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Abstract

Motivated by recent experimental findings, we propose a novel mechanism of embryonic pattern formation based on
coupling of tissue curvature with diffusive signaling by a chemical factor. We derive a new mathematical model using
energy minimization approach and show that the model generates a variety of morphogen and curvature patterns agreeing
with experimentally observed structures. The mechanism proposed transcends the classical Turing concept which requires
interactions between two morphogens with a significantly different diffusivity. Our studies show how biomechanical forces
may replace the elusive long-range inhibitor and lead to formation of stable spatially heterogeneous structures without
existence of chemical prepatterns. We propose new experimental approaches to decisively test our central hypothesis that
tissue curvature and morphogen expression are coupled in a positive feedback loop.
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Introduction

During the development of biological tissues, different signaling

molecules are responsible and indispensable for pattern formation

and shape generation [1]. Since the seminal paper of Alan Turing

[2] a variety of patterns in biological tissues have been studied

using a framework of reaction-diffusion equations. These ap-

proaches assume that there exist diffusing signaling molecules,

called morphogens, whose nonlinear interactions combined with

different rates of diffusion lead to destabilization of a spatially

homogeneous equilibrium and formation of spatially heteroge-

neous structures.

The idea looks counter-intuitive, since diffusion is expected to

lead to a uniform distribution of molecules. Mathematical analysis

of reaction-diffusion equations provides explanation of the

phenomenon postulated by Turing. Patterns arise through a

bifurcation, called diffusion-driven instability, in which a spatially

homogeneous stationary solution looses stability for a certain range

of diffusion coefficients and a stable spatially heterogenous

stationary solution appear. The resulting structures can be

monotone corresponding to the gradients in positional information

or spatially periodic and their ultimate shape depends on the

diffusive scaling, related to the size of domain.

The most famous embodiment of Turing’s idea in a mathe-

matical model of biological pattern formation is the activator-

inhibitor model proposed by Gierer and Meinhardt [3]. One of

the key ingredients of that model, responsible for Turing type

dynamics, is that the inhibitor diffuses faster than the activator, i.e.

the system is regulated by a short range activation and a long

range inhibition [2,3]. However, in many developmental process-

es, dynamic and complex tissue topologies are likely to prevent the

establishment of long range inhibitor gradients [4]. Furthermore,

diffusion coefficients of typical morphogens are often found to be

quite small [5], i.e. do not allow existence of significantly varying

diffusion rates as required by the classical Turing mechanism.

These observations suggest a search for a different inhibitory

mechanism such as mechanical inhibition [4]. Moreover,

mechanically based laws in morphogenesis appear to be promising

and powerful alternatives to purely chemical models: The latter

reduce macroscopic structures to ‘blind’ by-products of spatial

chemical patterns and contradict certain experimental data [6,7].

The influence of morphogens on tissue mechanics (such as

curvature) is well known. However, different studies show that the

interplay is reciprocal and mechanical stress and physical forces

(e.g. induced by tissue deformations) can also locally influence

morphogen patterns and cell behavior [4,6,8–12]. Furthermore, it

appears that tissues may act differently depending on directions of

applied stress [13].

Based on these observations, we propose a model for pattern

formation in biological tissues, directly coupling the expression of a

morphogen with tissue mechanics. Numerical simulations of the

model based on our hypothesis reveal that

N simple interplay between tissue mechanics and morphogen

production can lead spontaneously to curvature and morpho-
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gen patterns with shapes depending on the size of the tissue;

and

N resulting patterns are insensitive to stochastic perturbations of

initial conditions.

The proposed mechanism is a promising candidate to replace

the ‘‘missing’’ long range inhibitor in the activator-inhibitor

models. Due to its robustness, the ultimate shapes are reliably

generated under various conditions. Therefore, the model can

explain self-organization and de novo pattern formation in the

systems with the initial state close to an equilibrium.

The mechanism is currently under experimental investigation.

Furthermore, the presented mathematical model and numerical

approach could be used in future work to investigate the interplay

of different morphomechanical models such as those discussed in

ref. [6].

Our mathematical model combines a reaction-diffusion equa-

tion for the morphogen with an elastic gradient flow for tissue

mechanics. Expanding the ideas of Cummings [14] we assume

that the morphogen locally induces positive curvature, and in turn,

this curvature induces the expression of this morphogen (c.f. Fig. 1),

i.e. that there exists a positive feedback loop. Above, the terms

‘‘positive’’ and ‘‘negative’’ curvature refer to outward and inward

bending, respectively, compared to the initial curvature of a tissue.

More accurately, experimental data indicate that it is not tissue

curvature itself but curvature modulated tissue compression that

influences gene expression [4,11]. However, in order to reduce the

complexity of the model and to present the basic idea, we adhere

in this paper to the simplified model. Models including tissue

compressibility will be subject of future research.

Finite element simulations reveal that the postulated mechanism

produces spontaneously a variety of curvature and morphogen

patterns in an asymptotically stable way, i.e. insensitive to small

changes in initial conditions. Based on a range of simulation

results, we present detailed parameter studies of the model

analyzing the rescaled parameter space. We identify parameters

that control pattern-related scales, such as size, amount and

curvature of appearing patches. Our results show that biome-

chanical interactions may constitute the missing link to the Turing

long range inhibitor: positive curved domains induce negative

curvatures at their edges; in these regions only morphogen

degradation takes place (c.f. Fig. 1).

Furthermore, numerically obtained results show that dynamics

as well as final curvature and morphogen patterns appear to be

very similar to those observed during symmetry break in Hydra

tissues. Thus, numerical results suggest that the presented

mechanism could constitute a key mechanism for pattern

formation in Hydra polyps. Further experimental work is needed

to support the idea that the proposed mechanism indeed

constitutes a key mechanism of pattern formation during

embryogenesis. Corresponding experiments are suggested at the

end of this paper indicated by simulations.

Materials and Methods

Model

Let ~XX : U?C be a time-dependent parametric representation

of a closed cell sheet C, where the cell sheet is parameterized over

the unit sphere adopting the ansatz of [15,16], i.e. U~S1. The

morphogen level is described by the function w : U?R§0; for

each ~XX (u1,u2)[C the concentration w(~XX ) is identified with

w(u1,u2). Hence, w is naturally moving with the deforming tissue,

i.e. dt½w�~+C½w�:Lt½~XX �zLt½w�, where +C is the surface gradient.

For convenience of the reader, detailed definitions of the used

geometrical quantities are given in the Table S1 available online.

To model the curvature-dependent elastic properties of a thin

cell tissue, we use a modified Helfrich energy, i.e.

Ftissue~

ð
C

k(w)(H{H0(w))2 ds: ð1Þ

Here, H is the mean curvature and ds is the surface measure. k
constitutes the bending rigidity reflecting the stiffness of the

surface, and the spontaneous curvature H0 reflects the preferred

local surface curvature. The latter e.g. depends on the shape of

biological cells within the tissue: If cells are symmetrical, the tissue

energetically favors a flat geometry and H0 vanishes. However, in

the case of wedge-shaped cells, the tissue prefers to be locally

curved, hence H0=0 holds. A detailed treatment considering the

connection between the geometry of biological cells arranged in a

tissue to Helfrich measures such as H can be found in [17]. Since

laterally heterogeneous distributed molecules -such as morpho-

gens- may influence the mechanical properties of the tissue, we

assume (analogously to [18,19]) that the mechanical moduli k and

H0 are functions of the concentration w. In first approximation we

take k(w)~azaw and H0(w)~bzbw as linear functions of w,

where a§0. The original Helfrich energy FH~

ð
C

k(H{H0)2 ds

[20] with constant moduli k and H0 has been widely used

describing the mechanics of membranes. In the following, we

assume a local tissue incompressibility.

Adopting an energy point of view, the evolution of the tissue

deformation ~XX up to time Tw0 in U|½0,T) is given by the

following L2{gradient flow under the constraint of local

incompressibility of the tissue:

dt½~XX �~{LX
d

d~XX
½Ftissuez

ð
C

gds� ð2Þ

dt½
ffiffiffi
g
p �~0, ð3Þ

where dt is the total time derivative, LX is a kinetic coefficient,
d

d~XX
½:� denotes the variation with respect to the arbitrary vector ~XX ,

Figure 1. Positive feedback loop of morphogen expression and
tissue curvature. In combination with morphogen degradation, this
mechanism leads to spontaneous curvature and morphogen patterns
starting from stochastic initial conditions. Note that positive curvature
induces negative curvature at the edges of the domain, replacing the
effect of a long range inhibitor molecule. Red and blue color depict
high and low morphogen levels, respectively.
doi:10.1371/journal.pone.0082617.g001
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and g is a local Lagrange multiplier [21] due to the constraint of

incompressibility (g can be interpreted as pressure). Furthermore,ffiffiffi
g
p

is the surface measure where g is the determinant of the first

metric tensor (c.f. Table S1). Volume constraints are not

considered (to account for the fact that in pattern formation

experiments with Hydra tissues it appears that tissue spheres

exchange internal fluid with their surroundings [22]). The gradient

flow (2) leads to minimization of the free energy Ftissue under the

constraint of incompressibility (3). For detailed calculation of the

variations of Ftissue we refer to [19].

Let us now consider the dynamics of the morphogen w within

the tissue. In contrast to the modeling of membrane dynamics

showing fluid behavior with respect to lateral flows, the evolution

of morphogens is modeled separately rather than obtained by a

corresponding variation of free energy. Beside the basic assump-

tions concerning diffusion and degradation [5,23,24], we define

the morphogen production as a function depending on the surface

curvature. Furthermore, we assume that initially the tissue is

arranged in a mechanically relaxed configuration with curvature

Hi~H(t~0,~XX ). Experimental findings reveal that tissue defor-

mations may induce morphogen production [4,8,9]. Thus, we

postulate that the expression of w can be induced by local

curvatures HwHi. If both, negative and positive curvatures had

induced morphogen expression, i.e. H=Hi, we would have

expected oscillations instead of stable patterns. Hence, w induces

local positive curvatures via H0(w) and positive curvatures induce

locally the expression of w via appropriate reaction-terms,

constituting a positive feedback loop (c.f. Fig. 1). Such positive

Figure 2. A–B: Simulations of spontaneous tissue pattern formation starting from stochastically distributed morphogen on a
sphere at different time steps. A: For a strong coupling between curvature and morphogen expression the system shows strong budding
(numerics do not perform properly for tw20 since the approach is only able to handle medium geometry changes; the likely equilibrium shape
consists of fully budded morphogen patches). B: For a weak coupling between curvature and morphogen expression the system reaches a symmetric
mechanical equilibrium at tw50. C–D: Equilibrium patterns are insensitive to different choices of initial conditions. C: Plot of total morphogen levelð
C

wds during tissue development for different values Sw0T~10 (green dashed line), Sw0T~22 (red line) and Sw0T~35 (blue dotted line). D:

Corresponding equilibrium patterns. In all simulations red and blue color depicts high and low morphogen levels, respectively.
doi:10.1371/journal.pone.0082617.g002
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feedback loops between chemical and mechanical processes during

development have just been reported [12].

Using Michaelis-Menten kinetics (assuming the existence of a

maximal expression rate of the w-promoter) and defining

H§0 : ~ maxf(H{Hi),0g, we obtain the dynamical equation

for w:

dt½w�~CDC½w�{dwz(
fH§0

vzH§0
), ð4Þ

with constants C,d,f,v[R§0. Hence, the model is given by a

nonlinear PDE system of fourth order, coupling the gradient flow

for tissue mechanics (2) under the constraint of local area

incompressibility (3) with the reaction-diffusion equation (4) for

morphogen dynamics.

Nondimensionalization
In the following subsection the free energy (1) and correspond-

ing dynamic equations (2)–(4) are nondimensionalized. This

reformulation allows us, on the one hand, to identify essential

parameters and characteristic properties of our system. On the

other hand, it enables us to study the relative dependence of

different parameters on spatial and temporal scales. To non-

dimensionalize the model, we replace each variable v with a

dimensionless quantity vc which is scaled with a characteristic unit

of measure Ev.

Free Energy: We set ~XX~Ex
~XXc with ½~XX �~½Ex�~m which implies

ds~E2
x dsc, H~

1

Ex

Hc, H0~
1

Ex

H0c(wc) with H0(wc)~~bbz~bbwc

setting ~bb~Exb and ~bb~
Exb

Ew

as well as k(w)~Ekkc(w) with

½Ek�~½k(w)�~kBT . It follows:

1

2

ð
C

k(w)(H{H0(w))2 ds~Ek

ð
C

1

2
kc(wc)(Hc{H0c(wc))2:

A consistency check shows that ½F � has units of energy as

expected, i.e. F~EkFc with ½Fc�~1. Calculating the variation of F

we obtain for the strong formulation with ½dF

d~XX
�~ ½Ek�
½Ex�3

~
kBT

m3
.

Surface dynamics: We set t~Ettc with ½t�~s. Thus it holds

Lt~
1

Et

Ltc and ½Lt�~
1

s
. Choosing ~LLX ~LXc

EkEt

E4
X

it follows

Ltc
~XXc~{LXc(

d(Fcz
Ð
Cc dsc)

d~XX
): ð5Þ

Morphogen dynamics: Choosing ~XX~Ex
~XXc implies DC~

1

E2
x

DC
c and

H§0~
1

Ex

H§0c
. Setting ~CC~

EtC

E2
x

, ~dd~Etd, ~ff~
Et

Ew
f, ~vv~Exv as well

as w~Ewwc with ½w�~½Ew�~
Mol

m2
, we obtain

Ltc wc~
~CCDC

c ½wc�{~ddwcz(
~ffH§0c

~vvzH§0c

):

Choosing Et and Ex appropriately we can always guarantee
~dd~R~1. Furthermore, simulations show that equilibirum

patterns are independent of Ew (c.f. Fig. 1 C–D). Hence, choosing

Ew appropriately we can always yield ~bb~1. Moreover, restricting

ourselves to the case k:1 (i.e. a~1 and a~0) and ~vv~1 as well

as choosing b~Hi for biological reasons the total parameter

space can be reduced to three independent constants, namely ~CC,~ff
and LXc

.

Figure 3. Influence of different model parameters on patterns. A: Increasing diffusion by changing ~cc results in bigger morphogen patches. B–

C: An increase of coupling between tissue curvature and morphogen expression via ~ff (B) results in more but still equally sized patches. In all
simulations red and blue color depict high and low morphogen levels, respectively.
doi:10.1371/journal.pone.0082617.g003
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Finite element approximation and parameter setup
Using the outlined modeling approach, we investigate numer-

ically the effect of different model parameters, system sizes and

initial conditions on pattern formation. To do so, we approximate

equations (2)–(4), and more accurately, the nondimensionalized

form derived in the previous subsection, to study systematically

spontaneous pattern formation induced by the proposed mecha-

nism. The corresponding total parameter space can be reduced to

three independent constants ~CC,~ff and LXc
.

For spatial discretization we use a biqubic mixed parametric

finite element method. The tissue surface is discretized using a

quadrangular grid with 1664 grid points. For time discretization

we use an adaptive semi-implicit Euler scheme. For further details

to the computation scheme we refer to ref. 16, 19.

Related to the early shape of an embryo (a blastula) we assume

as the initial tissue geometry the sphere SR(0) with R~1, choosing

an appropriate nondimensionalization, c.f. previous subsection.

Moreover, we use a stochastic distribution for the initial

morphogen concentration. The corresponding values at each

discretization point are chosen using the standard random

generator provided by C++. w(t~0) is uniformly distributed in

an interval ½0,z� with the average Sw0T~

ð
SR(0)

w(t~0)ds.

In the presented study, we restrict our studies to the case of

morphogens influencing tissue curvature but not tissue rigidity,

setting k:1 (i.e. a~1 and a~0). Moreover, we set ~vv~1, since

neglecting long time behavior, i.e. nonlinear effects, it is sufficient

to vary b=v and b~Hi. This latter represents the assumption that

the tissue is initially arranged in a mechanically relaxed

configuration. Furthermore, due to an appropriate nondimensio-

nalization, we can always guarantee ~dd~~bb~1 (c.f. previous

subsection).

Results and Discussion

Here, we will work only with the nondimensionalized form of

equations (2)–(4) (c.f. previous sections). To investigate the variety

of patterns produced by the presented model, we have performed

more than 250 simulations using the nondimensionalized param-

eters ~CC,~ff and LXc
(setting a~~vv~~bb~R~1, b~Hi and a~0, c.f.

previous sections). Furthermore, we have considered different

values of Sw0T. Depending on the exact choice of parameters,

simulation results show two different types of long time behavior:

either the system tends to equilibrium with a symmetric medium

curved pattern and seems to be stable at least for simulated times

(c.f. Fig. 2 B), or strong budding appears (c.f. Fig. 2 A) and persists

as long as the numerical scheme functions (the adopted numerical

discretization is only able to handle medium geometry changes); it

is likely that the limiting shape consists of fully budded patches, as

experimentally observed e.g. during the formation of new body

axes in Hydra polyps. For the corresponding simulations we have

set LXc
~~CC~1 as well as ~ff~4 in C but ~ff~8 in B. Using different

initial conditions (i.e. different values of Sw0T=0 on an

undeformed sphere) we find that the equilibrium pattern is

independent of the exact choice of initial conditions (c.f. Fig. 2 C)

and corresponding equilibrium patterns are very similar (c.f. Fig. 2

D). Even starting with no morphogen (Sw0T~0) and stochastically

perturbed geometry yields the same result (not shown). Hence, the

presented mechanism appears to be asymptotically stable and does

not require the existence of any prepattern.

Checking systematically the influence of the varying model

parameters ~CC,~ff and LXc
on the corresponding emerging patterns,

reveals the following relationships:

N The size of appearing patches can be controlled by diffusion:

stepwise increase from ~CC~0:005 up to ~CC~0:1 (keeping ~ff~4
and LXc

~0:01 constant) results in larger patches (c.f. Fig. 3 A)

and the number of patches decreases down to a minimum of

two patches. Higher values of ~CC prevent the establishment of

patches resulting in a nearly homogeneous sphere (results are

not shown).

N The distance between the patches (and hence the number as

well, but not the size) and their curvature can be controlled by

the strength of coupling between curvature and morphogen

expression, i.e. by the curvature dependent production ~ff: In

Fig. 3 B the results of a stepwise increase from ~ff~2 up to ~ff~9

keeping R~1,~CC~0:01 and LXc
~0:0001 are shown.

N Changing LXc
does not result in striking differences in pattern

formation but only influences relevant time scales, i.e. the

choice of the observed steady state is independent of LXc
. This

is expected since possible stationary states are independent of

LXc
(the whole right hand side of equation (2) is multiplied by

LX ). Having in mind that the approach here is based on the

assumption of an overdamped motion, LX can be interpreted

in terms of viscosities. That is, patterns are independent of the

specific viscous damping.

Investigating the dynamical behavior of the simulations reveals

that all performed simulations typically follow three qualitatively

different paths during evolution (c.f. Fig. 2 A–B; for the

corresponding simulation we have set ~CC~0:01,~ff~8, and

LXc
~0:01.): First, smoothing of initially stochastically distributed

morphogen distribution; second, appearance of new and larger

slightly curved morphogen patches; and third, distinct curvature

patterns coinciding with high morphogen levels, either stabilizing

at a symmetric pattern or strongly budding. Interestingly,

Figure 4. Possible experiments to prove the influence of tissue
deformations on morphogen patterns. A–C: 3D-simulations, D–F:
corresponding cross-sections. A,D: Wildtype; B,E: pulling outwards; C,F:
pressing inwards. In all simulations red and blue color depict high and
low morphogen levels, respectively.
doi:10.1371/journal.pone.0082617.g004
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microscopy data of evolving Hydra-reaggregates show similarities

to these dynamical patterns [25].

Apart form the discussion concerning existence and nature of

the morphogens (see Introduction), there exist previous mechano-

chemical models [26,27] conceived to explain budding processes

in polyps. Also, as it is known, reaction-diffusion systems exhibit

similar qualitative behavior, although under differing assumptions.

In order to motivate experiments proving (or disproving) the

proposed mechanism, we have performed ‘virtual experiments’

shown in Fig. 4. Since it is already known that morphogens are

able to influence tissue curvature, we focus in these experiments on

the effect that tissue curvature induces morphogen production

(depending on the direction of tissue curvature): Forcing the tissue

to bend locally outwards (e.g. using micropipettes) activates the

morphogen level strikingly (Fig. 4 B) whereas inward bending

prevents the establishment of morphogen patches in these regions

(Fig. 4 C). However, no applied force yields randomly distributed

morphogen patches (Fig. 4 A). In all corresponding simulations we

have set ~CC~0:01,~ff~8, and LXc
~0:01 as well as circular pulling

and pressing force-terms in B and C, respectively.

To summarize, in this contribution, we have proposed a new

non-Turing type model for early pattern formation in tissue

development. Based on recent experimental findings, the key

assumption is a positive feedback loop between tissue curvature

and morphogen production. We have shown numerically that this

simple mechanism itself leads to various morphogen and curvature

patterns resembling those observed in experiments involving

spherical aggregates of Hydra-tissue. One of the aims of this paper

is to motivate further experimental research to validate the

presented mechanism for early pattern formation.

If it is validated by direct experimentation, for example along

the lines suggested in Fig. 4, the proposed mechanism will

constitute an essential step in the evolution of an initial

homogeneous tissue sphere to a complex organism – one of the

greatest current mysteries in biology [28,29].

Supporting Information

Table S1 General mathematical notations and definitions used

in this paper.

(PDF)
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