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ABSTRACT
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes 
a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have 
been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs 
of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we 
aim to define the ebolavirus species-specific virulence on the basis of currently available labora
tory and experimental findings. In addition, this review will also cover the variant-specific viru
lence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant 
Makona, a new EBOV variant isolated from the 2013–2016 EBOV disease outbreak in West Africa. 
A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate 
our comprehensive knowledge on genus Ebolavirus biology, leading to the development of 
therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
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Introduction

Ebola virus disease (EVD) is an acute viral zoonotic 
disease with high case fatality rates (CFRs) reaching as 
high as 90%. The disease is characterized by sudden 
onset of high fever, gastrointestinal symptoms includ
ing diarrhea and vomiting, respiratory symptoms, 
rash, conjunctival injection, and hemorrhagic mani
festations. Fatal cases terminate in hypovolemic shock 
and multiorgan failure [1,2]. Ebola virus (EBOV), the 
causative agent of EVD, is a negative-sense, single- 
stranded RNA virus in the genus Ebolavirus of the 
family Filoviridae. In the genus Ebolavirus, there 
have been six virus species classified that each have 
a single type virus [1,3]. Among them, EBOV is often 
referred to as the most virulent ebolavirus, in large 
part because EBOV has been responsible for the 
majority of Ebola disease outbreaks thus far, including 
several epidemics with significantly high CFRs (>70%) 
[1,4,5]. Aside from the epidemiological aspect, some 
laboratory and experimental findings also indicate that 
virulence/pathogenicity of ebolaviruses in humans dif
fers among viruses belonging to each distinct species. 
In this review, we aim to define the virus species- 
specific difference on the basis of laboratory and 
experimental findings, including molecular insights. 
We first outline current knowledge on EBOV patho
genesis based on three aspects, such as clinical, in vivo, 
and in vitro studies. We then interpret the distinct 

virulence profiles among the ebolaviruses belonging 
to the different species and further discuss the 
research gaps in our understanding of this species- 
specific pathogenicity of ebolavirus in humans. 
Finally, this review deliberates recent findings of viru
lence of the EBOV-Makona variant, a newly identified 
EBOV variant from the largest EVD outbreak in West 
Africa in 2013–2016, which exhibits unique virulence 
characteristics compared to the known EBOV var
iants/strains.

Molecular biology of ebolaviruses

The EBOV comprises negative-sense, single-stranded 
RNA genome that consists of seven genes, encoding 
the nucleoprotein (NP), virion protein 35 (VP35), 
VP40, the glycoprotein (GP), VP30, VP24, and the 
RNA-dependent RNA polymerase (L) [6]. 
Additionally, soluble GP and small soluble GP are 
encoded by the GP gene [7–9]. The termini of the 
genome comprise a 3′ leader and a 5′ trailer that con
tain replication/transcription promoters and genome 
packaging signals. The EBOV particles possess 
a ribonucleoprotein (RNP) complex, consisting of the 
viral genome RNA encapsidated in the NP, VP35, 
VP30, VP24, and L, surrounded by a viral matrix pro
tein VP40 and a host-derived envelope studded with 
GP spikes (Figure 1). The L, along with VP35, 
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a polymerase cofactor, and viral transcription factor 
VP30 drive replication of the viral genome and tran
scription of the genes [10,11]. While VP40 is essential 
for virion assembly and budding [12–14], GP mediates 
viral entry, including attachment to receptor molecules 
and membrane fusion [15,16]. The VP24 plays a key 
role in condensing viral nucleocapsids, which is impor
tant for efficient packaging of genome/nucleocapsid 
into the virion [17–22].

Taxonomy of ebolaviruses

Ebolaviruses belong to the family Filoviridae, which com
prises six virus genera, including Ebolavirus, 
Marburgvirus, Cuevavirus, Dianlovirus, Striavirus, and 
Thamnovirus [3]. In the genus Ebolavirus, six species 
that each have a single type virus have been identified to 
date: Zaire ebolavirus with type virus Ebola virus (EBOV), 
Sudan ebolavirus with type virus Sudan virus (SUDV), 
Bundibugyo ebolavirus with type virus Bundibugyo virus 
(BDBV), Tai Forest ebolavirus with type virus Taï Forest 
virus (TAFV), Reston ebolavirus with type virus Reston 
virus (RESTV), and Bombali ebolavirus with type virus 
Bombali virus (BOMV) [1,3]. The average amino acid 
identity among all viral proteins between viruses belong
ing to genus Ebolavirus ranges from 60% to 80% [23].

Note that the term “species” used throughout this 
review refers to “virus species.” In addition, we use the 
term “Ebola disease” to describe all diseases caused by 
the infection of viruses belonging to genus Ebolavirus, 
and the terms “Ebola virus disease (EVD),” “Sudan 

virus disease (SVD),” and “Bundibugyo virus disease 
(BVD)” to describe each Ebola disease that is subcate
gorized according to its causative agent [24].

Outbreaks and CFRs for ebolavirus infections

Although all ebolaviruses, except for BOMV, are 
known to infect humans, CFRs of ebolavirus infections 
vary, ranging from no fatalities (0% CFR) in RESTV 
and TAFV infections to reaching up to 90% of EBOV 
infection (Figure 2) [5]. EBOV has been responsible for 
the majority of Ebola disease outbreaks to date since its 
first discovery in 1976, including the largest EVD out
break in history that occurred in West Africa in 
2013–2016 [1,4,5]. Despite its magnitude, the CFR for 
the 2013–2016 West Africa EVD outbreak was 40%, 

Figure 1. Genomic organization and viral particle of ebola
viruses. The single-stranded, negative-sense genome consists 
of a linear RNA molecule of approximately 19 kb that is com
posed of seven genes: NP, VP35, VP40, GP, VP30, VP24, and 
L. The viral particles are filamentous in shape, consisting of 
a nucleocapsid core surrounded by a viral matrix protein VP40 
and a host-derived envelope studded with GP spikes.

Figure 2. Ebola disease outbreaks and case fatality rates (CFRs) 
of EBOV, SUDV, and BDBV infections. Forest plot shows the 
average CFRs and 95% confidence intervals (CIs) for the Ebola 
disease outbreaks by fixed-effect model with inverse-variance 
weighting. Meta-analysis was performed using R software with 
the metaphor package. The CFRs from the 2013–2016 EVD 
outbreak caused by EBOV-Makona variant is separately calcu
lated from the average CFRs from all other EVD cases. N.A: not 
available due to small sample size.
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which was exceptionally low compared to other EVD 
outbreaks reported so far. Multiple factors, including 
a better international outbreak response, such as robust 
clinical trials and clinical interventions, likely contrib
uted to the observed low CFRs in the West Africa EVD 
outbreak. A possible involvement of a virological factor 
in the low CFRs will be discussed in Section 
“Pathogenesis of EBOV-Makona variant”. The average 
CFR for EVD excluding the 2013–2016 EVD outbreak 
is 72% (Figure 2).

SUDV was first discovered in 1976, and thus far has 
been responsible for seven outbreaks [25,26]. The lar
gest SVD outbreak in 2000 resulted in more than 400 
human infections with a CFR of 53%. Compared to 
EBOV and SUDV, BDBV is often referred to as a less 
virulent ebolavirus. Two BVD outbreaks have been 
reported in 2007 [27] and 2012 [28–30], with culminat
ing average CFR as 33%. To date, there has been only 
one confirmed case of severe, but nonfatal, TAFV 
infection in humans reported in 1994 [31,32]. A total 
of 74 persons were defined as direct contact persons 
with the patient, but all were shown as seronegative for 
ebolaviruses [32].

While EBOV, SUDV, BDBV, and TAFV cause often 
severe/fatal diseases in humans, RESTV is apparently 
apathogenic to humans. There has been no evidence 
showing that RESTV is associated with human disease 
since its first discovery in 1989 [33], despite the appar
ent occurrence of human infections evidenced by ser
opositive titers of RESTV-specific antibody that relates 
to several RESTV epizootics in nonhuman primates 
(NHPs) or domestic pigs [34–37].

BOMV was first discovered in bats in 2018 [38], 
followed by the second identification in bats in 2019 
[39]. The potential of this virus to infect/cause disease 
in humans is currently unknown.

Pathogenesis of EVD and its molecular 
mechanisms

Studies on ebolavirus pathogenesis have mostly been 
focused on EBOV and its disease. Owing to numer
ous studies performed during the 2013–2016 West 
Africa EVD outbreak, detailed clinical insights on 
EVD have also become available. In this section, we 
will provide current knowledge on EVD pathogenesis 
at both in vivo and molecular levels. Note that we 
will mainly focus on the aspects of which insights are 
also available in studies of other ebolavirus species. 
The comparison between EVD (EBOV) and other 
Ebola diseases (other ebolaviruses) will be provided 
in Section “Comparison of pathogenesis among 
viruses belonging to genus Ebolavirus”.

Clinical and laboratory findings on EVD

The initial symptoms of EVD are a nonspecific febrile 
illness followed by gastrointestinal manifestations [1,2,
,40–50]. Some respiratory symptoms, hiccup, conjuncti
val injection, and macropapular rash are also often 
reported. Hemorrhagic signs are observed in approxi
mately half of the infected persons, with no clear correla
tion between bleeding and disease severity [44,51,52]. The 
mean incubation period for EVD from contact exposure 
to the onset of symptoms is 7.34 ± 1.35 d [53]. In fatal 
cases, death occurs 6–16 d after the onset of symptoms as 
a result of hypovolemic shock and multiorgan failure [2].

Acute, robust, and systemic viral replication is the 
most consistent observation in severe/fatal EVD. Viral 
antigen and nucleic acid can be detected in patients’ 
blood from d 1 to 3, peaking at around 6–7 d post 
symptom onset, and remain high throughout the course 
of the disease in fatal cases [1,42,54,55]. A number of 
clinical studies have shown a strong correlation between 
viremia titer and EVD fatality [40–42,44,50,55–57]; high 
blood viral load (≥106 copies/ml) was found to be pre
dictive of the fatal outcome [41,44]. Markedly elevated 
levels of alanine aminotransferase (ALT), which is 
a biochemical marker for liver integrity, and aspartate 
aminotransferase (AST), which is a biochemical marker 
for liver, heart skeletal muscle, kidney, brain, and red 
blood cell integrity, are major serum biochemical signa
tures seen in severe/fatal EVD, indicating serious tissue 
damage due to EBOV infection [44].

Over-activated, detrimental pro-inflammatory cyto
kine/chemokine responses, such as the so-called cytokine/ 
chemokine storm, are also one of the most common patho- 
immunological features in severe/fatal EVD [42,55,57–65]. 
Massive production of multiple pro-inflammatory cyto
kines [e.g. interleukin 1 beta (IL-1β), IL-6, tumor necrosis 
factor alpha (TNF-α)] and pro-inflammatory chemokines 
[e.g. IL-8, macrophage inflammatory protein 1 alpha 
(MIP-1α), MIP-1β, monocyte chemotactic protein 1 
(MCP-1), macrophage colony-stimulating factor 
(M-CSF), interferon gamma-induced protein 10 (IP-10)] 
are detected in deceased EVD patients. This over-activation 
of pro-inflammatory mediators results in systemic inflam
matory response syndrome (SIRS) that also triggers mixed/ 
compensatory anti-inflammatory response syndrome 
(MARS/CARS). Indeed, up-regulation of anti- 
inflammatory cytokines (e.g. IL-1RA, IL-10, sTNF-RI, 
sTNF-RII) are also observed in EVD patients. This aber
rant immunological status, such as SIRS coupled with 
MARS/CARS, is characteristic of classical bacteria sepsis 
[66] and has been known to play a significant role in 
induction of endothelial dysfunction, vascular leakage, 
and coagulation abnormalities.
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Uncontrolled pro- and anti-inflammatory cytokine 
responses are also linked to the impairment of host 
adaptive immunity seen in fatal EVD patients. Ruibal 
et al. have demonstrated that, compared to survivors, 
EVD fatalities had a higher percentage of T cells 
expressing inhibitory molecules CTLA-4 and PD-1, 
despite no difference in the activation status of T cells 
between fatalities and survivors [65]. Moreover, while 
strong EBOV-specific T cell responses were detected in 
EVD survivors [67–69], antigen-specific T cell 
responses were found to be very rare in fatal cases 
[65], indicating nonspecific, dysfunctional T cell activa
tion in EVD fatalities. Accordingly, the humoral 
response mediated by B cells was also impaired in 
fatal EVD cases [55,61,70]. In sum, robust viral replica
tion and immune dysfunction are key hallmarks in 
severe/fatal EVD patients, significantly contributing to 
EVD pathogenesis.

EBOV pathogenesis studied in animal models

Animal models of EBOV infection have so far been 
developed in NHPs and small animal models, such as 
mice, guinea pigs, Syrian golden hamsters, and ferrets. 
Among them, NHPs are considered the “gold standard” 
animal model since they are highly susceptible to the 
infection of wild-type EBOV (WT-EBOV) that have 
been isolated from human samples. Nearly all clinical 
and pathological features of severe/fatal EVD in humans 
can be recapitulated in NHPs, including high viremia, 
strong cytokine/chemokine response, coagulopathy, 
rash, and hemorrhagic signs [71–75]. Cynomolgus and 
rhesus macaques have been the most commonly used 
NHPs for EBOV infection; disease progression in cyno
molgus macaques after EBOV infection is slightly faster 
than that in rhesus macaques [6]. Pathological studies in 
EBOV-infected NHPs have clearly demonstrated that 
cells of the mononuclear phagocytic system (MPS) (i.e. 
monocytes, macrophages) and dendritic cells (DCs) are 
the initial target cells [71,73,76] that migrate to target 
organs (e.g. liver, lymph nodes, spleen), resulting in the 
efficient transmission and replication of the virus [77]. 
In addition to NHPs, lethal infection with WT-EBOV 
can also be achieved in ferrets with hallmark pathologi
cal features of EVD, including fever, petechial rashes, 
hemorrhage, and coagulopathy [78].

Unlike NHPs and ferrets, immunocompetent rodents 
show no or very mild signs of disease after WT-EBOV 
infection. Thus, immunocompetent rodent models rely 
on using rodent-adapted virus strains that have been 
established as a consequence of serial passage of the 
virus in the host animals, such as mice or guinea pigs, 
leading the virus to acquire the ability to cause uniformly 

lethal infection in rodents [79,80]. Two of the mouse- 
adapted EBOV strains (MA-EBOV) have been devel
oped based on EBOV variant Mayinga [81] and 
Makona [82], and four of the guinea pig-adapted 
EBOV strains (GPA-EBOV) are available [79,80,83–86]. 
Rodent-adapted EBOV targets the same cells/tissues as 
the WT-EBOV infection in the lethally susceptible ani
mals (i.e. NHPs, humans) and develops high viremia in 
the infected host rodents [81,83,87]. MA-EBOV can also 
cause lethal infection in Syrian golden hamsters with 
several critical EVD signatures including cytokine/che
mokine responses and coagulopathy [88]. 
A collaborative cross (CC) resource recombinant inbred 
(RI) intercrossed (CC-RIX) mouse model with MA- 
EBOV infection has also been developed, which shows 
severe coagulopathy that is not evident in other conven
tional laboratory mouse strains [89].

Furthermore, several lethal immunodeficient rodent 
models with WT-EBOV infection have been developed 
and widely used for EBOV pathogenesis studies. In 
addition to the classical immunodeficient mice, such as 
type I interferon (IFN)-deficient mouse strains (i.e. IFN- 
α/β receptor knockout (IFNAR−/-) mice [90,91], STAT1 
knockout (STAT1−/-) mice [92]), and adaptive immu
nity-deficient mouse strain (i.e. SCID mice) [90], several 
human immune system (HIS) mice, generated by xeno- 
engrafting human immune cells or tissues and/or their 
progenitors into immunodeficient mice, have also been 
utilized for studies of EBOV pathogenesis [93–100]. The 
use of HIS mice allows for the examination of the cell/ 
organ-specific human immune response and its interac
tion with virus in vivo, thus they are considered 
a valuable tool for studying EVD pathogenesis.

Molecular pathogenic mechanisms of EBOV 
infection

Among all EBOV proteins, VP35, VP24, and GP have 
been considered as the main virulence factors of EBOV. 
VP35 functions as an IFN antagonist, which inhibits 
host type I IFN-α/β induction, and also inhibits the 
phosphorylation of double-stranded RNA-activated 
protein kinase R that mediates cellular antiviral 
responses [101–110]. The introduction of mutations dis
abling the VP35’s IFN-antagonistic function results in 
attenuation of virulence in animal models including 
NHPs [103,108,111–113]. While VP35 counteracts the 
type I IFN induction pathway, VP24, the other EBOV 
IFN antagonist, blocks the type I IFN signaling cascade 
by blocking karyopherin α (KPNA)-mediated nuclear 
translocalization of phosphorylated STAT1 homodimers 
or STAT1-STAT2 heterodimers [114–117]. The restric
tion of STAT nuclear translocalization by VP24 results 
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in reduced transcriptional activation of IFN-stimulated 
genes (ISGs), preventing the establishment of an anti
viral state in the host cells. The significant role of VP24 
for the acquisition of virulence in rodents has been 
reported [79,84–86,118–120]. VP35 and VP24 also con
tribute to suppression of DC activation/maturation, 
resulting in induction of impaired cell-mediated 
responses [121–124], as also seen in EBOV-infected 
DCs [125,126].

The GP has been shown to interact with host toll- 
like receptor 4 (TLR4) leading to the activation of pro- 
inflammatory responses via the NF-κB pathway [127–
127–131]. In addition, the shed GP, which is 
a truncated version of the surface GP cleaved by cellu
lar metalloprotease TACE, has also been shown to 
induce immune activation in a TLR4-dependent man
ner, aside from its antibody-neutralizing activity and 
endothelial-permeabilizing activity [132–134]. 
Moreover, a recent study demonstrated the interaction 
of virion-associated phosphatidylserine with Tim-1 and 
showed its significant role in T-cell activation, produc
tion of pro-inflammatory mediators, and pathogenesis 
in the animal model [135].

Comparison of pathogenesis among viruses 
belonging to genus Ebolavirus

The CFRs of Ebola diseases in humans can range from 
no fatalities (0% CFR) in RESTV and TAFV infections to 
reaching up to 90% of EBOV infection (Figure 2). 
Although clinical insights on the SUDV, BDBV, TAFV, 
and RESTV infections in humans are limited, there have 
been intriguing experimental in vivo and in vitro studies 
available that examine differing pathogenesis of these 

viruses. Several small animal models (i.e. ferrets, huma
nized mice) that propagate lethal SUDV, BDBV, TAFV, 
and RESTV infections have also been developed, greatly 
facilitating the studies on ebolavirus pathogenesis. In 
this section, we will compare the pathogenesis of EVD 
(discussed in Section “Pathogenesis of EVD and its 
molecular mechanisms”) with other Ebola diseases and 
define species-specific differences on the basis of experi
mental findings (Table 2 and Figure 3).

Disease courses and fatalities in animal models

Differing disease severity and lethality associated with 
each ebolavirus infection have been demonstrated by 
several animal studies (Table 1). In the case of NHP 
models, EBOV causes 100% lethality in cynomolgus 
macaques by 5–7 d [136–139] and in rhesus macaques 
by 6–9 d [74,136,140] after infection with a challenge 
dose of 103 PFU via intramuscular route. In contrast, 
SUDV, BDBV, TAFV, and RESTV challenges do not 
cause uniform lethality in cynomolgus macaques, and 
the median time to death in macaques infected these 
viruses appears to be longer than EBOV infection; 
SUDV causes 50–100% lethality in 9–10 d after infec
tion with a dose of 103 PFU [6,137,139], BDBV causes 
50–75% lethality in 10–13 d after infection with a dose 
of 103 −104 TCID50 or 103 PFU [141–143], TAFV 
causes 60% lethality in 10–14 d after infection with 
a dose of >103 PFU [139,144], and RESTV causes 
80–100% lethality in 8–21 d after infection with 
a dose of 103 PFU [6,145]. Considering the fact that 
a lethal infection in macaques can be achieved by 
EBOV infection with challenge doses lower than 103 

Figure 3. Species-specific and variant-specific virulence of ebolaviruses. Viral ability to spread from macrophages to parenchymal 
cells, leading to severe organ damage, is one of the key phenotypic features determining ebolavirus pathogenicity. The numbers 1–6 
shown in a table on the right are correlated with those shown in a figure on the left. *Including Kupffer cells. na: not available.
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PFU – as low as 0.01 PFU or as little as one infectious 
unit – with various inoculation routes [146–149], 
SUDV, BDBV, TAFV, and RESTV seem to be inher
ently less virulent than EBOV in macaques. 
Parenthetically, RESTV seems to be a quite unique 
virus among ebolaviruses and is presumably an animal 
pathogen given its distinct virulence in macaques and 
humans. In addition to NHP studies, a longer duration 
of disease after experimental infection of SUDV and 
BDBV compared to EBOV has also been reported in 
a ferret model [78,150,151].

Notably, recently developed humanized mouse 
model, HLA-A2-transgenic NOD-scid-IL2γ receptor- 
knockout mice reconstituted with human hematopoi
esis (huNSG-A2), showed a distinct susceptibility to 
ebolaviruses belonging to each distinct species, and 
the infection recapitulated species-specific CFRs in 
humans; EBOV, SUDV, BDBV, TAFV, and RESTV 
infections caused lethality of 92.3%, 71.4%, 28.6%, 
18.2%, and 20% in mice, respectively [98]. This suggests 
that HIS greatly contributes to ebolavirus species- 
specific pathogenesis.

Replication ability

Similarly to EVD, a correlation of high viremia titer 
and fatal disease outcome is commonly observed in 
SUDV disease (SVD) patients [52] and BDBV disease 
(BVD) patients [152]. However, very limited but some 
pathological examinations of postmortem specimens of 

fatal EVD, SVD, and BVD patients have shown that 
replication of SUDV and BDBV in human cells/organs 
might be less efficient than EBOV [54,153,154]. 
A previous comparative histopathological analysis 
showed that, whereas extensive distribution of EBOV 
antigen and virus inclusions composed of aggregates of 
viral nucleocapsids was detected in liver from EVD 
fatalities, no virus inclusions and the least amount of 
virus antigen distribution were found in liver from 
BVD fatalities, and SUDV infection was somewhat 
intermediate (Figure 3) [54]. Notably, the level of 
ALT, a biochemical marker for hepatocyte integrity, 
in fatal SVD cases was below 100 U/L [155], which is 
significantly lower than that generally seen in fatal EVD 
cases with around 500 U/L (often more than 1000 U/L) 
[42,156]. Moreover, while disease severity is often cor
related with blood ALT levels in the EVD patients, 
comparable levels of ALT were observed between fatal 
and nonfatal cases of SVD [155]. These clinical insights 
suggest that abilities for replication and/or causing tis
sue damage in liver might differ between EBOV and 
other ebolaviruses.

Consistent with lower levels of replication found in 
postmortem specimens of fatal BVD, a reduced replica
tion ability of BDBV was also found in an in vitro study 
using human peripheral blood mononuclear cells 
(PBMCs). The study showed that, whereas EBOV titer 
in supernatants of infected PBMCs peaked in 5 d, 
BDBV titer peaked at 8 d postinfection with a titer 
approximately 1-log lower than that of EBOV [157]. 

Table 1. Comparison of fatality rates and time to deaths in animal models infected with different ebolaviruses.
EBOV

SUDV BDBV TAFV RESTV Refs.Mayinga Kikwit
Makona 
(early)

Makona 
(late)

NHPs 100% 
(5–7 d)

100% 
(3–5 d)

100% 
(4–10 d)

100% 
(8–16 d)

50–100% 
(9–10 d)

50–75% 
(10–13 d)

60% 
(10–14 d)

80–100% 
(8–21 d)

[6,136–139,141–145,192,194,198]

Ferrets na 100% 
(6 d)

100% 
(6–7 d)

na 100% 
(6–9 d)

100% 
(8–9 d)

na na [78,150,151,198,199]

HIS mice* 87–100% 
(8–20 d)

na 50–56% 
(13–22 d)

100% 
(9–11 d)

71% 
(11–19 d)

29% 
(17–18 d)

18% 
(11–13 d)

20% 
(13–20 d)

[93,94,96–98]

IFNAR−/- 

mice
100% 
(5–6 d)

0–7% 
(6 d)

0–40% 
(9 d)

0% 5–100% 
(6–11 d)

0% 0% 0% [90,91,192,193,199]

Virus inoculation route and dose varied among each publication. na: not available. 
*Except for NSG-huPBL mice. 

Table 2. Comparison of pathogenic functions of viral proteins among ebolaviruses.
Protein Pathogenic function EBOV SUDV BDBV TAFV RESTV Refs.

RNP complex Genome replication/transcription* +++ na na na + [158,160]
GP NF-κB activation +++ na na na + [127–131]
VP35 Inhibition of type I IFN induction +++ +++ +++ +++ +++ [101–110,166–169]
VP24 Inhibition of ISG expression +++ na + na +++ [114–117,170]

na: not available. 
*Assessed by ebolavirus minigenome system. 
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Interestingly, electron microscopic analysis showed the 
accumulated nucleocapsids in macrophages infected 
with BDBV, suggesting that BDBV can infect and repli
cate in human macrophages but cannot be released as 
efficiently as EBOV (Figure 3).

A slower and lower growth ability in vitro was also 
found in apathogenic RESTV compared to EBOV using 
Vero or Vero E6 cells [158,159]. Moreover, several 
studies using an ebolavirus minigenome system, 
which allow to model ebolavirus replication/transcrip
tion without using infectious virus in biosafety level 4, 
have suggested that the polymerase complex of RESTV 
exhibited a lower ability of viral RNA synthesis than 
that of EBOV (Table 2) [158,160]. Interestingly, supply
ing of EBOV RNP complex proteins, such as NP, VP35, 
VP30, and L, in the RESTV minigenome assay system 
produced a higher reporter transcription activity than 
using RESTV RNP complex [160]. Although it has been 
considered that ebolaviruses share a common strategy 
for their genome transcription/replication, thus the 
same viral proteins are required for these processes, 
the performance of the RNP complex for driving effi
cient genome transcription/replication might vary 
among ebolaviruses.

The intriguing difference between pathogenic and 
apathogenic ebolaviruses can be found in their distinct 
replication characteristics in parenchymal cells of the 
liver, which the primary target organ of EBOV replication 
in vivo. The immunohistochemistry analysis using immu
nodeficient mouse models demonstrated the wide distri
bution of EBOV antigen in the liver, by infection of 
hepatocytes, endothelial cells, and Kupffer cells, which 
are the first target cells of the liver. This is in stark contrast 
to RESTV replication, which has been noted to be very 
limited in the liver and mostly restricted to Kupffer cells 
(Figure 3) [96,98,159]. Consistent with this, a few in vitro 
studies have shown that RESTV replicates in primary 
human macrophages [130] and human monocytic leuke
mia THP-1 cells [161] similarly to EBOV, but not as 
efficient as EBOV in human hepatocellular carcinoma 
Huh7 cells at early phase of infection [162]. 
Interestingly, this distinct replication pattern in liver 
between pathogenic EBOV and apathogenic RESTV is 
also observed in a comparative study between lethal MA- 
EBOV and non-lethal WT-EBOV infections in Syrian 
golden hamsters [88]. These findings strongly suggest 
that the ability of virus to spread from macrophages to 
parenchymal cells is a key signature of pathogenic 
ebolaviruses.

The efficient viral replication in liver is not only 
responsible for its systemic spread but also the cause 
of significant hepatocyte necrosis manifested as severe 
liver damage in EVD fatalities and EBOV-infected 

animals. Importantly, dysfunction of the liver contri
butes to coagulation disorders – one of the key patho
logical features in EVD – due to impairment in the 
synthesis of important clotting factors. The correlation 
of viral replication in the liver and disease severity in 
Ebola disease pathogenesis has been widely acknowl
edged; however, experimental evidence to precisely 
compare ebolavirus replication ability in human hepa
tic cells is not currently available. Thus, it remains 
unclear whether the less efficient replication of less 
virulent/apathogenic ebolaviruses in liver is due to 
their respectively poorer inherent abilities to infect or 
replicate in hepatocytes or due to an unknown host 
antiviral mechanism(s) that interferes with viral spread 
from macrophages to hepatocytes. Basic characteriza
tion of viral replication ability in hepatocytes (e.g. 
human primary hepatic cells) is necessary to under
stand species-specific pathogenesis of ebolaviruses.

Induction of uncontrolled pro-inflammatory 
responses

The activation of pro-inflammatory responses is con
sidered as a common feature of fatal Ebola diseases; 
however, the types of cytokines/chemokines upregu
lated by the infection seem to be varied among viruses 
belonging to each distinct species. For example, the 
expression levels of TNF-α and IFN-γ, which have 
been found to be increased in EVD fatalities, were 
shown to be low in the SUDV infection in humans 
[163]. Moreover, a previous clinical study that com
pared cytokine expression profiles between samples 
from acute phase (collected within 11 d from the 
onset of illness) received from both BVD fatalities and 
survivors, and convalescent phase from BVD survivors, 
showed significantly lower IL-1α, IL-1β, IL-6, and TNF- 
α levels in acute samples than in convalescent samples 
(Figure 3) [152]. The levels of these cytokines expressed 
in BVD patients were even lower than those in the 
healthy control group, suggesting that unlike EBOV, 
BDBV infection might down-regulate these cytokine 
expressions in humans. A distinctive pattern of cyto
kines/chemokines expression induced by BDBV infec
tion was also found in in vitro study [157]. BDBV 
infection in human PBMCs induced the expression of 
IL-1β, MIP-1α, TNF-α, and MCP-1 at significantly 
lower levels than EBOV infection. In particular, very 
low level of IL-1β (30–70 pg/mL) was produced in 
BDBV-infected PBMCs, in contrast to the EBOV infec
tion that induced IL-1β with a peak concentration 
>2500 pg/mL. Intriguingly, fever with above 38°C was 
less common in the 2012 BVD outbreak; only 38.9% of 
BVD patients showed high fever during hospital stay 
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[29]. This atypical clinical manifestation of BVD might 
be related to the distinct characteristic of BDBV for the 
regulation of pro-inflammatory responses.

A previous in vitro study using virus-like particles 
containing RESTV GP demonstrated that, unlike EBOV 
GP, RESTV GP does not trigger TLR4 signaling (Table 2) 
[130]. In agreement with this, a significantly weaker cel
lular response was observed in human primary mono
cytes or monocyte-derived macrophages (MDMs) 
infected with RESTV, in contrast to the strong activation 
of MDMs by EBOV infection shown as a markedly ele
vated level of pro-inflammatory genes [130,164]. These 
results suggest that macrophage activation mediated by 
GP via interaction with TLR4 might be a critical factor 
that determines the ebolavirus pathogenicity. On the 
other hand, while TLR4 inhibitors showed efficacy in 
the EBOV mouse model, TLR4 knockout mice still exhib
ited full susceptibility to the lethal MA-EBOV infection 
[165]. This suggests that there might be an additional 
factor(s), which critically involves in detrimental pro- 
inflammatory responses in EVD. Further analysis will be 
needed in order to not only precisely characterize pro- 
inflammatory activation profiles for each ebolavirus infec
tion, but also define the molecular mechanisms under
lying uncontrolled pro-inflammatory responses seen in 
Ebola diseases.

Disturbance of functional immune responses

IFN antagonisms mediated by EBOV VP35 and VP24 have 
been well-characterized by a number of in vitro studies as 
described in Section “Molecular pathogenic mechanisms of 
EBOV infection”. Thus, the function of these viral proteins 
from other ebolaviruses has been closely studied in order to 
find a clue that determines differing pathogenicity among 
ebolavirus species. However, the apparent difference in 
terms of the type I IFN-antagonism between EBOV and 
other ebolaviruses has not been well-defined. It was shown 
that VP35 proteins from SUDV, BDBV, TAFV [166,167], 
and RESTV [102,166–169] are all able to inhibit type I IFN 
induction in the same manner as EBOV VP35 (Table 2). 
Moreover, whereas WT-EBOV infection becomes lethal in 
IFNAR−/- mice or in mice treated with antibodies against 
IFN-α/β, the BDBV, TAFV, and RESTV infections still fail 
to cause lethal illness in IFNAR−/- mice [90,91]. These 
observations suggest that, although the inhibition of the 
host type I IFN production – presumably solely mediated 
by VP35 – is critical for ebolaviruses to successfully and 
efficiently initiate replication in the host, this function is 
not the main virulence determinant among ebolavirus 
species.

On the other hand, species-specific difference might 
exist in their abilities for inhibition of type I IFN- 

signaling pathway as well as ISGs expression. 
Schwards et al. demonstrated a lower ability of BDBV 
VP24 to bind KPNA (KPNA1, KPNA5, and KPNA6) 
compared to EBOV VP24, consistent with a decreased 
inhibitory effect of BDBV VP24 on the expression of 
ISGs [170] that might explain the lower virulence of 
BDBV than EBOV. Moreover, a previous in vitro study 
using infectious EBOV and RESTV demonstrated that, 
whereas the expression of a number of ISGs was down- 
regulated in IFN-treated Huh7 cells with EBOV infec
tion, RESTV infection failed to down-regulate those 
ISG expression [162]. This suggests that RESTV has 
a diminished capacity to counteract host IFN- 
signaling; however, this mechanism cannot be 
explained by its VP24’s function; although some 
amino acid differences were found between RESTV 
VP24 and EBOV VP24 [171–173], RESTV VP24 has 
an intact KPNA-binding capability or ISG inhibition 
(Table 2) [170]. Furthermore, it was shown that 
STAT1−/- mice infected with RESTV survived with dis
ease signs appearing slower and milder than those 
infected with EBOV [92,174], suggesting that differing 
pathogenicity between EBOV and RESTV cannot be 
solely explained by mechanism(s) underlying inhibition 
of the Jak/STAT-signaling pathway. Aside from the 
IFN-antagonistic functions of VP35 and VP24, their 
abilities to block DC maturation will be interesting to 
compare among ebolaviruses, which may shed the light 
on the species-specific immune disturbance.

A possible species-specific difference might exist in 
host adaptive responses against ebolavirus infections; 
while elevated IgG levels in non-survivors were rarely 
seen during the disease course of EVD [55,61,70], high 
IgG titers were observed in most of the BVD patients 
including nonsurvivors, corresponding to high virus 
antigen titers [152]. This finding suggests that BDBV 
infection may induce stronger humoral immunity than 
EBOV. In addition, Nehls et al. recently reported that 
secretory vesicles containing EBOV GP, so-called 
EBOV GP-virosomes, have the ability to capture neu
tralizing antibodies and also showed that the efficiency 
of the virosome formation of GPs from other ebola
viruses was lower than EBOV GP [175]; however, the 
practical contribution of this mechanism to viral patho
genesis has remained elusive. More experimental evi
dence will be needed to understand the species-specific 
difference in host adaptive immunity.

Pathogenesis of EBOV-Makona variant

As discussed above, ebolavirus species-specific distinc
tions in pathogenicity in humans is one of the intri
guing unsolved research topics in the filovirus field. 
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Besides, the virulence of novel EBOV variant Makona, 
which was responsible for the 2013–2016 West Africa 
EVD outbreak, the largest EVD outbreak ever docu
mented, is an emerging compelling question to be 
addressed for a better understanding of the EVD out
break and EBOV pathogenesis. In this section, we dis
cuss the biological and pathogenic differences between 
the EBOV-Makona variant and previously identified 
EBOV variants in humans based on current findings.

Did EBOV-Makona variant acquire enhanced 
virulence during the outbreak?

EBOV-Makona variant was responsible for the 
2013–2016 EVD outbreak that widely spread from 
Guinea to other countries in Western Africa, ending 
up a total of >28,600 human infections and >11,300 
deaths [5]. During the outbreak, the number of human 
infections increased day-by-day with unprecedented 
scale, which had given rise to fears that the virus 
adapted to humans due to extensive human-to-human 
transmission events, resulting in the acquisition of 
enhanced transmissibility and/or virulence in humans. 
The discussion on the basis of sequencing analyses 
using available EBOV-Makona isolates was therefore 
primarily focused on (1) whether the EBOV-Makona 
is mutating more rapidly than usual and (2) whether 
there is any mutation(s) in the EBOV-Makona genome 
that possibly plays a significant role in host specificity, 
viral fitness, transmissibility, or virulence. Various gen
ome analyses of more than 1500 full-length EBOV- 
Makona sequences – approximately 5% of those 
infected – have confirmed the accumulation of numer
ous mutations in later isolates compared to the first 
isolate from Guinea [176]. However, the mutation rate, 
which is expressed as the number of mutations per site 
per year, of the EBOV-Makona during this outbreak 
was shown to be similar to the previous outbreaks 
[177–181].

The large-scale sequence data clearly showed the 
presence of two major lineages; the first one includes 
isolates sampled from Guinea during the early phase of 
the epidemic, and the second one contains a majority of 
isolates sampled from all of the affected countries dur
ing the later phase of the epidemic [176,182,183]. 
Among all nonsynonymous mutations discovered in 
the viral genome of EBOV-Makona isolates in 
the second lineage, an amino acid substitution (Ala to 
Val) on GP at residue 82 (GP-A82V) was most inten
sively studied for its possible involvement in viral 
pathogenic characteristics. This was due to the emer
gence of the A82V mutation at the branch point that 
distinguishes two lineages and was fixed in the 

population afterward [182–186], and residue 82 on 
GP is located at the receptor-binding interface [187]. 
Several in vitro studies using EBOV GP-pseudotyped 
virus vectors or EBOV VLP systems have demonstrated 
that GP-A82V promotes viral entry into human cells 
[182,183,188], by which the mechanisms were further 
identified as cathepsin B and Niemann–Pick C1 depen
dent [189,190]. Interestingly, the enhancement of viral 
entry mediated by GP-A82V was only observed in 
primate cells, but not in rodent, carnivore [182], or bat- 
origin cells [183,191], suggesting that the A82V muta
tion might have contributed to elevated EBOV-Makona 
fitness in human population.

Although the above findings also raised a hypothesis 
in which the virulence of EBOV-Makona in humans 
was enhanced due to the acquisition of GP-A82V, this 
hypothesis has been challenged by several in vivo stu
dies. Marzi et al. infected rhesus macaques with EBOV- 
Makona early isolates containing GP-82A and EBOV- 
Makona later isolates containing GP-82V and found no 
statistically significant difference in survival rate, tissue/ 
blood viral load, IFN response, serum biocheminal 
parameters, or coagulation parameters among the 
infected groups [192]. Interestingly, the animals 
infected with EBOV-Makona later isolates showed 
even relatively prolonged disease progression and 
reduced tissue/blood viral load compared to those 
infected with EBOV-Makona early isolates. Moreover, 
in vitro work indicated that later isolates of EBOV- 
Makona replicated in human hepatocyte Huh-7 cells 
less efficiently than earlier isolates [192], which was 
contrary to the idea that the GP-A82V mutation 
enhances the EBOV-Makona infectivity in human 
cells. These results obtained by using infectious virus 
strongly suggest that, although it is still possible that the 
GP-A82V mutation has changed the biological charac
teristics of EBOV-Makona to some extent, those effects 
were most likely canceled by other mutations in GP or 
other viral genes in EBOV-Makona later isolates.

A mutation that is possibly involved in the attenu
ated phenotype of the EBOV-Makona later isolates is 
an amino acid substitution (Asp to Gly) on L viral RNA 
polymerase at residue 759 (L-D759G) [191]. Indeed, 
while 40% of IFNAR−/- mice died after the infection 
of EBOV-Makona early isolate containing 759D in L, 
none of the mice died by the infection of a recombinant 
EBOV-Makona mutant in which the amino acid posi
tion 759 on L is substituted from asparagine to glycine. 
Moreover, a significantly delayed time to death was 
observed in ferrets infected with L-D759G mutant com
pared to WT virus. Virulence evolution, in association 
with the acquisition of mutation(s), is one of the com
pelling topics in the field of infectious diseases that 
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often attracts a lot of attention. However, this needs to 
be carefully and accurately interpreted based on the 
combination of genomics/phylogenomics studies and 
confirmatory laboratory-based studies using infectious 
viruses.

Variant-specific virulence between Makona variant 
and previously identified variants

It is important to note that several in vivo studies 
using animal models have strongly suggested that the 
EBOV-Makona variant, regardless of its isolates, is 
inherently less virulent than historical EBOV variants 
that were responsible for previous outbreaks [138,
193–196]. Remarkably, whereas the infection of 
EBOV-Mayinga, the prototype EBOV variant isolated 
from the 1976 EVD outbreak, resulted in 100% leth
ality in IFNAR−/- mice as has been known, none of 
the infected mice succumbed to the infection of 
either EBOV-Makona early isolate or later isolate 
[192]. In addition, a delayed disease progression 
was observed in EBOV-Makona-infected rhesus 
macaques and cynomolgus macaques compared to 
the infection of EBOV-Mayinga variant [138,192] or 
EBOV-Kikwit variant, isolated from the 1995 EVD 
outbreak [194,195]. Of note, Jankeel et al. have 
recently reported that viral replication, histopatholo
gical changes (e.g. liver necrosis), and inflammation 
in target organs were less severe in EBOV-Makona- 
infected macaques compared to EBOV-Kikwit- 
infected macaques [196]. In the case of human infec
tions, while the EBOV-Makona caused the largest 
EVD outbreak in history, the overall CFR during 
this epidemic was 40%, which was significantly 
lower than CFRs of previous EVDs caused by EBOV- 
Mayinga or -Kikwit (CFRs = 88% or 81%, respec
tively). It is difficult to definitively conclude the 
virulence of ebolaviruses in humans according to 
the reported CFRs, which are easily affected by mul
tifactorial causes including not only pathogen-related 
factors but also social/environmental factors such as 
medical infrastructures at the outbreak sites/countries 
or host genetic factors affecting the immune 
responses against virus infection. However, these vir
ological observations strongly suggest that the EBOV- 
Makona variant is very unique among previously 
identified EBOV variants (Figure 3). While there 
have been some EBOV variants isolated thus far, 
variant-specific virulence of EBOV has not been clo
sely investigated. Further studies will be needed to 
more clearly define biological and pathogenic differ
ences among EBOV variants.

Conclusions and future directions

This review outlined some critical abilities of EBOV for 
causing severe disease in humans, including robust 
replication and induction of dysfunctional immune 
responses (Figure 3). However, virulence of other ebo
laviruses should not also be underestimated. For exam
ple, although human infection with TAFV has caused 
only one nonfatal case, the patient showed severe Ebola 
disease signs (e.g. diarrhea, vomiting), central nervous 
system disorder, coagulopathy signs including macular 
rash and thrombocytopenia, and drastic weight loss – 
10% of the initial weight – in 15 d [32]. Moreover, the 
evidence showing 20% of huNSG-A2 mice succumbing 
to RESTV infection [98] might suggest that RESTV 
may have the potential to cause disease in humans 
under specific conditions (e.g. immune suppression).

While this review highlighted intriguing experimen
tal findings in differing characteristics of ebolaviruses, 
there are still some significant gaps in our knowledge 
about ebolavirus species-specific distinctions in patho
genicity at the molecular level. This is in part because, 
compared to EBOV, our understanding of the basic 
biology of SUDV, BDBV, TAFV, and RESTV has lar
gely lagged behind. For example, although viral replica
tion in the liver has been known to be critically 
involved in the pathogenesis of Ebola disease, replica
tion of SUDV, BDBV, TAFV, and RESTV in hepato
cytes (e.g. human primary hepatic cells) has not been 
fully characterized yet. Head-to-head comparison of 
replication abilities of EBOV with other ebolaviruses 
in various cell types will provide fundamental informa
tion on ebolavirus biology, which is also necessary to 
evaluate the pathogenic characteristics of each ebola
virus. The application of virus life cycle modeling sys
tems, such as minigenome and transcription/ 
replication-competent VLP systems, would also provide 
valuable insights into the molecular mechanisms of 
differing replication characteristics among ebolaviruses.

In vivo analysis using recombinant chimeric ebola
viruses between pathogenic EBOV and apathogenic/less 
virulent ebolaviruses generated by reverse genetics will 
also facilitate the identification of ebolavirus virulence 
determinant(s). Interestingly, a chimeric EBOV posses
sing RESTV GP replicated in macrophages similarly to 
the parental EBOV but decreased infection of hepato
cytes in infected IFNAR−/- mice [159], suggesting that 
the RESTV GP may have a deficient interaction with 
hepatocyte-specific ebolavirus receptor(s), which has 
not been characterized yet. On the other hand, 
a chimeric RESTV possessing EBOV GP did not restore 
the ability of the parental RESTV to replicate in hepa
tocytes, implying that the ability of virus to spread from 
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macrophages to parenchymal cells – a key signature of 
pathogenic ebolaviruses (Figure 3) – seems to be 
defined by multifactorial determinants. The rapidly 
developing single-cell RNA sequencing technology 
would be one of the most powerful approaches that 
enable not only precise identification of virus-infected 
cell type(s) in target organs, but also a comprehensive 
understanding of differing host immune responses 
against each ebolavirus infection at the single-cell level.

One of the significant limitations in conducting 
comparative pathogenesis studies among ebolavirus 
species was a lack of animal models that recapitulate 
differing Ebola diseases in humans. Using recently 
developed HIS mouse models in future comparative 
studies will facilitate the understanding on the interac
tion between virus and host immunity in each Ebola 
disease at the molecular level. In addition, data sets 
from several large-scale analyses, including specificity 
determining positions analysis [173], global phospho
proteomic analysis [197], and multi-platform ’omics 
analysis [58], have become available. Utilizing these 
comprehensive data sets, in combination with authentic 
virological approaches including utilization of reverse 
genetics for the in-depth understanding of molecular 
virology aspects, may help to define different character
istics among ebolaviruses. Further studies examining 
species- 
specific and variant-specific virulence of ebolaviruses at 
the molecular level will facilitate not only a better 
understanding of the basic biology of genus 
Ebolavirus but also the development of therapeutics 
against well-focused pathogenic mechanisms of each 
Ebola disease.
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