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Identifying virus characteristics associated with the largest public health impacts on
human populations is critical to informing “zoonotic risk” assessments and surveillance
strategies. Efforts to assess zoonotic risk often use trait-based analyses to identify which
viral and reservoir host groups are most likely to source zoonoses but have not fully
addressed how and why the impacts of zoonotic viruses vary in terms of disease severity
(“virulence”), capacity to spread within human populations (“transmissibility”), or total
human mortality (“death burden”). We analyzed trends in human case fatality rates,
transmission capacities, and total death burdens across a comprehensive dataset of
mammalian and avian zoonotic viruses. Bats harbor the most virulent zoonotic viruses
even when compared to birds, which alongside bats have been hypothesized to be spe-
cial zoonotic reservoirs due to molecular adaptations that support the physiology of
flight. Reservoir host groups more closely related to humans—in particular, primate-
s—harbor less virulent but more highly transmissible viruses. Importantly, a dispropor-
tionately high human death burden, arguably the most important metric of zoonotic
risk, is not associated with any animal reservoir, including bats. Our data demonstrate
that mechanisms driving death burdens are diverse and often contradict trait-based pre-
dictions. Ultimately, total human mortality is dependent on context-specific epidemio-
logical dynamics, which are shaped by a combination of viral traits and conditions in
the animal host population and across and beyond the human–animal interface.
Understanding the conditions that predict high zoonotic burden in humans will require
longitudinal studies of epidemiological dynamics in wildlife and human populations.
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The vast majority of human pathogens are derived from animal populations (1). In
response to increasingly frequent zoonotic spillovers and their substantial public health
risks (2), there has been a movement to identify the ecological systems and taxonomic
groups of animals and pathogens that are most likely to source the next emerging zoo-
nosis in the human population (3–9). However, most of this work has centered on a
binary definition of zoonotic risk—whether particular pathogens are capable of infect-
ing humans—without considering how pathogens vary with respect to their impacts on
humans after spillover. The ongoing severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pandemic has re-emphasized the reality that not all zoonoses pose risks
of equal magnitude—some are exceptionally more “dangerous” than others due to the
severity of disease they cause (“virulence”) or their capacity to spread within human
populations (“transmissibility”), which combined influence the total number of human
deaths (“death burden”) (10). Given the extraordinary diversity of both animal hosts
and the viruses they harbor, understanding which animal and virus groups are more
likely to source dangerous zoonoses is an important public health aim. Many high-
profile zoonotic viruses—including Nipah and Hendra henipaviruses; Ebola filovirus;
SARS, Middle East respiratory syndrome (MERS), and SARS-CoV-2 coronaviruses;
pandemic avian influenzas; West Nile virus; and Eastern Equine encephalitis viru-
s—have emerged from Chiropteran (bat) or avian reservoirs (11). The high number of
zoonotic viruses found in bats and birds has been attributed to their large gregarious
populations, mobility, ability to colonize anthropogenic environments, and sheer spe-
cies diversity (7, 11). Nonetheless, the following question remains: are bat- and/or
bird-borne viruses disproportionately dangerous?
A recent analysis (10) found that mammalian reservoir hosts most closely related to

humans harbor zoonoses of lower impact in terms of mortality relative to more phylo-
genetically distant hosts. These results were consistent with phylogenetic trends in viru-
lence that have been reported in cross-species pathogen emergences in other systems
(12, 13) and likely reflect mismatches in host biology, physiology, and ecology.
Notably, order Chiroptera (bats)—one of the more distantly related host orders—had
the highest positive effect size on case fatality rate (CFR) in humans. Nevertheless, this
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analysis considered only directly transmitted viruses and viruses
derived from mammalian hosts, despite the existence of several
high-profile vector-borne and avian zoonoses (11). In particu-
lar, birds occupy a separate taxonomic class from humans—a
phylogenetic distance that might correlate with heightened
virulence in humans.
In vitro work has suggested that molecular adaptations that

support the physiology of flight, a trait unique to bats among
mammals, may allow bats to tolerate rapidly replicating viruses
that express heightened virulence upon emergence in less toler-
ant hosts such as humans (14)—thus offering a possible expla-
nation for bat virus virulence. Bats and birds share a suite of
convergent flight adaptations—both taxa are remarkably long-
lived for their body size and appear to circumvent metabolic
constraints on longevity through cellular pathways evolved to
mitigate oxidative stress induced by flight (11). These meta-
bolic adaptations are hypothesized to be linked to the evolution
of virulent viruses in bats, but they are only typically discussed
with respect to their effect on lifespan in birds (15). A few
papers have reviewed birds’ role as “special” zoonotic reservoirs
(11, 16), but the virulence of avian zoonoses remains largely
unexplored. Nonetheless, although the most virulent zoonotic
viruses may garner the most publicity, these pathogens are not
necessarily the most dangerous to human health. Rather,
human health is most impacted by viruses that cause large vol-
umes of cases and deaths (burden). Although some viruses such
as Ebola and rabies are associated with both high CFRs and
burden in the human population, pandemic viruses are often
characterized by relatively low CFRs but high human transmis-
sibility. The 2009 H1N1 influenza pandemic was estimated to
have caused 60.8 million cases and more than 12,000 deaths in
the United States alone with a CFR of less than 1% (17), and
as of 9 July 2021, SARS-CoV-2 has caused over 185 million
cases and 4 million deaths worldwide with a CFR of just 2.2%
(18). To prevent the next zoonotic pandemic, it is important to
think beyond the individual measures of zoonotic capacity, vir-
ulence, and transmissibility to consider collective burden on
public health.
We applied generalized additive models (GAMs) to a dataset

of mammalian and avian zoonotic viruses to identify reservoir
host and viral traits predictive of the 1) CFR, 2) capacity for
forward transmission, and 3) death burden induced by infec-
tions in the human population—with the goal of characterizing
sources of zoonotic viruses that pose the greatest “danger” to
global health. Our work builds on a small body of analyses that
have begun to explore variation in the virulence and between-
human transmissibility of zoonotic viruses (4, 19–21). We pro-
vide an analysis of burden and the largest sample size—with
trends examined across the majority of known zoonotic viruses.
We hypothesized that birds—given their capacity for flight and
phylogenetic distance from humans—might rival bats for the
association with the most virulent zoonotic viruses. However,
we did not expect bats or birds to be responsible for the greatest
burden on global health, instead anticipating high burden to be
largely a function of viral traits and association with reservoir
orders that harbor less virulent, more transmissible viruses.

Results

Drawing from existing databases (7, 10, 22), we compiled a
dataset of all mammalian and avian zoonotic virus species that
met a strict definition of zoonotic—requiring a post-1950
record of natural human infection confirmed by PCR or
sequencing and animal-to-human directionality in transmission

(Materials and Methods, Constructing the Database). Virus spe-
cies linked to multiple independent reservoir groups (e.g.,
canine and bat rabies) or those which spillover to humans both
directly from their reservoir and through bridge hosts (e.g.,
Nipah virus) were subdivided into separate entries for each
unique transmission chain ending in spillover, creating a final
dataset of 89 viruses with a total of 93 transmission chains (SI
Appendix, Table S1). We then applied GAMs to assess predic-
tors (SI Appendix, Table S7) of the following three metrics of
zoonotic risk: global estimates of CFRs in humans (proxy for
virulence), capacity for forward transmission within the human
population ranked on a four-point scale (human transmissibil-
ity), and post-1950 cumulative death counts (death burden) (SI
Appendix, Fig. S1). We used both Akaike information criterion
(AIC)-maximization model selection (results reported in the
main manuscript) and automated term selection by double
penalty smoothing (SI Appendix, Table S8), and we found that
all key results were consistent across the two variable selection
techniques.

Predictors of Human CFRs. In our virulence analysis, we
observed a left-skewed distribution of CFRs, with 33.7% of
virus species linked to no fatalities (0% CFR) and more than
half (57.8%) linked to a CFR of less than 10% (SI Appendix,
Fig. S2). Bat reservoirs contributed more than two-thirds
(68.8%) of the identified viruses with CFRs higher than 50%.
The top selected GAM to predict global estimates of CFR in
humans—across the 87 unique zoonotic transmission chains
for which at least 2 human cases have been recorded—
explained 75.3% of the deviance and included reservoir host
group, virus family, bridged spillover, and vector-borne trans-
mission (Fig. 1 and SI Appendix, Table S5A). Consistent with
previous work (10) and the hypothesis that bats are special zoo-
notic reservoirs, order Chiroptera had the largest positive effect
size on CFR in humans (Fig. 1B). The top selected model pre-
dicted a CFR of 65.6% for zoonotic viruses derived from order
Chiroptera, representing a more than 50% increase from the
next highest predicted CFR (SI Appendix, Fig. S3). Neverthe-
less, overlapping confidence intervals for both CFR predictions
(SI Appendix, Fig. S3) and effect sizes (Fig. 1B) indicated that
without larger sample sizes, we cannot eliminate all uncertainty
regarding the virulence of bat viruses relative to viruses from
reservoir groups with very few known zoonotic viruses. Con-
trary to our flight hypothesis, avian reservoirs were not similarly
associated with disproportionately virulent zoonoses; order Aves
had a neutral effect size on human CFR that was not signifi-
cant. Order Cetartiodactyla—which in our dataset, included on
domesticated animal species (i.e., cattle, pigs, and camels)—had
the largest negative effect size on CFR.

Past analyses have observed that particular viral families asso-
ciate nonrandomly with particular host groups (10, 23), sug-
gesting that virus taxonomy may underlie trends in virulence
across reservoir orders. For example, the high number of viru-
lent bat-borne zoonoses (SI Appendix, Fig. S2) may be entirely
a result of the virus groups that preferentially infect bats, rather
than the bats themselves. However, here, reservoir host group
and virus family significantly predicted CFR within the same
models (Fig. 1A), indicating that both reservoir and virus taxa
contributed to the observed variation in virulence. Chiroptera
had the highest positive effect size on CFR despite being associ-
ated with virus families that ranged from the most (Rhabdoviri-
dae) to least (Coronaviridae) virulent (Fig. 1C ). Removing the
100% fatal lyssaviruses (n = 5) from the dataset resulted in
large reductions in the CFR predicted for bat-borne zoonoses
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(SI Appendix, Fig. S5), although order Chiroptera still had the
highest and most significant positive effect size on CFR—indi-
cating that observed patterns were not driven by rabies alone
(SI Appendix, Fig. S4 and Table S6A).
Previous work has demonstrated a positive correlation

between reservoir host phylogenetic distance from humans and
the CFRs of zoonoses derived from those reservoirs (10); in our
analysis, however, reservoir host group phylogenetic distance
from Primates was not correlated with CFR, dropping entirely
from the top ranked model and not ranking significantly in any
of the top 15 selected models (Fig. 1A). The combined effect
of reservoir host group and virus family as predictor variables in
the same model likely overwhelmed any correlation between
host phylogeny and CFR, particularly given the lack of granu-
larity in our phylogenetic distance variable, based on a time-
scaled phylogeny, which produced only six unique distance
values across nine host groups, with Chiroptera and four of the
other mammalian orders clustering at a single distance level
(Materials and Methods). Nevertheless, trends in effect size on
CFR (Fig. 1B) and predicted CFR (SI Appendix, Fig. S3) across
reservoir host groups suggest that, in general, virulence increases
with phylogenetic distance, but this positive correlation may
collapse at “extreme” distances.
To test whether these results held across a larger sample size,

we ran a CFR analysis that included viruses that met a more
lenient definition of zoonotic—specifically, viruses with only
serological evidence of infection in humans, viruses that have
only caused human infections in laboratory settings, and viruses
for which only one human case has been recorded—increasing
our dataset to 121 virus species with a total of 126 unique zoo-
notic transmission chains (SI Appendix, Fig. S6 and Table
S6B). This supplementary analysis echoed the results from our
first analysis of global CFR estimates (SI Appendix, Fig.
S6A)—both reservoir and virus taxonomy contributed to the
observed variation in CFR and Chiroptera had the highest posi-
tive effect size on CFR, whereas Aves had a neutral nonsignifi-
cant effect (SI Appendix, Fig. S6B).

To assess whether CFR trends might be biased by viruses’
geographic ranges (e.g., differences in health care infrastructure
and case ascertainment), we tested whether gross domestic
product per capita (GDP per-capita) significantly predicted
country-specific CFR estimates—calculated from death and
case counts in countries that have reported the largest outbreaks
of each given virus species, with up to 3 country estimates for
each species for a total of 119 estimates across the 87 unique
zoonotic transmission chains. First, we modeled all 119
country-specific CFR estimates separately to test whether GDP
per-capita predicts country-level variation in CFR (SI Appendix,
Fig. S7 and Table S6C). We then modeled GDP per-capita and
country CFR estimates aggregated at the level of the 87 unique
zoonotic transmission chains (SI Appendix, Fig. S8 and Table
S6D). In both analyses, GDP per-capita was not significant in
any of the top models, often dropping entirely during model
selection (SI Appendix, Figs. S7A and S8A), suggesting that
viruses’ geographic ranges most likely do not bias Fig. 1 trends.
Nevertheless, as with the supplementary analyses presented in SI
Appendix, Figs. S4 and S6, both analyses of the country CFR
estimates echoed all key results presented in Fig. 1.

Predictors of Transmissibility within Human Populations. We
found that most zoonotic viruses (71.3%) have not been
reported to transmit within the human population following
spillover (i.e., transmissibility rank = 1, or R0 = 0) (SI
Appendix, Fig. S9). Only 14.9% of virus species had demon-
strated capacity for endemic transmission among humans, of
which the majority (61.5%) were sourced from Primates. The
top selected GAM to predict the ordinal rank of transmissibility
within human populations—across the 87 unique zoonotic
transmission chains for which at least 2 human cases have been
recorded—explained 56.6% of the deviance and included virus
family, the phylogenetic distance between each viruses’ reservoir
host group and Primates, vector-borne transmission, and the
virus species publication count (Fig. 2 and SI Appendix, Table
S5B). Transmissibility declined with phylogenetic distance
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from Primates, but the estimated trend was highly uncertain
(Fig. 2C). We therefore reran the analysis with reservoir host
group as the only host taxonomic predictor (excluding the phy-
logenetic distance variable). This model explained 55.9% of the
deviance and identified Primates as the only host order signifi-
cantly associated with heightened transmissibility in humans,
suggesting that this group is the primary driver of the phyloge-
netic trend observed in the top selected model (SI Appendix,
Fig. S10A and Table S6E).

Predictors of Post-1950 Death Burden in the Human Popula-
tion. For our death burden analysis, we modeled the total
number of deaths resulting from a given zoonosis recorded
worldwide since 1950 (and up until 7 March 2021). In cases
where our death count could only begin after 1950, either
because a zoonosis first emerged in humans after 1950 or
because reliable death records were only available for a subset of
the timeline, we standardized analyses by including an offset
for the number of years over which the death counts were
recorded. The raw death count distribution was highly left-
skewed, with 39.8% of virus species linked to zero deaths and
more than half (62.5%) linked to fewer than 50 deaths (SI
Appendix, Fig. S12). We observed significant overdispersion in
death counts, even when standardized by the number of years
over which the deaths were recorded, with deaths per year rang-
ing from 0 to almost 2 million for SARS-CoV-2. Just 2 viral
predictors—virus family and species publication count—
explained most of the variation in death burden among the 93
zoonotic transmission chains across all the top GAMs (SI
Appendix, Fig. S13A). Host predictors explained a very low per-
centage of the variation in death burden across all the top
selected models, often dropping entirely during term selection.
Virus species publication count tempered virus family effects
(SI Appendix, Fig. S13C) because virus species with high death
burdens were also associated with high publication counts,
likely because high death burdens motivate increased research
efforts. In contrast, there was little evidence that only poorly

studied viruses were limited to unusually low death burdens,
implying that a lack of diagnostic effort is not a major driver of
low death burdens in our data (SI Appendix, Fig. S13C ). After
excluding the virus species publication predictor, we found that
Coronaviridae, Orthomyxoviridae, and Rhabdoviridae had the
highest positive effect sizes on death burden, driven by the
SARS-CoV-2, the influenza A transmission chains, and Rabies
virus, respectively (Fig. 3B and SI Appendix, Table S5C ). With
virus publication count removed, the top four models included
two reservoir traits—phylogenetic distance from Primates and
species richness—as significant predictors. Reservoir groups
most closely related to Primates were associated with height-
ened death burdens relative to more distantly related reservoirs,
consistent with results from our transmissibility analyses that
indicated that reservoirs most closely related to Primates har-
bored more transmissible viruses (Fig. 3C). Reservoir species
richness positively correlated with death burden, as we would
expect given that species richness has been found to correlate
with the number of viruses associated with a given reservoir
order (Fig. 3D) (7). However, both reservoir predictors
explained a small fraction of the variation in death burden rela-
tive to virus family, confirming that death burden is largely a
function of viral traits (Fig. 3A).

Although some reservoir groups—bats, primates, rodents,
and birds—have sourced more high-burden viruses than others
(Fig. 4A), both our model results and raw data suggested that
high burden viruses appeared to be a function of viral traits,
not the reservoirs themselves. No single reservoir stood out as a
consistent source of high-burden viruses, with every reservoir
that harbors high-burden viruses also harboring substantially
more viruses that cluster at the lowest death burdens (Fig. 4A).
This was not the case for virus family (Fig. 4B) or primary
transmission route (Fig. 4C); Coronaviridae and Orthomyxo-
viridae and a respiratory transmission route were associated
only with high-burden zoonotic viruses. In general, the viruses
linked to the lowest death burdens were associated with the
lowest transmission capacity. As a deviation from this trend,
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Fig. 2. Predictors of capacity for forward transmission within the human population following zoonotic spillover. (A) Top 15 models ranked by AIC. Rows
represent individual models and columns represent predictor variables. Cells are shaded according to the proportion of deviance explained by each predic-
tor. Cells representing predictor variables with a P value significance level of <0.1 are outlined in black and otherwise outlined in gray. (B–E) Effects present
in the top model, namely, virus family, reservoir group phylogenetic distance from Primates, vector-borne transmission, and log-transformed virus species
publication count. Lines represent the predicted effect of the x-axis variable when all other variables are held at their median value (if numeric) or their
mode (if categorical). Shaded regions indicate 95% CIs by SE, and points represent partial residuals. An effect is shaded in gray if the 95% CI crosses zero
across the entire range of the predictor variable; in contrast, an effect is shaded in purple and considered significant if the 95% CI does not cross zero. Full
model results are outlined in SI Appendix, Table S5B.
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Primates—which our models indicate harbor the most trans-
missible, but generally less virulent, zoonotic viruses—harbored
several highly transmissible viruses with low death burdens
(Fig. 4A).
The highest death burdens were overall associated with zoo-

notic viruses that are less virulent but highly transmissible in
human populations (Fig. 4D). Respiratory pathogens with a
capacity for human-to-human transmission have often incurred
massive burdens over short timeframes as a result of rare, but
catastrophic spillover events that spark widespread transmission
in humans. Critically, although our dataset included only 6
viruses with respiratory droplets as a primary transmission
route—SARS-CoV-1, SARS-CoV-2, MERS-CoV, influenza A,
Nipah, and monkeypox—these viruses accounted for more
than 85.9% of the deaths recorded for the 86 viruses in our
death burden analysis, highlighting respiratory transmission as
a high-risk zoonotic trait. However, these data were derived
from a notably small sample size, as three of the six respiratory
viruses have caused only a single major epidemic. There was
also substantial variation among these respiratory viruses, with
the death burdens associated with SARS-CoV-1 and SARS-
CoV-2 differing by more than 2.5 million people.

Discussion

A key insight from our work is that bats harbor the most viru-
lent zoonotic viruses relative to other mammalian and avian res-
ervoirs (SI Appendix, Fig. S2). Given that birds represent the
only other flying vertebrates and that flight adaptations are

hypothesized to influence the evolution of viruses virulent to
humans in bat reservoirs (11), we expected avian viruses to sim-
ilarly be associated with heightened CFRs in humans. However,
we found that only order Chiroptera had an exceptionally high
positive effect size on CFR in humans, whereas Aves had a neu-
tral nonsignificant effect. It is of course possible that we observed
this association between Chiroptera and high CFRs in part
because low-virulence zoonotic viruses have gone undetected in
bat reservoirs; however, other poorly studied reservoirs are not
comparably associated with heightened virulence, suggesting that
detection bias cannot explain our results. Like CFR, transmissibil-
ity in humans was also correlated with reservoir traits, but in this
case, Primates—the reservoir group most closely related to
humans—sourced the zoonotic viruses with the highest capacities
for forward transmission in human populations. Although a com-
bination of both virus and reservoir taxonomy predicted virulence
and transmissibility, death burden did not correlate with any reser-
voir group and instead was a function of viral traits. Nevertheless,
our data indicated that mechanisms driving high death burdens
are diverse and often contradict trait-based predictions. Several
high-profile zoonotic viruses linked to significantly higher death
burdens than we would expect based on their capacity for forward
transmission in the human population (Fig. 4D), suggesting that
death burden is highly dependent on both the contact rate at
the human–animal interface and epidemiological dynamics within
the human population—factors that are not fully captured by the
broad explanatory variables considered in trait-based analyses.

Evolution of virulence theory typically assumes a tradeoff
between virulence (death rate due to infection) and transmission
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Fig. 3. Predictors of post-1950 death burden, excluding the virus species publication count predictor. See SI Appendix, Fig. S12 for inclusion. (A) Top 15 mod-
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Full model results are outlined in SI Appendix, Table S5C.
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rate on the basis that although high within-host growth rates
increase infectiousness, they also increase damage to the host,
increasing virulence and thus shortening the infectious period
and reducing opportunities for future transmission (24, 25).
Critically, CFR is not equivalent to virulence, but instead, it is a
proxy that can be reliably quantified. As defined by Day (26),
CFR is a function of both pathogen virulence (α) and clearance
rate (σ), in which CFR ¼ α=ðαþ σÞ. Thus, virulent pathogens
(high α) with high clearance rates (high σ)—e.g., acute, short-
lived infections such as Chikungunya virus (27)—could produce
low CFRs. In contrast, less virulent pathogens (low α) with low
clearance rates (low σ)—e.g., persistent infections such as HIV

(28)—could produce high CFRs. Nevertheless, in our data, we
observed a relationship between CFR and transmissibility in
humans that roughly supports the fundamental theoretical trade-
off between virulence and transmission rate (SI Appendix, Fig.
S11). Viruses causing the highest CFRs in humans (>75%
CFR) clustered in the lower right corner with the lowest capacity
for forward transmission in the human population, implying
maladaptive virulence. Conversely, the least virulent viruses (0%
CFR) clustered at either the lowest transmission capacity—likely
indicative of poor compatibility with humans—or the highest
transmission capacity—suggesting transmission uninhibited by
virulence.
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Fig. 4. Death burden per year (cumulative post-1950 death counts divided by the length of reporting time), grouped by reservoir host group (A), virus fam-
ily (B), primary transmission route (C), and CFR in humans (D). Colors indicate transmissibility between humans, with “1” indicating the lowest level of trans-
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The surprisingly low virulence of avian zoonotic viruses in
contrast to bat-borne viruses may reflect the extreme phyloge-
netic distance that separates birds from Primates. In our previ-
ous analysis, we found that mammalian reservoir hosts most
closely related to humans harbor less virulent zoonotic viruses
relative to more distantly related mammalian hosts such as bats
(10). This positive correlation between reservoir phylogenetic
distance from humans and viral virulence is consistent with
trends that have been reported in cross-species pathogen
emergences in other systems (10, 12, 13) and likely reflects
maladaptive virulence resulting from mismatches in host biol-
ogy, physiology, and ecology. Clearly, although bats are dis-
tantly related to humans, they are still mammals, whereas birds
occupy a separate taxonomic class. It is possible that the posi-
tive correlation between phylogenetic distance and virulence
collapses at distances beyond mammals because viruses are
expected to have a limited capacity to replicate in host environ-
ments that are very different from that of their reservoir, lead-
ing to nonhost resistance (29, 30). Phylogenetic distance
dropped from all CFR models likely due to a lack of granularity
in our phylogenetic distance data, which described reservoir
host cophenetic distance from Primates on a time-scaled phy-
logeny (7), producing only six unique distance values across all
of the reservoir groups in our database. Trends across reservoir
host groups overall support the hypothesis that the positive
correlation between phylogenetic distance and virulence col-
lapses at extreme distances. Nevertheless, more studies are
needed to parse the effect of phylogenetic distance on viru-
lence trends in animal-to-human spillovers. The time-scaled
phylogeny represents the only available phylogeny that
includes both mammals and birds. Future studies would bene-
fit from developing additional phylogenies of mammalian and
avian reservoirs, which prioritize immunological or physiologi-
cal traits that may more accurately proxy virologically relevant
differences in host environments.
Chiroptera represented an outlier among distantly related

reservoirs, with an undeniably positive effect size on CFR more
than triple that recovered for any other mammalian order.
Consistent with the hypothesis that bats represent a special viral
reservoir (31), the order Chiroptera does appear to harbor zoo-
notic viruses that are uniquely virulent upon spillover to
humans, even when considering virulence effects that might be
attributed to their phylogenetic distance from Primates. In
bats, flight adaptations have been linked to viral tolerance,
which previous work suggests may select for high growth rate
viruses that could manifest as virulent upon emergence in less
tolerant hosts such as humans (14). Notably, bats experience
limited morbidity or mortality from intracellular infections
with only a few known exceptions (31–34). Conversely,
although birds harbor several zoonotic viruses that are virulent
in humans such as highly pathogenic avian influenza (HPAI),
West Nile, and equine encephalitis viruses, only some avian
species are tolerant of these infections—many avian species
experience morbidity and mortality (35). Bats and birds are
expected to experience similar selective pressures from flight;
they have been found to incur comparable energetic costs while
flying, despite different forms and physiologies (15, 36). How-
ever, the two taxonomic groups, within disparate vertebrate
classes, may have responded differently to these selective
pressures. Specifically, there is a possibility that bats evolved
cellular pathways that protect against both aging and immuno-
pathology, whereas birds evolved pathways that only protect
against aging. For example, bats have been found to host a
suite of cellular-level anti-inflammatory adaptations—including

enhanced cellular autophagy and downregulated signaling
pathways linked to the induction of inflammatory antiviral
defenses—which may both mitigate cellular damage induced
by bat metabolism and inhibit immunopathology incurred
upon viral infection (31, 37–41). On the other hand, birds
may rely primarily on systemic antioxidant responses (42),
which mitigate oxidative stress but do not interact so tightly
with cellular-level processes that impact viral pathology. Criti-
cally, birds appear to be missing anti-inflammatory protein tris-
tetraprolin (43), and immunopathology is often the cause of
death in birds that die from viral infections such as HPAI and
West Nile virus (35). Differences between mammalian and
avian immune systems may additionally play a role in their dif-
fering infection outcomes. The immune system is broadly con-
served in amniotes, but some avian immunological features
diverge from those of bats and other mammals. Notably, birds
lack lymph nodes and instead develop B cells in a specialized
lymphoid organ, the bursa of Fabricius; have heterophil in
their white blood cells as opposed to neutrophil; and produce
only three classes of immunoglobulin in contrast to the five
produced by mammals (11). Nevertheless, the differing effects
of Chiropteran and avian metabolic adaptations on viral toler-
ance and viral evolution remain largely uncharacterized, and
more basic research in this field is needed (44).

Order Cetartiodactyla had the largest negative effect size on
CFR, but notably, Cetartiodactyl hosts in our dataset included
only domesticated animal species—cattle, pigs, and camels.
The long coexistence of domestic animals and humans likely
facilitated the increased research effort for this clade, which
have may have led to the greater detection of low virulence zoo-
noses in domestic animal species. A long history of domestic
animal-human coexistence may also have supported the devel-
opment of preexisting human immunity to some livestock
diseases, resulting in lower virulence infections.

We found that both reservoir host and virus taxonomy predict
the virulence and transmissibility of a virus in the secondary
human host, consistent with the expectation that a virus evolves
virulence to maximize reproduction in its reservoir population
(45). The optimal balance between virulence and transmission
depends on how the reservoir host population responds to the
virus (the host selective pressure), which is determined by the
ecological, physiological, and biological traits of the reservoir.
Although we identified special reservoirs of virulent and trans-
missible zoonotic viruses, we found that the human death bur-
den incurred by viral zoonoses does not correlate with any one
reservoir host order, including bats, and instead is a function of
viral traits. Our data demonstrate that mechanisms driving high
death burdens are diverse and often contradict trait-based predic-
tions. High death burdens have resulted from rare spillover
events of highly transmissible viruses that spread widely in the
human population; small, but frequent spillovers of the least
transmissible viruses; and historically low-burden pathogens that
take off given the right ecological and evolutionary conditions.
This suggests that, ultimately, death burden depends on
epidemiological circumstances, which should be shaped, not by
reservoir host traits, but by a combination of viral traits and con-
ditions in the animal host population and across and beyond the
human–animal interface. Notably, the pandemic spread of
SARS-CoV-2 can be attributed to its highly effective respiratory
transmission between humans, a trait linked to its identity
within Coronaviridae, rather than its bat origins (indeed, CoVs
demonstrate gastrointestinal tropism in bat reservoirs) (46).

However, several outliers demonstrated that a capacity for
forward transmission in human populations does not always
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predict death burden; it is critical to also consider epidemiolog-
ical dynamics across and beyond the human–animal interface.
Less-transmissible viruses can accumulate large death burdens
over many small, but frequent spillovers, particularly in systems
in which humans regularly interact with animal reservoirs.
Rabies, Hantaan (HTNV), and Japanese encephalitis viruses
have been associated with some of the highest death burdens
induced by viral zoonosis despite lacking forward transmission
in human populations (Fig. 4D). This is likely because these
viruses spill over to humans from animal host populations that
live among human communities—rabies burden is largely
driven by spillover from endemic circulation in domestic dogs
(47), HTNV spills over from striped field mouse (Apodemus
agrarius) populations that inhabit agricultural fields (48), and
Japanese encephalitis is amplified via domesticated pigs (49).
Outbreaks in these spillover host populations source human
infections that are dead ends for further transmission but add
up to large numbers. Emphasizing the importance of under-
standing system-specific dynamics, HTNV had a death burden
more than 18 times greater than the combined death burden of
all 10 other rodent-borne hantaviruses in our dataset, most
likely because other rodent reservoirs of hantaviruses tend to
overlap less with human populations (48). Furthermore, zoo-
notic viruses that have historically been low burden pathogens
can unexpectedly cause high death burdens in the case of virus
evolution or unique epidemiological circumstances (50). For
example, Ebola virus first emerged in humans in 1976, causing
deadly, but local outbreaks up until late 2013, when suddenly,
emergence in a region with dense and interconnected human
populations, coupled with virus adaptation (51), allowed an
Ebola virus spillover event to spark a transnational epidemic
that in just 2 y caused more than 6.5 times the total number of
deaths recorded from 1976 to 2013 (50, 52). These outliers
suggest that understanding epidemiological dynamics—within
wildlife populations and across and beyond the human–animal
interface—in specific systems is a critical component of predict-
ing death burden and, consequently, danger to human health.
Over the course of the last decade, a significant amount of

funding and research effort has been dedicated to identifying
correlates of zoonotic risk, often with a long-term aspiration of
identifying ways to anticipate and prevent emerging zoonoses
in the future (53–55). This research increasingly prioritizes viral
discovery over longitudinal studies of epidemiological dynamics
and targets animal populations such as bats that have been
identified as key zoonotic reservoirs. Although our analysis
corroborates the hypothesis that bats are a special reservoir for
virulent zoonotic viruses, we also demonstrate that viral
traits—not bat reservoirs—pose the greatest danger to human
health. We argue that burden, which does not correlate with
any animal reservoir and instead appears to be a function of
transmission conditions to and within the human population,
more correctly approximates danger to human health than does
virus virulence. Although reservoir and viral traits can predict
zoonotic capacity, virulence, and transmissibility, death burden
is dependent on system-specific epidemiological dynamics,
which are shaped by a combination of viral traits and condi-
tions in the animal host population and across and beyond the
human–animal interface. Thus, understanding and controlling
the mechanisms that drive high death burdens in human-
s—high rates of human–animal contact and/or epidemiological
dynamics in the human population that allow discrete spillover
events to trigger human epidemics—requires longitudinal sur-
veillance of specific zoonotic or potentially zoonotic viruses in
both animal and human populations. There is a pressing need

for more longitudinal studies of transmission dynamics in
human and wildlife populations to better understand and pre-
vent the epidemiological conditions that cultivate the most
dangerous cases of zoonotic viral emergence.

Materials and Methods

Constructing the Database (SI Appendix, Fig. S1). We curated a compre-
hensive dataset of mammalian and avian zoonotic viruses—and the taxonomic
orders of the reservoir hosts from which they were derived—from published data-
bases (7, 10, 22). Reservoirs were defined as the primary host species that is
responsible for maintaining zoonotic transmission. Using the information pro-
vided in these databases and supplementing with literature searches, we
extracted viruses that met a strict definition of zoonotic, requiring at least one
published human infection in which the virus species was confirmed by PCR,
sequencing, or isolation as well as evidence of animal-to-human directionality in
transmission (SI Appendix, Exclusion criteria). With this strict inclusion criteria,
we compiled 89 unique virus species (SI Appendix, Table S1).

For each virus–reservoir association, we collected both human CFR as a proxy
for virulence and the cumulative global death count as a proxy for burden on
the human population. For CFR, we collected two estimates. First, we recorded
existing estimates of global CFRs from the literature, calculating averages when
ranges were reported. Second, for each virus species, we calculated country-
specific CFRs from death and case counts in countries that have reported the
largest outbreaks of that virus—to assess and account for potentially confounding
effects of regional differences in health care and overall infrastructure (SI
Appendix, SI analyses). For our death burden response variable, we collected the
total number of deaths recorded across the world since 1950. In many cases,
our death count began after 1950, either because a zoonosis first emerged in
humans after 1950 or reliable death records were only available for a subset of
the timeline. To standardize, we added a variable for the number of years over
which death counts were recorded to use as an offset in our models. Death and
case counts were derived, when available, from the Global Infectious Diseases
and Epidemiology Network (56)—which contains outbreak data from case reports,
government agencies, and published literature records—and supplemented with
literature searches. We additionally ranked each zoonosis’ capacity for transmis-
sion within human populations—a correlate of R0—on a four-point scale (10). All
variable descriptions are provided in SI Appendix, Table S4.

Drawing from previously published databases (7, 10), we collected seven vari-
ables (SI Appendix, Table S7) that we hypothesized might predict observed varia-
tion in human CFR, capacity for transmission within human populations, and
death burden. Given published correlations between phylogenetic distance and
virulence in cross-species spillovers (10, 12, 13, 57, 58), we included the reser-
voir host group cophenetic distance from Primates. We considered both reservoir
host and virus taxonomy, recording host order and virus family. However, only
10 avian zoonoses were distributed across several avian reservoir host orders. To
test our hypotheses regarding avian zoonoses, we addressed this small sample
size by aggregating avian reservoir orders into a single Aves group, while main-
taining separate host orders for the mammalian reservoirs. Given that the num-
ber of zoonoses harbored by a reservoir group appears to correlate with species
diversity within that group (7), we hypothesized that species diversity might
influence reservoir effect size on CFR in humans; thus, we included reservoir spe-
cies richness, which we derived from the Catalogue of Life using version 0.9.6 of
the taxize library in R (7, 59), taking the sum of values across bird orders for the
Aves reservoir group. We defined a “spillover type” variable to account for the
zoonotic transmission chain of each virus, distinguishing between zoonoses that
jump into humans directly from the reservoir population and those that spillover
to humans from bridge hosts (10). Although the majority of zoonoses were
linked to single zoonotic transmission chains, there were a few exceptions with
both direct and bridged spillover. For example, zoonotic influenza A virus and
Nipah virus (60, 61) have spilled over into the human population directly from
their avian and bat reservoirs, respectively, as well as from domestic pig bridge
host populations. In such cases, each spillover type (i.e., transmission chain) was
entered separately in the database. We included an additional binary variable
that identified whether viruses were vector borne, as both theory (24) and previ-
ous analyses (19, 20) have suggested a relationship between vector-borne trans-
mission and virulence. Finally, as has been done in other similar analyses, we
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included virus species publication count to account for any potential publication
bias (3, 10, 58).

To pair with our country-specific CFR data, we collected an eighth predictor
variable—GDP per-capita—as a proxy for geographical differences in the quality of
health care and epidemiological control measures.

We additionally collected, for each virus species, the transmission route that
contributes the majority of human infections, extending data published by Brier-
ley et al. (19). We then assessed trends in death burden across transmission
types, hypothesizing that density-dependent transmission, as a characteristic of
transmission via respiratory droplets, would be associated with the highest death
burdens in human populations.

Statistical Analysis. Given the nonnormal distribution of our data, expected
nonlinear relationships, and nested data structures within our predictor variables
(62), we applied GAMs in the mgcv package in R (63) to assess predictors of
CFR, transmissibility, and death burden in human populations. Rather than man-
ually specifying higher order polynomial functions, GAMs permit the use of
smooth functions to capture nonlinear relationships between response and pre-
dictor variables (62, 63). We fit continuous variables (i.e., reservoir group species
richness and phylogenetic distance from Primates, and virus species publication
count) as smoothed effects, and all binary (i.e., vector-borne status and spillover
type) and categorical (i.e., reservoir order and virus family) variables as random
effects, as has been done in previous analyses (3, 4, 7, 10). For variable selec-
tion, we ran all possible model combinations, ranked by AIC, and selected the
models with the lowest AIC values. We confirmed our results by rerunning vari-
able selection with automated term selection by double penalty smoothing. This
method bypasses AIC-maximization procedures by constructing an additional
penalty for each GAM smooth function, effectively removing terms without pre-
dictive power, and has been recognized as superior or comparable to alternative
approaches (64). We set an effective degree of freedom cutoff of 0.001 to iden-
tify which terms had been penalized and effectively removed from the model
(3). The validity of all models was checked using standard methods imple-
mented in the mgcv library (63).

We first asked the following: which reservoir host and virus types are associ-
ated with elevated CFRs in human populations following spillover? We con-
structed GAMs in the beta regression family to query the predictive capacity of
our predictor variables (SI Appendix, Table S7) on CFR in humans. We com-
pressed our CFR range to the beta distribution interval (0,1) by applying the rec-
ommended data transformation y€¼ ½y0ðN� 1Þ þ 1=2�N, where N is the
sample size (65, 66). For all CFR analyses, we modeled unique zoonotic trans-
mission chains—which we defined as unique reservoir orders and spillover type
combinations per virus. As a result, zoonoses with a single reservoir host order
and spillover type were modeled as a single CFR entry, whereas those with mul-
tiple reservoir orders and/or spillover types (e.g., influenza A and Nipah viruses)
were modeled as multiple CFR entries. We excluded five viruses for which only
one human case has been recorded (SI Appendix, Table S1), deciding that we
could not accurately represent a single observation as a CFR. Our final GAM

analysis of global CFR estimates included 82 unique virus species with a total of
86 unique zoonotic transmission chains (SI Appendix, Table S5A).

We next asked the following: which reservoir host and virus types are associ-
ated with an elevated capacity for transmission within human populations? We
constructed a GAM in the ocat (ordered categorical data) family to query the pre-
dictive capacity of our predictor variables on transmissibility, defining the vector
of categorical cut points, θ, to match our four-point ranking scale (θ = 1,2,3,4).
We again excluded the five viruses for which only one human case has been
recorded (SI Appendix, Table S1), deciding that we could not accurately deter-
mine between-human transmissibility based on a single observation. Thus, like
our CFR analysis, our transmissibility analysis included 82 unique virus species
with a total of 86 unique zoonotic transmission chains (SI Appendix, Table S5B).

Lastly, we asked the following: which reservoir host and virus types are associ-
ated with high death burdens in human populations? The death count data
demonstrated strong overdispersion (SI Appendix, Fig. S11). Thus, we con-
structed a negative binomial GAM with the scaled observation period (i.e.,
number of years over which the death count was recorded) as an offset. We con-
sidered simpler Poisson GAMs, as well as zero-inflated models, but enhanced
residual quantile-quantile plots (67) suggested that these distributions fit poorly.
Unlike our CFR analysis, we did not exclude viruses for which only one human
case has been recorded. However, we did exclude a single virus species—Rotavi-
rus A—for which we were unable to distinguish between deaths caused by zoo-
notic strains versus deaths caused by endemic human strains. Thus, our death
burden models included 86 zoonotic viruses with a total of 90 transmission
chains (SI Appendix, Tables S5C and S6F).

Data Availability. All data, data references, code, and materials used in the
analysis are publicly available in the main text, the supplementary materials, or
the following GitHub repository: https://github.com/sguth1993/zoonotic_risk_
meta_analysis.

ACKNOWLEDGMENTS. We thank the Boots Lab at UC Berkeley for helpful
comments on this manuscript. S.G. also thanks Phoebe Bridgers for inspiration
and Kevin Wood for his risotto. S.G. and E.V. are supported by National Science
Foundation Graduate Research Fellowships; M.B. is supported by the National
Institutes of Health (GM122061) and Bioscience for the Future (BB/L010879/1);
C.E.B. is supported by the Miller Institute for Basic Research at the University of
California Berkeley, the Branco Weiss Science in Society fellowship, and the
Lor�eal-USA for Women in Science fellowship; and N.M. and D.G.S. are supported
by the Wellcome Trust (Senior Research Fellowship 217221/Z/19/Z).

Author affiliations: aDepartment of Integrative Biology, University of California,
Berkeley, Berkeley, CA 94720; bMedical Research Council–University of Glasgow Centre
for Virus Research, Glasgow G61 1QH, United Kingdom; cInstitute of Biodiversity,
Animal Health and Comparative Medicine, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; dCentre for
Ecology and Conservation, University of Exeter, Exeter TR10 9FE, United Kingdom; and
eDepartment of Ecology and Evolution, University of Chicago, Chicago, IL 60637

1. M. E. J. Woolhouse, S. Gowtage-Sequeria, Host range and emerging and reemerging pathogens.
Emerg. Infect. Dis. 11, 1842–1847 (2005).

2. M. Woolhouse, F. Scott, Z. Hudson, R. Howey, M. Chase-Topping, Human viruses: Discovery and
emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2864–2871 (2012).

3. K. J. Olival et al., Host and viral traits predict zoonotic spillover from mammals. Nature 546,
646–650 (2017).

4. C. Kreuder Johnson et al., Spillover and pandemic properties of zoonotic viruses with high host
plasticity. Sci. Rep. 5, 14830 (2015).

5. B. A. Han, A. M. Kramer, J. M. Drake, Global patterns of zoonotic disease in mammals. Trends
Parasitol. 32, 565–577 (2016).

6. A. D. Washburne et al., Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ
6, e5979 (2018).

7. N. Mollentze, D. G. Streicker, Viral zoonotic risk is homogenous among taxonomic orders of
mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. U.S.A. 117, 9423–9430 (2020).

8. C. K. Johnson et al., Global shifts in mammalian population trends reveal key predictors of virus
spillover risk. Proc. Biol. Sci. 287, 20192736 (2020).

9. G. F. Albery, D. J. Becker, Fast-lived hosts and zoonotic risk. Trends Parasitol. 37, 117–129
(2021).

10. S. Guth, E. Visher, M. Boots, C. E. Brook, Host phylogenetic distance drives trends in virus virulence
and transmissibility across the animal-human interface. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374,
20190296 (2019).

11. G. Nabi et al., Bats and birds as viral reservoirs: A physiological and ecological perspective. Sci.
Total Environ. 754, 142372 (2021).

12. B. Longdon, J. D. Hadfield, C. L. Webster, D. J. Obbard, F. M. Jiggins, Host phylogeny determines
viral persistence and replication in novel hosts. PLoS Pathog. 7, e1002260 (2011).

13. M. J. Farrell, T. J. Davies, Disease mortality in domesticated animals is predicted by host
evolutionary relationships. Proc. Natl. Acad. Sci. U.S.A. 116, 7911–7915 (2019).

14. C. E. Brook et al., Accelerated viral dynamics in bat cell lines, with implications for zoonotic
emergence. eLife 9, e48401 (2020).

15. J. Munshi-South, G. S. Wilkinson, Bats and birds: Exceptional longevity despite high metabolic
rates. Ageing Res. Rev. 9, 12–19 (2010).

16. J. F.-W. Chan, K. K.-W. To, H. Tse, D.-Y. Jin, K.-Y. Yuen, Interspecies transmission and emergence of
novel viruses: Lessons from bats and birds. Trends Microbiol. 21, 544–555 (2013).

17. CDC, 2009 H1N1 pandemic. Centers for Disease Control and Prevention (2019). https://www.cdc.
gov/flu/pandemic-resources/2009-h1n1-pandemic.html. Accessed 29 April 2021.

18. WHO, WHO Coronavirus Disease (COVID-19) Dashboard (2021). https://covid19.who.int/. Accessed
9 July 2021.

19. L. Brierley, A. B. Pedersen, M. E. J. Woolhouse, Tissue tropism and transmission ecology predict
virulence of human RNA viruses. PLoS Biol. 17, e3000206 (2019).

20. J. L. Geoghegan, A. M. Senior, F. Di Giallonardo, E. C. Holmes, Virological factors that increase the
transmissibility of emerging human viruses. Proc. Natl. Acad. Sci. U.S.A. 113, 4170–4175 (2016).

21. J. W. Walker, B. A. Han, I. M. Ott, J. M. Drake, Transmissibility of emerging viral zoonoses. PLoS
One 13, e0206926 (2018).

22. R. Gibb et al., Data proliferation, reconciliation, and synthesis in viral ecology. Bioscience 71,
1148–1156 (2021).

23. S. A. Babayan, R. J. Orton, D. G. Streicker, Predicting reservoir hosts and arthropod vectors from
evolutionary signatures in RNA virus genomes. Science 362, 577–580 (2018).

24. P. W. Ewald, Host-parasite relations, vectors, and the evolution of disease severity. Annu. Rev. Ecol.
Syst. 14, 465–485 (1983).

25. R. M. Anderson, R. M. May, Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).

PNAS 2022 Vol. 119 No. 14 e2113628119 https://doi.org/10.1073/pnas.2113628119 9 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113628119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113628119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113628119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113628119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113628119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113628119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113628119/-/DCSupplemental
https://github.com/sguth1993/zoonotic_risk_meta_analysis
https://github.com/sguth1993/zoonotic_risk_meta_analysis
https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html
https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html
https://covid19.who.int/


26. T. Day, On the evolution of virulence and the relationship between various measures of mortality.
Proc. Biol. Sci. 269, 1317–1323 (2002).

27. M. Solignat, B. Gay, S. Higgs, L. Briant, C. Devaux, Replication cycle of chikungunya: A re-emerging
arbovirus. Virology 393, 183–197 (2009).

28. J. Coffin, R. Swanstrom, HIV pathogenesis: Dynamics and genetics of viral populations and
infected cells. Cold Spring Harb. Perspect. Med. 3, a012526 (2013).

29. J. Antonovics et al., The origin of specificity by means of natural selection: Evolved and nonhost
resistance in host-pathogen interactions. Evolution 67, 1–9 (2013).

30. P. van Baarlen, A. van Belkum, R. C. Summerbell, P. W. Crous, B. P. H. J. Thomma, Molecular
mechanisms of pathogenicity: How do pathogenic microorganisms develop cross-kingdom host
jumps? FEMS Microbiol. Rev. 31, 239–277 (2007).

31. C. E. Brook, A. P. Dobson, Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends
Microbiol. 23, 172–180 (2015).

32. A. Cogswell-Hawkinson et al., Tacaribe virus causes fatal infection of an ostensible reservoir host,
the Jamaican fruit bat. J. Virol. 86, 5791–5799 (2012).

33. G. Kemenesi et al., Re-emergence of Lloviu virus inMiniopterus schreibersii bats, Hungary, 2016.
Emerg. Microbes Infect. 7, 66 (2018).

34. C. Kohl et al., Zwiesel bat banyangvirus, a potentially zoonotic Huaiyangshan banyangvirus (Formerly
known as SFTS)-like banyangvirus in Northern bats from Germany. Sci. Rep. 10, 1370 (2020).

35. M. Staley, C. Bonneaud, Immune responses of wild birds to emerging infectious diseases. Parasite
Immunol. 37, 242–254 (2015).

36. S. P. Thomas, R. A. Suthers, The physiology and energetics of bat flight. J. Exp. Biol. 57, 317–335
(1972).

37. G. Zhang et al., Comparative analysis of bat genomes provides insight into the evolution of flight
and immunity. Science 339, 456–460 (2013).

38. M. Ahn et al., Dampened NLRP3-mediated inflammation in bats and implications for a special viral
reservoir host. Nat. Microbiol. 4, 789–799 (2019).

39. E. D. Laing et al., Enhanced autophagy contributes to reduced viral infection in black flying fox
cells. Viruses 11, 260 (2019).

40. J. Xie et al., Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23,
297–301.e4 (2018).

41. G. Goh et al., Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of
dampened inflammation in bats. Proc. Natl. Acad. Sci. U.S.A. 117, 28939–28949 (2020).

42. G. M. Castiglione, Z. Xu, L. Zhou, E. J. Duh, Adaptation of the master antioxidant response connects
metabolism, lifespan and feather development pathways in birds. Nat. Commun. 11, 2476 (2020).

43. W. S. Lai et al., Life without TTP: Apparent absence of an important anti-inflammatory protein in
birds. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R689–R700 (2013).

44. D. J. Becker, G. �A. Czirj�ak, A. Rynda-Apple, R. K. Plowright, Handling stress and sample storage are
associated with weaker complement-mediated bactericidal ability in birds but not bats. Physiol.
Biochem. Zool. 92, 37–48 (2019).

45. J. L. Geoghegan, E. C. Holmes, The phylogenomics of evolving virus virulence. Nat. Rev. Genet. 19,
756–769 (2018).

46. S. J. Anthony et al.; PREDICT Consortium, Global patterns in coronavirus diversity. Virus Evol. 3,
vex012 (2017).

47. K. Hampson et al.; Global Alliance for Rabies Control Partners for Rabies Prevention, Estimating
the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).

48. H. Tian, N. C. Stenseth, The ecological dynamics of hantavirus diseases: From environmental
variability to disease prevention largely based on data from China. PLoS Negl. Trop. Dis. 13,
e0006901 (2019).

49. G. Le Flohic, V. Porphyre, P. Barbazan, J.-P. Gonzalez, Review of climate, landscape, and viral
genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl. Trop. Dis. 7, e2208
(2013).

50. J. L. Geoghegan, E. C. Holmes, Predicting virus emergence amid evolutionary noise. Open Biol. 7,
170189 (2017).

51. R. A. Urbanowicz et al., Human adaptation of Ebola virus during the West African outbreak. Cell
167, 1079–1087.e5 (2016).

52. D. Malvy, A. K. McElroy, H. de Clerck, S. G€unther, J. van Griensven, Ebola virus disease. Lancet 393,
936–948 (2019).

53. M. Wille, J. L. Geoghegan, E. C. Holmes, How accurately can we assess zoonotic risk? PLoS Biol. 19,
e3001135 (2021).

54. K. Gruber, Predicting zoonoses. Nat. Ecol. Evol. 1, 98 (2017).
55. S. S. Morse et al., Prediction and prevention of the next pandemic zoonosis. Lancet 380,

1956–1965 (2012).
56. S. C. Edberg, Global Infectious Diseases and Epidemiology Network (GIDEON): A world wide Web-

based program for diagnosis and informatics in infectious diseases. Clin. Infect. Dis. 40, 123–126
(2005).

57. B. Longdon et al., The causes and consequences of changes in virulence following pathogen host
shifts. PLoS Pathog. 11, e1004728 (2015).

58. N. Mollentze, D. G. Streicker, P. R. Murcia, K. Hampson, R. Biek, Virulence mismatches in index
hosts shape the outcomes of cross-species transmission. Proc. Natl. Acad. Sci. U.S.A. 117,
28859–28866 (2020).

59. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical
Computing, 2018).

60. J. H. Epstein, H. E. Field, S. Luby, J. R. C. Pulliam, P. Daszak, Nipah virus: Impact, origins, and
causes of emergence. Curr. Infect. Dis. Rep. 8, 59–65 (2006).

61. S. P. Luby et al., Foodborne transmission of Nipah virus, Bangladesh. Emerg. Infect. Dis. 12,
1888–1894 (2006).

62. A. Zuur, E. N. Ieno, N. Walker, A. A. Saveliev, G. M. Smith,Mixed Effects Models and Extensions in
Ecology with R (Springer-Verlag, 2009).

63. S. N. Wood, F. Sheipl, Generalized Additive Mixed Models Using “mgcv” and “lme4.” (CRAN,
2020).

64. G. Marra, S. N. Wood, Practical variable selection for generalized additive models. Comput. Stat.
Data Anal. 55, 2372–2387 (2011).

65. S. Ferrari, F. Cribari-Neto, Beta regression for modelling rates and proportions. J. Appl. Stat. 31,
799–815 (2004).

66. M. Smithson, J. Verkuilen, A better lemon squeezer? Maximum-likelihood regression with beta-
distributed dependent variables. Psychol. Methods 11, 54–71 (2006).

67. J. I. Marden, Positions and QQ plots. Stat. Sci. 19, 606–614 (2004).

10 of 10 https://doi.org/10.1073/pnas.2113628119 pnas.org


