, R > L 

parietal cortex
FP13bc 77 SD 24 25 PET – L > R fronto-temporal cortex Precuneus/cingulate, L > R 

parietal cortex
FP14bc 61 CBS 12 25 CSF 0.17 L frontal cortex Precuneus/cingulate, L parietal 

cortex
FP15a 69 CBS 48 26 PET – – BIL temporo-parietal cortex
FP16a 66 CBSd 18 25 CSF 0.52 – L > R temporo-parietal cortex
FP17a 66 CBSd 36 8 CSF 0.32 – L > R temporo-parietal cortex
FP18a 66 SD 36 29 PET – L > R frontal cortex L > R temporo-parietal cortex
FP19a 71 SD 24 24 PET – L > R fronto-temporal cortex L > R temporo-parietal cortex
FP20a 66 LBD 36 11 CSF 0.49 BIL frontal cortex BIL temporo-parietal cortex
FP21a 72 bFTD 12 26 CSF 0.27 BIL frontal cortex Precuneus, BIL temporo-pari-

etal cortex
FP22a 63 SD 24 28 CSF 0.96 BIL fronto-temporal cortex BIL temporo-parietal cortex
FP23a 68 SD 12 30 CSF 0.24 BIL frontal cortex L temporo-parietal cortex
FP24c 56 NOS PPA 12 25 CSF 0.57 L > R frontal cortex Precuneus/cingulate, L > R 

parietal cortex
FP25c 79 bFTD 48 27 PET – L fronto-temporal cortex Precuneus/cingulate, L parietal 

cortex
FP26c 82 LBD 24 27 CSF 0.13 R > L fronto-temporal and 

occipital cortex
Precuneus/cingulate, R > L 

parietal cortex
FP27c 77 LBD 12 25 CSF 0.37 BIL occipito-temporal cortex Precuneus/cingulate, BIL 

parietal cortex
FP28c 73 CBS 12 22 CSF 0.21 L > R frontal cortex L > R all areas
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predominance (n. 17, 60.7%). Additional clusters of reduced 
FDG-uptake were reported in the frontal or fronto-temporal 
regions in the majority of patients (n. 19, 67.9%); only in 
seven cases (25.0%), no other area of hypometabolism was 
evident outside PCTP.

Discussion

FDG-PET neuroimaging is considered an essential part of 
the diagnostic algorithm for dementia [25, 38, 39]. In this 
study, we investigated the role of hypometabolism in PCTP 
areas in predicting the presence of Aβ pathology at the 
individual level, in patients with atypical MCI or dementia 
whose amyloid status was established by CSF, amy-PET, 
or presence of a genetic mutation. Hypometabolism was 
assessed through three different approaches: purely qualita-
tive VIUI, and visual + semi-quantitative assessment based 
on either INLAB or Cortex ID Suite softwares. The three 
procedures all showed good (77–78%) total accuracy, good 
to optimal sensitivity (81 to 93%), but poorer specificity (62 
to 75%), in agreement with the results from prior studies 
that converged in showing high sensitivity (85–94%) but 
more diverse specificity (50–83%) [18–20, 23, 24]. VIUI, 
which is clinically the most used approach, also showed a 
good agreement between the expert rater and the Nuclear 
Medicine resident, indicating that the procedure does not 
require extremely advanced skills.

The generally high sensitivity of PCTP hypometabo-
lism for amyloid positivity in classical as well as atypical 
presentations of AD (more than 68% of A+ cases had a 
non-amnestic syndrome) is in agreement with prior struc-
tural and functional neuroimaging studies showing that the 
involvement of these regions is a common feature of AD, 
irrespective of the clinical phenotype [6, 7, 13–16, 40, 41], 
and further supports the idea that this metabolic signature of 
AD mirrors disease pathophysiology over and above symp-
toms profile. VIUI, in particular, showed higher sensitivity 
than INLAB and Cortex ID Suite maps and computations. 
This finding comes as a confirmation of past evidence sug-
gesting that the overall superiority of semi-quantitative over 
qualitative reading does not relate to sensitivity, rather to 
specificity, and varies greatly across tools [8, 25, 42, 43]. 
Morbelli et al. [43] posited that trained readers might be 
able to detect minor but meaningful abnormalities that do 
not reach the threshold for significance on statistical maps. 
As an example, readers have the possibility to base their 
evaluation on inter-hemispheric asymmetries, which only 
few automated tools allow to compute [43].

Scrutiny of socio-demographic and clinical features of 
our 12 false-negative cases highlighted some relatively con-
sistent features (e.g. they were generally old and in an early 
disease stage), but was not helpful in identifying clear-cut 

reasons for their misclassification. Certain characteristics of 
our 28 false-positive cases, on the other hand, provide an at 
least partial account for the lower specificity found for PCTP 
hypometabolism. The majority of these patients, whose bio-
markers suggested non-amyloid pathophysiology but who 
were regarded as having an AD-like FDG pattern, had a 
diagnosis of CBS (some with predominant language distur-
bances) or PPA, and showed hypometabolism involving the 
parietal, temporo-parietal and/or temporal areas, quite often 
with an asymmetric distribution. In PPA, the poor specific-
ity of quantitative and qualitative FDG-PET in predicting 
underlying pathology, especially in cases with asymmetric 
PCTP hypometabolism, had already been pointed out [6, 
44, 45]. Altogether, these features suggest that the rater did 
not fail in judging presence or absence of significant PCTP 
hypometabolism, rather misinterpreted true PCTP hypo-
metabolism as an index of amyloid pathology, while it was 
a correlate of the clinical syndrome. In fact, some of the 
symptoms typical of CBS or of (at least some subtype of) 
PPA, such as limb apraxia, spatial deficits, or impairment 
of speech, show degeneration of the parietal and temporal 
cortex [46–52].

An additional characteristic common to several false-pos-
itive cases was the presence of quite diffuse FDG abnormali-
ties, both within and outside the PCTP system (in particular 
at the level of the frontal lobes). This suggests that in these 
cases, the areas of hypometabolism typical for AD might 
be involved secondarily to the spreading of neurodegenera-
tion from the networks initially targeted by non-AD pathol-
ogy. For instance, six false-positive PPAs were patients 
with semantic dementia in whom the typical basal temporal 
abnormalities appeared to extend to the posterior temporal 
and inferior parietal cortex.

Specificity was particularly poor for purely qualitative 
VIUI (the major number of—false–—positives was in fact 
the main reason for the relatively poor agreement between 
this procedure and the two semi-quantitative ratings). Inter-
estingly, VIUI also showed the highest proportion of unclas-
sified cases, who were for the most part A − patients in 
whom raters could not disambiguate doubtful PCTP abnor-
malities. As established by EANM-EAN Delphi round [25], 
in these cases, quantitative methods may be helpful in pro-
viding confirmation on the significance of such abnormali-
ties, and increase specificity.

The main limitation of the present study resides in the 
absence of an autopsy confirmation of the biomarker-based 
diagnoses, which would have first allowed to overcome pos-
sible shortcomings of having used different types of in vivo 
biomarkers as gold standard, even if amy-PET and CSF 
are generally considered interchangeable [2, 3]. Moreover, 
autopsy-based diagnosis would have allowed to detect possi-
ble cases of mixed pathology, whose presence in our sample 
may have resulted in an underestimation of the accuracy of 
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FDG-PET in detecting brain amyloidosis. In fact, like in 
previous studies [21, 22, 35], we did not consider hypome-
tabolism in AD-typical regions as an index of brain amy-
loidosis when there was more prominent hypometabolism 
elsewhere in the brain (as may be seen in the presence of co-
pathology). We believe, though, that this risk was limited: 
none of our 12 false-negative cases showed significant PCTP 
hypometabolism in addition to hypometabolism outside of 
PCTP, reducing the probability that they were cases of mixed 
pathology. A second limitation was the lack of information 
about apolipoprotein E4 allele status, which has been shown 
to be associated with an AD-like metabolic pattern unrelated 
to amyloid deposition [53, 54] and might, therefore, account 
for some of our false-positive cases. Third, we are aware that 
several automated methods for the assessment of FDG-PET 
scans are available, and that our conclusions on INLAB and 
Cortex ID Suite are not generalizable to all semi-quantitative 
techniques. Fourth, our findings were obtained in a hetero-
geneous population of MCI/dementia referrals to a tertiary, 
university-based memory clinic, and might not be readily 
generalizable to other clinical settings. Finally, the procedure 
followed in the study for VIUI does not completely overlap 
with the real clinical routine, whereby raters are not blinded 
to clinical information. This deviation from clinical practice, 
however, has probably led to an underestimation, and not 
a misleading overestimation, of performance of qualitative 
rating, since access to patients’ clinical records would have 
probably increased accuracy.

Our study overall supports the usefulness of PCTP hypo-
metabolism in identifying biomarker-confirmed amyloido-
pathy at the single-patient level, but, as already emerged 
from previous reports [18–21, 23, 24], is sensitive more than 
it is specific. Importantly, this evidence was achieved in a 
particularly challenging scenario, since our cohort included 
patients in various disease stages and with classical as well 
as atypical variants of AD. Qualitative rating of FDG scans 
showed particularly high sensitivity, but lower specificity 
than visual rating combined with semi-quantitative data. 
Asymmetric, left temporo-parietal hypometabolism associ-
ated with language deficits, in particular, tended to be mis-
taken for a marker of amyloid pathophysiology. As recom-
mended by Nuclear Medicine and Neurology experts [25], 
resorting to automated methods in such cases, or in cases 
with ambiguous patterns, would increase the rate of clear-
cut classifications and yield the best sensitivity–specificity 
trade off.
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