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The systematic study of single-cell migration requires the availability of software for assisting data
inspection, quality control and analysis. This is especially important for high-throughput experiments,
where multiple biological conditions are tested in parallel. Although the field of cell migration can count
on different computational tools for cell segmentation and tracking, downstream data visualization,
parameter extraction and statistical analysis are still left to the user and are currently not possible
within a single tool. This article presents a completely new module for the open-source, cross-platform
CellMissy software for cell migration data management. This module is the first tool to focus specifically
on single-cell migration data downstream of image processing. It allows fast comparison across all
tested conditions, providing automated data visualization, assisted data filtering and quality control,
extraction of various commonly used cell migration parameters, and non-parametric statistical
analysis. Importantly, the module enables parameters computation both at the trajectory- and at the
step-level. Moreover, this single-cell analysis module is complemented by a new data import module
that accommodates multiwell plate data obtained from high-throughput experiments, and is easily
extensible through a plugin architecture. In conclusion, the end-to-end software solution presented
here tackles a key bioinformatics challenge in the cell migration field, assisting researchers in their high-
throughput data processing.

Cell migration plays a major role in several physiological processes, such as wound healing and neuronal devel-
opment, but also in disease conditions such as inflammation processes, and cancer cell invasion and metastasis!—.
Cell migration thus provides possible therapeutic targets, for example in immune therapy against cancer, stem
cell-based therapies, or regenerative medicine*”.

Cell migration is controlled by the integration of multiple mechanical and chemical cues across time and
(subcellular) space. This impacts the dynamics of the cellular cytoskeleton, and determines a broad range of dif-
ferent cellular morphologies and migration phenotypes®®. Moreover, many of the underlying processes are sto-
chastic, resulting in heterogeneous migration behavior. The systematic study of cell migration therefore requires
high-throughput methodologies that enable not only visualization of the cell dynamics but also in depth quantifi-
cation of cell motile behavior in space and time®. A broad range of experimental tools have thus been developed to
investigate cell migration!-'2, and a rich collection of computational algorithms and software has been produced
as well'>.

Cells can either migrate individually (single-cell migration) or can move together in cell sheets or strands
(collective cell migration). The latter is classically investigated using a wound-healing assay in which a scratch is
created in a confluent cell layer, and quantification is achieved by measuring changes of wound size in time and
deducing migration rates. Although several software tools are available to either quantify the wound area, or the
cell-covered area!>"', no data management solutions existed for these high-throughput experiments. We there-
fore previously developed CellMissy, which is the first tool to integrate the management, processing and analysis
of collective cell migration data'>. However, when investigating single-cell migration, the individual motile behav-
ior of cells and its quantification is the focus of the analysis, which uses the coordinates of individual cells over
time generated by cell tracking.
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Table 1. Overview of some of the currently available tools/software dedicated to single-cell migration
data. Multiscale analysis SC: step-centric TC: trajectory-centric CP: cell population Visualization of tracks/
Multiparameter visualization RP: rose plot HMP: heat-map plate AHG: angular histogram BP: boxplot HG:
histogram KDP: kernel density plot.

Table 1 shows an overview of some of currently available software tools for the visualization and validation of
high-throughput, time-lapse microscopy image data of individually migrating cells or objects'®-8. Despite this
table not being comprehensive, it clearly indicates that the field is still lacking a user-friendly, freely-available and
open-source software that provides an end-to-end solution for automated management, processing and inspec-
tion of the data generated by the tracking software. Such a tool needs to allow for quality control, cell migration
parameter extraction, and statistical comparison of different conditions. Proprietary software solutions exist
(such as Metamorph, Imaris or Volocity) that provide tools to perform (manual) editing of cell trajectories, that
calculate object and track statistics, and that can export selected data. These commercial tools however, are bound
to the vendor’s imaging systems. The plethora of free, mostly open-source, solutions for single-cell segmentation
and tracking are instead focused on solving the tracking problem only, leaving downstream analysis to the user’s
choice!®.

The absence of an open solution for automated data management, inspection, quality control, and analysis
constitutes the major bottleneck in the processing of high-throughput single-cell migration experiments today,
because this process remains very labor-intensive (e.g., cell trajectories are manually inspected and/or data neces-
sarily have to be transferred between different software tools). As a consequence, these data are frequently insufhi-
ciently mined®. Cell speed and persistence of motion for instance, are only calculated at the cell population level,
thus averaging those parameters across a collection of recorded cells, de facto losing a lot of potentially interesting
information. To fill this gap, we here present an open-source solution, implemented as new module in CellMissy,
for the automated quality control, inspection, and analysis of single-cell migration experiments.

Results and Discussion

This article presents a free, cross-platform and open-source solution for the automated inspection, quality control
assessment and analysis of high-throughput single-cell migration experiments (e.g., in a 96-well format). The
platform, developed as a new module in the CellMissy software, and illustrated in Fig. 1, takes text files contain-
ing 2D single-cell migration data from a time-lapse experiment as input. These text files take the form of spatial
(x,y) coordinates in time, and can be extracted from the user’s choice of cell tracking software. These data can be
derived from different experimental setups. Typically, cells are sparsely seeded either on a surface or on a layer
of extracellular matrix and then imaged in time. The cells can be assayed after applying a chemotactic gradi-
ent (chemotaxis) or not (random migration). Recently, microfluidic systems for chemotaxis assays have become
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Figure 1. Schematic workflow of the single-cell analysis module presented in this article. Yellow boxes
highlight the steps in which the modules operates, together with the broader CellMissy framework and
database. The key functionalities of the software are listed for each block. Images in the ‘Experiment’ block by
Servier Medical Art, distributed under a CC-BY 3.0 license (http://www.servier.com/Powerpoint-image-bank,
https://creativecommons.org/licenses/by/3.0/).

increasingly available?!. Alternatively, cells can be seeded as a confluent layer in part of the well (e.g., in the well
periphery in a cell-zone exclusion assay, or in the center in a fence assay (for more details on assays see ref. 11).
Single-cell migration data can also be recorded by imaging in time the single cells escaping from multicellular
spheroids or tumor organoids?.

Data are typically derived from a common multiwell plate experimental setup, as shown in Fig. 2, in which
multiple conditions are tested in parallel, e.g., with different cell lines and/or different treatments, such as sets
of chemical compounds, concentration ranges of a specific compound, selected libraries of siRNA and so on.
Multiple technical replicates (i.e., multiple wells) are usually performed for each condition, and the module allows
data visualization and analysis at both the condition and replicate level. Obviously, less complicated experiments
can also be imported and analyzed. As shown in Figs 1 and 2, the module expects text files reporting four dis-
tinct columns: (i) the trajectory unique ID, (ii) the time point, (iii) the x coordinate (either in pixel or pm), and
(iv) the y coordinate (either in pixel or pm). This is described in detail in a dedicated user manual at the project
homepage.

Once the data associated with an experiment are loaded, the software provides the following four key func-
tions: (i) data inspection and visualization, (ii) parameter extraction, (iii) quality control, and (iv) statistical data
analysis. The following sections describe these functionalities in detail using two multi-sample data sets as exam-
ples. These data sets were selected because they were generated via different assay types (Fig. 3), using different
cell types (immune cells versus cancer cells). Furthermore, these data sets reflect a different level of complexity
(i.e., number of samples tested in parallel). The details for each experiment are reported in Table 2. Single-cell
trajectories from a single replicate in each of the experiments are visualized in Fig. 3. The experiments were
performed in phase-contrast, but other imaging techniques are of course also fully supported. The complete
single-cell migration analyses for these experiments are available on figshare (see “Methods” section for details).

Data inspection and visualization. Upon starting the single-cell analysis module, the user is presented
with the “Data Inspection and Cell Tracks” view. Here, single-cell trajectories imported in CellMissy can be visu-
alized for each replicate (i.e., each well), or across all replicates for a specific biological condition. These plots can
either use all trajectories, or only a random subset (with a user-defined sample size) in case of very large data sets.
The visualization can either be based on the raw cell trajectories, or on re-centered trajectories where the starting
point of each track is located at the origin of the coordinate system (usually depicted in the literature as a ‘rose
plot). It should be noted that the visualization of rose plots for all the biological conditions of an experiment, with
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Figure 2. A typical multi-sample single-cell migration experiment loaded in CellMissy. A breast cancer cell
line (BT549) was left untreated (control) or treated with a concentration range of a drug (in casu nine different
concentrations of the actin drug latrunculin B). Each condition on the plate is color coded (see list bottom left
and colored boxes around wells in the plate view). Data produced by image processing from the replicate wells
are loaded (filled color coded wells in plate view and central list). Each replicate data set (from one well) is a
collection of single-cell trajectories, as shown in the text file in the inset. The table at the bottom reports the
same data after loading. It is possible to load data associated with multiple image processing algorithms (Algo,
see central part of view) and/or multiple imaging types (Im).

MDA-MB-231 control cells

o1

Figure 3. Single-cells trajectories acquired by time-lapse imaging and image processing. Cell trajectories
(colored lines) obtained from applying tracking software on a time-lapse image sequence and overlaid on the
last image of the sequence for Ba/F3 cells expressing p210 Bcr-Abl (left, experiment 1, sparsely seeded cells,
Table 2) and for untreated MDA-MB-231 cells (right, experiment 2, cell exclusion zone assay, Table 2). Numbers
indicate individual cell trajectories. Colors indicate temporal evolution of x and y cell positions (blue: earlier

in time, red: later in time). The red line in the right image indicates the border between the confluent cell layer
and the cell-free zone that has shifted in time. Single cells are only identified as such in experiment 2 when they
escape the expanding cell sheet.

identical axis scaling as provided by the module, provides a fast yet powerful way to visually compare migration
behavior in diverse settings. This enables the detection of possible differences in cell migration phenotypes, e.g.,
upon drug treatment in the experiments used here, or differences in response to a gradient in chemotaxis exper-
iments. Figure 4 shows this kind of visualization for the two experiments described in Table 2. Note, for example,

SCIENTIFIC REPORTS | 7:42383 | DOI: 10.1038/srep42383 4



www.nature.com/scientificreports/
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Table 2. Description of the experimental data used in this article to demonstrate the functionalities of

the single-cell analysis module in CellMissy. *Bcr-Abl oncogene variants (see ref. 27); y27632: Rock inhibitor
used at 10 uM. *In house development tool (collaboration Dci-Labs Belgium). °c-Met inhibitors (different
concentrations tested). ‘Epidermal growth factor (EGF)-inhibitors (different concentrations tested). °see ref. 29.
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Figure 4. Visualizing the effects on migration via rose plots of single-cell trajectories. Each rose plot
visualizes all cell trajectories present in the tested biological conditions (cumulated data of the replicates per
condition, number of trajectories are indicated on the top left of each panel). The origin of all trajectories has
been shifted to (0,0). (a) Six conditions of experiment 1; the rose plots for conditions 2, 4 and 6 where cells

were incubated with ROCK inhibitor clearly demonstrate the inhibitory effect. Zoomed view of condition 3 is
shown in the box. (b) Ten conditions of experiment 2; condition 1: no treatment, condition 2: EGF treatment,
conditions 3-10: EGF plus various drugs. Note e.g., the drug concentration-dependent effect in condition 3 vs. 4,
and 5 vs. 6, treated with 1 and 5uM of crizotinib or foretinib, respectively. (c) Plate heat-map visualization of
experiment 2: each well in the plate color encodes median cell speed.

that the three Ba/F3 BcrAbl cell conditions treated with Rock-inhibitor y27632 cover shorter distances (Fig. 4a).
Furthermore, the multiwell plate of the experiment under analysis can be visualized as a heat-map where each
well in the plate color encodes one of the four parameters: (i) number of cell trajectories, (ii) mean or median
cell speed, (iii) mean or median cell directionality, and (iv) robust z*-score?>. An example of this visualization is
shown in Fig. 4c.
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analysis approaches. Top panels: schematic representation of the two approaches. Bottom panel: kernel density
estimation (KDE) plots of step-centric and trajectory-centric cell displacements d;: the possible presence of cell
subpopulations (shown by arrows for two distributions in lower right panel) is overlooked in the step-centric
approach. Data are from the experiment described in Fig. 2 (breast cancer cell lines treated with nine different
concentrations of an actin drug). The density plots estimate the probability density function of a random
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to the area under the curve.

Speed and directionality parameters

parameter mathematical description

d;: instantaneous
displacement of the cell

centroid between di =G
adjacent time points

s;: instantaneous speed
between adjacent time
points

o;: turning angle
between consecutive
steps

d,..: cumulative
distance, total distance
travelled

= %)% + i1 —

si=dipir1) /D¢

a; = tan i1 — ¥/ Cipr — %))

N-1
dior = Z . d(pi,pis1)
i=

d,..:: Euclidean distance,

I dner = d(py,
net distance travelled mee = d(p1,pw)

ep_dr: end-point

b) , -

Cumulative
distance

Euclidean 7 ™ 4

distance Ty

directionality ratio
(confinement ratio,
meandering index)
MD: median
displacement

MS: median speed

MTA: median turning
angle

ep_dr = dyec/dror

MD = median(d;)

MS = median(s;)

MTA = median(a;)

Figure 6. Parameters extracted from a single-cell trajectory in the 2D Euclidean space. (a) Schematic
representation of a cell track consisting of 12 steps. The parameters reported in the table on the right are
computed for each trajectory. (b) Schematic representation of net and cumulative Euclidean distance travelled
by the cell. The turning angles «; between successive time frames are shown.
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Figure 7. Cell speed distributions are visualized via kernel density estimation (KDE) plots and boxplots.
Speed distributions are shown for the two replicates of condition 3, experiment 1 (untreated p210Bcr-Abl Ba/F3
cells, left), and for the six replicates of condition 7, experiment 2 (0.005 pM EGF + 5.0 pM gefitinib, right).
Different colors correspond to different technical replicates or wells, as shown in legends. Note the difference in
distribution range for the two cell types, with the immune cells (experiment 1, left) displaying faster migration.
The box plots show the median (line) and the mean (point); boxes indicate interquartile ranges (Q1-Q3), while
whiskers span the minimum and maximum of the data. Dots represent outliers, and triangles far outliers.

Trajectory-centric and step-centric parameter extraction. There are generally two different ways to
compute cell migration parameters and therefore conduct data analysis, as schematically shown in Fig. 5. On the
one hand, one can first carry out a calculation of a specific parameter for each tracked cell separately (we here
refer to these as ‘trajectory-centric’ parameters), and then compute an aggregated value from these distributions
(mean or median) (see Fig. 5, right). One migration parameter is the instantaneous displacement d; (defined in
Fig. 6a). The distribution of the ‘trajectory-centric d; or ‘track d;" of all trajectories in a cell population (plotted
as probability density plot in Fig. 5, bottom right) contains these trajectory-centric values, calculated by d,,,/N,
where d,,, is the total displacement per trajectory and N is the number of steps in this trajectory. On the other
hand, a distribution and an aggregated value (mean or median) of all separate migration steps in a data set can be
calculated, independent of which cell trajectory migration steps belongs to (we here refer to these as ‘step-centric’
parameters) (see Fig. 5, left). Both these quantification methods have their advantages and disadvantages and can
therefore complement each other. Consequently, it is useful to combine these in a complete cell migration data
analysis pipeline.

A trajectory-centric approach is in general preferable, because this is more intuitive. In addition, this approach
is required to address the heterogeneity in cell migration behavior across a cell population. Indeed, the cell popu-
lation under analysis may consist of different sub-populations of cells that show different and biologically relevant
migratory patterns. Such differences will be discovered by plotting the distribution of extracted migration param-
eters on a trajectory-centric basis, while in a step-centric approach these subpopulations will be overlooked. This
is demonstrated for displacement d; in the bottom panels of Fig. 5. The density plot of the trajectory-centric d;
reveals that in this data set two or more distinct cell populations are present in several replicates of the condition
(see Fig. 5, bottom panels, potential subpopulations indicated with dashed arrows). This aspect finds an impor-
tant application in drug design, where targeting of specific populations in a complex cell mixture (e.g., containing
tumor and stromal cells) is sometimes desired?*?>.

On the other hand, trajectory-centric parameters can be biased for several reasons?. First of all, the number
of steps that are monitored can vary a lot between cells, and this can affect the calculated parameters. Second,
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Figure 8. Cell turning angle distributions are visualized via angular histograms. Turning angle distributions
are shown for the untreated p210Bcr-Abl Ba/F3 cells (condition 3, experiment 1). Each distribution corresponds
to a specific technical replicate. The angular bin is 10 degrees.

if a cell population is imaged with a certain time interval, fast moving cells tend to be associated with relatively
straight trajectories, high confinement ratios and low turning angles. Therefore, they could be seen as a distinct
subpopulation. Researchers frequently also discard cell trajectories shorter than a certain time period from their
analysis, thus possibly introducing another bias towards more slowly translocating cells.

Another source for bias in trajectory-centric parameters comes from artefacts intrinsic to the tracking algo-
rithms. For example, both the splitting of cell trajectories as well as the re-entry of cells in the field-of-view can
cause a single cell to contribute more than once to a trajectory-centric parameter. This problem is overcome in
a step-centric analysis, because it does not matter to which cell a movement step belongs. Even the switching of
trajectories does not constitute a major problem in this case, because only the steps involved in the switch are
affected rather than the entire trajectory (as would happen in trajectory-centric analysis).

For these reasons, we have chosen to present a framework that allows for both these computations to take
place at the same time, enabling researchers to use a step-centric or a trajectory-centric approach, or even a com-
bination of these approaches. Figure 6 illustrates the quantitative parameters that are currently derived in our new
single-cell analysis module. Given the (x, y) coordinates in time, each cell trajectory is described as a collection
of points in the 2D Euclidean space, as shown in Fig. 6a. From these coordinates, displacement d; and (track)
speed s; (in pixel or pm and pixel/min or pm/min, respectively) are computed as listed in Fig. 6. The distributions
of the step-centric and trajectory-centric displacements, and of the cell speed for each condition at the replicate
level are reported using boxplots and kernel density estimations. The latter are particularly useful for differenti-
ating between unimodal and multimodal distributions. These two types of plots are illustrated for track speed in
Fig. 7. Cell turning angles o; between successive time frames (see Fig. 6b) are computed (both step-centric and
trajectory-centric) as a speed-independent indicator for directionality, and are presented through traditional as
well as angular histograms (see Fig. 8). Furthermore, ep_dr, end-point directionality ratios (also known as con-
finement ratios or meandering indices) are computed trajectory-centrically as ratios between the net distance and
the cumulative path traveled by the cell (see Fig. 6).

All of the visualizations discussed on this section can be made on both the replicate level as well as the con-
dition level.
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Figure 9. The quality control view of the software: two-step thresholding. The user can input a range for

the threshold step size (i.e., displacement) to be tested (box on the left). The choice is guided by displaying

the median and 5% percentile of the displacement distribution for the condition (across replicates) and the
experiment (across conditions). Second, the user inputs a percentage of desired motile steps per cell trajectory
(box on the right). The effect of each tested threshold value for the displacement can be evaluated through

the density plots of the track displacement distributions (red box). For each tested value (columns), the table
reports the list of cell trajectories (rows) marked in green (YES) if retained, and in red (NO) if not retained. This
functionality is here shown for condition 3 of experiment 2.

Data quality control: applying a minimal-motility threshold using a two-step filtering
approach. Artifacts are always present in data sets generated at high throughput, due to variation in position-
ing during automated image acquisition, errors during segmentation, and errors in defining the center of mass of
segmented objects during automated tracking. As a consequence, non-moving objects (dead cells, non-cell par-
ticles, artifacts segmented due to differences in contrast, etc.) are assigned a non-zero displacement (or speed) by
the image processing software. Finding and applying a lower limit or threshold on these variables is thus desired
when cell tracking has been performed fully automatically. Obviously, this filtering should not remove relevant
data and therefore needs to be flexible.

In the single-cell analysis module, the raw data are run through a quality control step, which is implemented
with a minimal-motility filtering: only trajectories that meet a tunable two-step filter for minimal cell motility are
retained for final analysis.

The first criterion in this two-step filter is step-centric: cell steps are either labelled as ‘true’ or ‘false’ if these
are larger or smaller than a minimal translocation, respectively. This minimal translocation can be specified (in
pixels or pm) by the user. The second filter criterion is trajectory-centric: trajectories are only retained if they
meet the first criterion in at least a specified percentage of their steps (e.g., 30% motile steps/trajectory). Based on
our experience with different cell lines and inhibitors, a minimal translocation/step of 0.1-0.5 um (for immune
cells) and 1.6-2 pm (for cancer cells), and between 20 and 30% of motile steps/trajectory appear suitable defaults
for these two criteria. Of course, these criteria may vary depending on the effect of a treatment, e.g., when using
a strong inhibitor of cell migration.

The module therefore allows a range of criterion values to be tested simultaneously. Evaluation of the different
settings can then be performed by visually inspecting the kernel density functions of the corresponding displace-
ment distributions, and population trajectories. The module presents an overview of these trajectories, highlight-
ing which ones would be retained (marked ‘yes’ in green), and which would be removed (marked ‘no’ in red) (see
Fig. 9). This allows the user to qualitatively judge if filtering is useful, with the goal of removing artifacts and dead
cells. For instance, in the example in Fig. 9, a minimal step threshold of 0.4 um, together with a minimum of 30%
motile steps, removes more than 30% of the tracks for the untreated cells, which indicates over-filtering. A desired
level of filtering can be applied for each condition separately, or be set globally for all conditions. Furthermore,
a summary is provided for each condition, detailing the number and the percentage of retained cell trajectories,
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Figure 10. The summary filtering view of the software. The summary table (red box) reports the cut-off used
for each condition of the experiment, together with the initial and the retained number of cell trajectories.

The final effect of the filtering can be evaluated with the density plots of raw and filtered displacement and
speed distributions (bottom panels, different colors represent biological conditions reported in the table). This
functionality is here shown for experiment 2; control in dark blue, high dose crizotinib in purple, and high dose
lapatinib in olive green.

to aid the selection process (see Fig. 10). In the example the threshold was set at 0.1 um and 30% motility; in this
condition the number of retained tracks is only low (~45% retained tracks) in the conditions were high doses of
the specific inhibitors (crizotinib, purple curve, lapatinib, olive green curve) were used. This conforms to the fact
that these doses were partly toxic in a proliferation test (data not shown).

This flexible, two-step filtering approach can outperform a single, low cut-off-value for either mean trajectory
or cell displacement when it comes to excluding true artifacts. In fact, this two-step filter allows the frequently
observed phenomenon of cell pausing during migration to be taken into account (see for example the tracks
shown in Fig. 3), and will retain living cells that are only motile in part of the time sequence. Nevertheless, the
module also provides the simpler, single-value thresholding option, where all trajectories of cells whose median
displacement is below a user-defined threshold are discarded (this single threshold is then applied across all
the data sets for the overall experiment). Figure 11a shows this option for the same experiment used in Fig. 10.
Figure 11D illustrates the higher stringency when using a single cut-off value for the filtering, given that for several
conditions the number of rejected trajectories is higher.

Data analysis and statistics. Once the data have been controlled for quality, statistical analysis and final
interpretation of the experiment can take place. Importantly, at this stage, the user can still choose to analyze the
raw data (i.e., without filtering). For each biological condition, statistics on speed, turning angle, and directional-
ity ratio are reported, together with a visualization of the parameter distributions (see Fig. 12).

Subsequently, the user can select a set of conditions on which they wish to perform statistics. Because the
migration data generally display a non-parametric distribution and are skewed to higher values, a Mann-Whitney
U test is implemented instead of a simpler Student’s t-test. The user can choose the parameter to test (currently
either speed s or directionality ratio ep_dr), and can furthermore opt to correct for multiple hypotheses testing
(with either Bonferroni, or Benjamini-Hochberg correction). A table reporting p-values is then shown, and a final
data visualization provides a recapitulation of the entire analysis (see Fig. 12). All figures throughout the module
can be interactively customized (e.g., axis range, font size of labels) and all results (figures and tables) can be easily
copied or exported for downstream reporting.

Conclusions

The new single-cell analysis module for CellMissy presented here, provides a powerful and largely automated
pipeline for high-throughput, single-cell migration experiments downstream of image processing. It supports
multi-parametric (speed, directionality), multiscale (step, trajectory, cell population; replicate, condition,
multi-sample experiment), and quality-controlled analysis of the differences between tested conditions. It there-
fore enables more in-depth analyses compared to existing tools (see Table 1). Moreover, given its plugin archi-
tecture, it can be further extended and customized in the future to incorporate additional analyses. For example,
given the increasing focus on 3D cell migration analysis, more parameters can be added to accommodate for

SCIENTIFIC REPORTS | 7:42383 | DOI: 10.1038/srep42383 10



www.nature.com/scientificreports/

a ) Use the following cut-off: | 1.0 pm

[ Filter (apply cut-off to experiment) ]

raw KDE track speed - (conditions) filtered KDE track speed - (conditions)
13 13
12,5 12,5
12 12
11,5 115
11 11
10,5 10,5
10 10
9,5 9,5
9 9
8,5 8,5
8 8
75 75
> 7 F 7
B g5 B g5
& ¢ 3 s
5,5 5,5
S S
4,5 4,5
4 4
3,5 3,5
3 3
25 25
15 15
1 1
0,5 0,5
0 0 -
0 0,1 0,2 0,3 04 0,5 06 0 0,1 0,2 0,3 04 0,5 06
track speed (pm/min) track speed (pm/min)
b) # retained tracks
MDA-MB-231 ORIS - condition # raw tracks two-step filtering  single cut-off filtering difference
(0.1 um - 30%) (1.0 um)
Control 757 628 619 i 9
0.005 uM EGF 1265 1073 1098 [l 25
0.005 UM EGF, 1.0 UM crizotinib 998 804 695 [0
0.005 uM EGF, 5.0 UM crizotinib 402 199 130 [N 69
0.005 pM EGF, 1.0 uM foretinib 1663 1386 1402 -16
0.005 M EGF, 5.0 uM foretinib 1339 1013 927 [s6
0.005 UM EGF, 5.0 uM gefitinib 978 817 824 7
0.005 uM EGF, 10.0 uM gefitinib 770 607 604 | 3
0.005 uM EGF, 5.0 uM lapatinib 1260 898 gs2 [ 46
0.005 uM EGF, 10.0 M lapatinib 675 325 285 [ 40

Figure 11. Single cut-off filtering. (a) In this option, the user can simply provide a minimal trajectory-centric
displacement threshold, and this cut-off is used to filter out cell trajectories whose displacement is below this
threshold. This functionality is here shown for all conditions of experiment 2. (b) Table reporting the difference
in stringency across the two filtering approaches.

Xyz-trajectories. Because this module is integrated in the CellMissy data management system, it is immediately
useable and works on all operating systems. Moreover, integration with CellMissy ensures that all quantitative
data and associated detailed metadata are stored in a relational database, thus enabling continuous data mining as
well as data export and sharing with other CellMissy users.

Methods

Sample preparation and image analysis. Ba/F3 cells B-cells expressing chimera of Ber/ Abl were previ-
ously described in refs 27 and 28. Ba/F3 and breast carcinoma cells (MDA-MB-231 and BT549) were respectively
cultured in RPMI 1640 or DMEM GlutaMAX (Invitrogen) supplemented with 10% heat inactivated fetal bovine
serum (FBS, HyClone™). Cells were either left untreated, stimulated with 5nM epidermal growth factor (EGFE,
Sigma) or treated with ROCK inhibitor (Tocris), or a receptor tyrosine kinase inhibitor, as indicated. Ba/F3 sin-
gle cell motility was monitored in 48-well plates; cells (2500 cells/well) were present in 2 mg/ml Matrigel™ (BD
Biosciences), and enriched in one layer. MDA-MB-231 and BT 549 cells were seeded as a confluent layer on 2 mg/ml
collagen around a cell-free zone in a 96-well plate and subsequently overlaid with a second layer of collagen gel
(3D cell-exclusion zone assay, Oris™ Platypus, tebu-bio). The experimental conditions are summarized for the
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Figure 12. Results views. Parts of final views are shown. The experiment statistics summary is reported in

the table. Boxplots are shown for cell speed and end-point directionality values. The two tables at the bottom
report p-values from a Mann-Whitney U test performed on speed (left) and directionality (right) distributions.
P-values smaller than 0.05 (significance level can be chosen in the tool) are highlighted in green. A multiple
hypotheses testing with Benjamini-Hochberg correction is applied. Data shown in this figure are from
experiment 2.

Ba/F3 and MDA-MB-231 cells in Table 2. Here, the number of replicates/condition and the number of conditions
tested in parallel are reported.

Single cells migrated into the central cell-free zone in time. Migration was monitored using phase-contrast
imaging on a Cell*M Live Cell Imaging system (Olympus) every 2.5 or 20 minutes for Ba/F3 and breast cancer
cells, respectively. Image processing was performed with a software tool (CELLMIA), developed in collaboration
with DCILabs Belgium (http://www.dcilabs.com/). The (x, y) coordinates in time generated by the imaging pro-
cessing were then automatically imported into CellMissy.

Implementation. The software here presented is a new module in CellMissy, an open-source and
cross-platform package dedicated to the management, storage, and analysis of cell migration data'®. This new
module has been specifically designed to accommodate for single-cell migration data. The “Experiment Manager”
of CellMissy provides the means to set up and document an experiment, i.e., specify the experimental details (cell
type, assay type, treatment, etc.). Data and metadata (both related to the experimental setup and to the imaging)
can be stored into a relational database through a new import module for single-cell migration data.

The new module is written in Java, and inherits the cross-platform support from CellMissy, which is available
on any system that supports a Java Virtual Machine version 1.8.0 or above (Windows, Linux, and Mac OS-X).
Furthermore, the new module has been built around a plug-in architecture, which means that it can be extended
with additional algorithms and functionalities by any interested researchers or developers.

Code and data availability. The software binary is available at https://github.com/compomics/cellmis-
sy#downloads. Source code is available at https://github.com/compomics/cellmissy, and an archived version is
deposited at Figshare [doi: 10.6084/m9.figshare.3421966]. Software is distributed under the Apache2 open source
license. Data used for this article are available at the figshare repository [doi: 10.6084/m9.figshare.3413848, link:
https://dx.doi.org/10.6084/m9.figshare.3413848).
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