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Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis.
This relies on the transmission of forces between cells by cadherin-based
adherens junctions, which couple the force-generating actomyosin
cytoskeletons of neighboring cells. Moreover, components of cadherin
adhesions adopt force-dependent conformations that induce changes in
the composition of adherens junctions, enabling transduction of mechanical
forces into an intracellular response. Cadherin mechanotransduction can
mediate reinforcement of cell–cell adhesions to withstand forces but also
induce biochemical signaling to regulate cell behavior or direct remodeling
of cell–cell adhesions to enable cell rearrangements. By transmission and
transduction of mechanical forces, cadherin adhesions coordinate cellular
behaviors underlying morphogenetic processes of collective cell migration,
cell division, and cell intercalation. Here, we review recent advances in our
understanding of this central role of cadherin adhesions in force-dependent
regulation of morphogenesis.
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Introduction
Morphogenesis comprises the collection of processes that 
shape tissues and organisms, which relies on the coordinated 
regulation of cell behavior. Though most apparent through-
out embryonic development, morphogenetic processes continue 
to play a role in adult tissues (for instance, during tissue regen-
eration upon wounding as well as pathological conditions such as  
cancer invasion). Morphogenesis inherently is a mechani-
cal process, as the coordinated generation of forces by cells is 
required to establish tissue shape1,2. In addition, forces exerted 
on cells by each other and their surroundings serve as instructive  
signals to which cells adapt their behavior. This depends on the  
ability of cells to sense and convert mechanical forces into a bio-
chemical intracellular response (termed mechanotransduction), 
which is mediated by force-induced changes in the con-
formation of proteins and the composition of molecular 
complexes3,4. Mechanical forces typically originate from con-
traction of the actomyosin cytoskeleton, which is anchored 
to sites of adhesion and can thereby be transmitted to neigh-
boring cells and the extracellular environment. As such, focal  
adhesions (at the cell–matrix interface) and adherens junctions 
(AJs) (at the cell–cell interface) represent key force transmis-
sion and transduction complexes of the cell. In recent years, 
many additional components of the cell cortex, including 
growth factor receptors, ion channels, caveolae, and the  
glycocalyx, have been identified to be responsive to forces5. 
In this review, we will focus on AJs, as they have emerged 
as central mechano-responsive components in the regulation  
of morphogenesis by intercellular forces.

Mechanotransduction by adherens junctions
The AJ is composed of transmembrane cadherin proteins  
(E-cadherin being the predominant cadherin in most epithelial  
tissues) that form homotypic dimers between neighboring 
cells. The cytosolic tail of cadherins compiles a large protein  
complex, which dynamically connects to the actomyosin  
cytoskeleton6. The core cadherin complex consists of p120-
catenin, which controls cadherin membrane localization, and  
β-catenin and α-catenin, which provide a link with filamentous 
actin (Figure 1a). Importantly, β-catenin–bound α-catenin forms 
a catch-bond interaction with F-actin that is strengthened when 
the complex experiences tensile force (Figure 1a)7, which is  
explained by the force-dependent exposure of a cryptic actin-
binding site within α-catenin8. In addition to enhanced actin 
binding of α-catenin, other force-induced changes occur in 
the cadherin complex that regulate the organization of junc-
tional actin, thereby reinforcing cadherin junctions. Most well 
studied is the exposure of a binding site within α-catenin for  
Vinculin (Figure 1a), which provides additional linkage of the  
cadherin complex with actin9–12 and recruits several actin- 
modulating proteins13,14. Intriguingly, Vinculin was recently shown 
to form a force-stabilized linkage to F-actin that is directionally 
asymmetric15, suggesting that Vinculin may further contribute 
to junctional actin remodeling by organizing the polarity of  
actin filaments. In addition to Vinculin, numerous other actin 
assembly and remodeling proteins are recruited when the  
cadherin complex is under tension upon application of forces  
from neighboring cells or the actin cytoskeleton (Figure 1b). 

These bind either directly to α-catenin (Afadin16) or indirectly 
through other junctional components or the actin cytoskel-
eton (RhoGEF11417, VASP18, TES18, and Zyxin18). This large 
number of identified actin-associated proteins recruited to 
tensed cadherin junctions confers several layers of mechani-
cal control of the AJ–actin link, potentially explaining the mild  
phenotype of selectively losing Vinculin in various tissues19–21.

By mechanically coupling the actomyosin network of neighbor-
ing cells, cadherin adhesions are essential for the transmission 
of forces between individual cells. As a result, cell within  
tissues develop collective contractility that allows them to 
coordinate morphogenetic cell rearrangements in tissues2,22,23.  
Moreover, the different mechanisms to transduce force into 
regulation of the organization of the actin cytoskeleton and 
its association with the cadherin complex strengthen cell–cell  
adhesions, enabling them to maintain integrity of tissues upon 
fluctuations in intercellular stresses. However, the cellular 
responses to junctional force reach much further, impacting, for 
instance, the cell cycle and cell division24,25, cell migration26,27, 
and cell metabolism28. This is mediated by force-regulated  
association of the cadherin complex with transcriptional  
activators (for example, β-catenin and YAP24,29), kinases (for  
example, LKB1/AMPK28), and interactors of microtubules and 
intermediate filaments (Figure 1b)25,26. E-cadherin thus should be  
envisioned not as a static mediator of cell–cell adhesion but 
rather as a dynamic sensor of tensile forces that instructs  
cellular behavior. In this way, E-cadherin fulfills a central role 
in transducing cellular forces to coordinate morphogenesis, as 
it instructs several processes that direct tissue shape, including  
collective migration, tissue growth, and cell–cell intercalation. 
Below, we will discuss recent advances in our understanding 
of the role of E-cadherin in the force-dependent regulation of  
these morphogenetic processes.

Cadherin mechanotransduction in collective 
migration
Tissue rearrangement during morphogenesis can be achieved 
by collective migration of groups or sheets of cells, which 
move while retaining adhesion between individual cells. These  
adhesions enable cell-to-cell communication to coordinate 
the direction of motion. As a result, cell clusters migrate more  
efficiently and persistently than isolated cells30. Moreover, migrat-
ing as a collective enables epithelial clusters to follow specific 
guidance cues while single cells or monolayers lacking AJs fail  
to do so27,31–33. It has been well established that cadherin-based 
adhesions enable collective migration by coupling cells to one 
another and by transmitting forces between cells to convey 
directional information (reviewed in 30,34,35). In migrating 
sheets, cells at the edge generate lamellipodia that protrude into 
the surrounding environment. These lamellipodia adhere to the  
surface and generate traction forces required for forward pulling  
of the cells30,35. Importantly, the pulling forces are exerted not 
only by these cells but by all cells in the cell sheet, which is 
coordinated via intercellular force transmission36. Cadherin junc-
tions are the main force transducer between cells responsible 
for this, as the correlation between the orientations of migration  
and intercellular forces is lost by blocking E-cadherin function  
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Figure 1. Mechanotransduction by the cadherin complex. (a) Tensile forces on the cadherin complex, exerted either by neighboring cells 
through its extracellular domain or by myosin-generation contraction of the actin cytoskeleton associated with its cytosolic tail, cause unfolding 
of α-catenin, enabling its interaction with Vinculin. The interaction between α-catenin and F-actin is regulated by force as well, as β-catenin–
bound α-catenin forms a catch-bond interaction with F-actin that shifts from a weakly bound to strongly bound state with increasing tension. 
Mechanical force can also influence transdimer interactions formed by the extracellular domain of E-cadherin, as X-dimer configurations of 
the transdimer form a catch-bond interaction whose lifetime increases with force (not shown)37. (b) Numerous proteins that are recruited to 
cadherin adhesions in a tension-dependent manner have been identified and show either increased (blue) or decreased (red) association 
with the cadherin complex upon increased tensile force. Dashed lines indicate tension-dependent adherens junction (AJ) components 
of which the molecular mechanism underlying association with the cadherin complex has not yet been resolved. α-cat, α-catenin; β-cat,  
β-catenin; p120, p120-catenin.

or depleting individual AJ components38,39. The migration direc-
tion of individual cells in a monolayer follows the local axis 
of maximum intercellular stresses40. More recently, it was 
shown that tension on AJs is anisotropic and highest at cell–cell  
contacts perpendicular to the migration direction16. This implies 
that forces acting locally at cell–cell contacts may help to estab-
lish the direction of motion. Indeed, experiments with α-catenin  
mutants in which Vinculin binding is perturbed, showed that 

transduction of forces by AJs is essential for coordinated  
motion in epithelial monolayers16,41. These results are corrobo-
rated in vivo, as shown by the convergence-extension defects 
observed in zebrafish expressing Vinculin binding–deficient  
α-catenin42.

To establish directionality of collective migration, AJs not only 
transmit forces between cells but also transduce these forces 
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into a cellular response to guide migration. Essentially, cell 
migration relies on the acquisition of a polarized cell state 
with Rac-induced (cryptic) lamellipodia protruding forward  
and Rho-mediated adhesion disassembly at the rear43. Accu-
mulating evidence shows that force transduction at cell–cell  
junctions enables cells to coordinate this polarization and con-
comitant migration direction to their followers (Figure 2a)16,27,44. 
This is mediated, at least in part, by the force-induced 
release of Merlin from cell contacts, which induces polarized  
Rac activity and formation of cryptic lamellipodia in migrating  

epithelial layers44. While force-induced release of Merlin from 
tight junctions is implicated in this44, the association of Merlin 
with the cadherin complex was recently shown to be inhibited 
by tensile forces as well45. In migrating border cells in  
the Drosophila egg chamber, E-cadherin also transduces 
mechanical forces into Rac activation, resulting in protrusive 
activity at cell–cell contacts that are under elevated tension27. 
Ectopic expression of P-cadherin in migrating myoblasts further 
revealed that the Cdc42-GEF β-PIX is recruited to AJs in motile 
cells, presumably as a result of increased junctional tension46.  

Figure 2. Mechanotransduction at cell – cell junctions during collective cell migration. (a) Mechanotransduction at cell–cell junctions 
enables cells to coordinate cell polarization with their followers via several mechanisms that impinge on local activation of Rac, which 
establishes the formation of (cryptic) lamellipodia: (1) Tension on cell–cell junctions causes loss of Merlin from tight junctions (TJ), relieving its 
inhibition of Rac activation; (2) β-PIX is recruited by P-cadherin to adherens junctions (AJs) in migrating cells, presumably in a force-dependent 
manner, which results in activation of Cdc42 and downstream Rac1 to promote cell polarization; (3) Rho-mediated contractility at the rear of 
migrating cells induces the formation of cadherin fingers that extend into the trailing cells, which direct the formation of cryptic lamellipodia, 
presumably by contributing to the control of Rac activity. (b) During collective migration, force-dependent conformational opening of α-catenin 
occurs in an anisotropic manner and is highest at cell–cell junctions perpendicular to the migratory axis. This involves a feedback mechanism 
through α-catenin–mediated activation of Rho and its effector mDia that induces AJ remodeling and junction strengthening. Anisotropy in the 
force-dependent remodeling of AJs coordinates the direction of migration between cells, possibly by establishing preferential transmission of 
forces between cells in the direction of migration (red arrows).

Page 5 of 14

F1000Research 2019, 8(F1000 Faculty Rev):1044 Last updated: 10 JUL 2019



This establishes the activation of Cdc42 and downstream Rac, 
thereby coordinating cell polarity46. The selective function 
of P-cadherin, and not other cadherins, in β-PIX regulation  
highlights that different cadherin proteins may have distinct func-
tions in transducing mechanical forces to establish collective  
cell migration. In line with this, E- and P-cadherin were shown 
to have distinct contributions to the development of intercellular 
stresses in migrating epithelia39.

In addition to coordinating front–rear polarity, activation of 
Rho-family GTPases provides a positive feedback mechanism 
by reinforcing tension on E-cadherin junctions16,27. Conforma-
tional opening of α-catenin induces local activation of Rho and 
downstream mDia-mediated actin remodeling, which strength-
ens anisotropy in junctional tension in migrating epithelia  
(Figure 2b)16. Polarized Rho activity can also couple directional 
information between cells through the formation of special-
ized adhesion structures called cadherin fingers (Figure 2a). 
At the rear of migrating endothelial cells, local RhoA-induced  
contractility triggers the formation of cadherin fingers, which 
become engulfed in follower cells and direct the formation  
of cryptic lamellipodia. The highly curved membrane in the  
cadherin finger is potentially instructive for Rac activation 
in follower cells47, as many small GTPase regulators con-
tain membrane curvature-recognizing domains48. As such, an 
important signaling cue can be induced by tension-mediated  
membrane curvature at the cell–cell junction interface49.

Although the mechanisms of force transmission and transduc-
tion by AJs discussed above apply, in principle, to all cells in a 
migrating group, additional mechanisms may be at play at the 
migratory front. Migration is typically directed by a speci-
fied leader cell that is morphologically and functionally dis-
tinct from the rest of the cell population and that initiates and  
organizes the migration of follower cells50. Importantly, polari-
zation and directed migration of the leader cell are regulated by 
transduction of forces at the cell–cell contact with its followers  
(reviewed in 30,51). Moreover, it was recently shown that tensile 
forces exerted by follower cells on prospective leaders induce 
their leader cell phenotype52. Another active function of the  
followers during collective migration was recently revealed for 
the very rear cells of the migrating cluster of neural crest cells53.  
Reminiscent of the purse-string mechanism of wound closure, 
these cells contract a supracellular actin cable that causes 
the cell cluster to be propelled forward53. Since both of these 
recently identified functions of follower and rear cells critically  
depend on force coordination between cells, it will be interesting  
to establish whether and how cadherin junctions contribute to this.

Mechanical control of tissue growth
The development of tissues into their correct size and proportions 
requires tight control of tissue growth and thus the rate and  
pattern of cell proliferation. Both of these are tightly regulated 
by, among other signals, mechanical forces that cells 
exert on each other. Seminal experiments in cultured  
monolayers revealed that patterns of local proliferation strongly 
correlate with the level of cellular traction forces54. This was 
shown to be dependent on force transmission by cadherin-based  

adhesions54, and specific analyses of intercellular forces  
demonstrated that the tendency of cells to proliferate correlates 
with the level of junctional tension55,56. Importantly, as tissues 
increase in cell density, junctional tension becomes reduced57  
because of a decrease in cell motility and cortical actomy-
osin contractility57,58. As such, sensing of intercellular tension  
provides a mechanism for cells to regulate density-dependent 
proliferation. At high cell density, proliferation ceases and this 
can be relieved by application of external stretch, as shown in 
both cultured cells24,59–61 and the Drosophila wing disc62. In these  
experiments, mechanical stretch was shown to control prolif-
eration by inducing cell cycle entry of quiescent cells24,59,61 as 
well as promoting progression through the subsequent cell cycle  
phases24,60,63.

Thus far, the contribution of tension-regulated proliferation 
to morphogenesis has been studied mainly in the developing  
Drosophila wing disc, in which transduction of junctional tension 
is directly linked to regulation of organ size57,64. Moreover, 
mechano-sensitive control of proliferation in the wing disc  
explains how developing tissues can maintain homogenous  
patterns of proliferation despite the presence of gradients of  
growth factors. In the center of the wing disc, high levels of 
growth factor–induced proliferation and concomitant increase 
in cell density decrease junctional tension57,65. This feeds 
back to reduce proliferation in this region and thereby bal-
ances local proliferation rates throughout the tissue to maintain  
tissue organization66. More recently, transduction of mechanical 
forces was also shown to regulate tissue size after development 
and, for instance, may adapt the size and composition of  
the Drosophila midgut to the feeding state of the animal67,68.

Although additional mechano-sensing complexes may be involved, 
E-cadherin adhesions play a key role in transducing intercellu-
lar forces to the cell cycle. It has long been established that the 
presence of E-cadherin adhesions can inhibit proliferation by 
triggering cell cycle exit, a process termed contact inhibition 
of proliferation69. This involves inhibition of growth signals by 
E-cadherin adhesions, most notably through regulation of the  
Hippo signaling pathway70. The Hippo pathway consists of 
a cascade of kinases that ultimately establishes the nuclear 
exclusion of the transcriptional activator YAP (and its homo-
logue TAZ) through phosphorylation by LATS kinases71. As 
recently demonstrated in the Drosophila wing disc and cultured  
epithelia, increased tension on E-cadherin junctions (for instance, 
by decreasing cell density or externally applied mechanical 
stretch) relieves this negative regulation, thereby promoting 
nuclear localization of YAP and cell cycle entry24,57,72,73. This is 
explained by force-induced opening of α-catenin that enables 
its interaction with proteins of the Ajuba/Zyxin family, which 
sequester LATS in an inactive state at AJs (Figure 3)57,64,72,73.  
Several additional mechanisms may further contribute to the 
regulation of YAP upon fluctuations in tension on cadherin  
junctions71. These may in part regulate YAP independ-
ently of the Hippo pathway and impinge on sequestration of 
YAP itself at cadherin junctions74,75, modulate nuclear import 
by influencing nuclear pore dynamics34, attenuate nuclear 
export45,76, or influence YAP through modulation of the cortical  
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cytoskeleton59,78. In addition to YAP signaling, force trans-
duction by E-cadherin junctions can influence tissue growth 
through regulation of other proliferation pathways such as  
EGFR-mediated signaling79,80 and β-catenin/TCF-mediated 
transcription. The molecular mechanism of the latter is best  
understood as mechanical tension on the cadherin complex 
induces phosphorylation of β-catenin on Y65429,81. This site 
may become increasingly exposed upon elevated junctional ten-
sion, and phosphorylation results in junctional dissociation of  
β-catenin to promote its translocation to the nucleus and TCF-
mediated transcription82. Force-induced TCF activation has 
been linked to G

1
/S progression in mechanically stretched  

epithelial cultures24. Moreover, activation of this mechanical path-
way in the mammalian intestine by ectopic application of forces 
to intestinal crypts was shown to trigger increased proliferation 
and concomitant hyperplasia29. Importantly, mechano-sensitive 
β-catenin/TCF signaling downstream of E-cadherin functions 
beyond the regulation of cell proliferation, and fulfills an  
evolutionary conserved role in cellular differentiation that under-
lies tissue specification during embryonic development82–85.  
E-cadherin mechanotransduction was recently also linked to 
the control of cell metabolism through LKB1-dependent junc-
tional recruitment and activation of AMPK and concomitant 
ATP production28. Given the importance of metabolic regulation 
for the support of cell proliferation86, this could provide addi-
tional mechanisms by which force transduction by AJs impacts  
tissue growth.

Tissue growth is determined not only by the rate of prolifera-
tion but also by the loss of cells from the tissue that is similarly 
under control of mechanical signals. Epithelial crowding and 
consequent mechanical compression were demonstrated to  
trigger epithelial extrusion, driving loss of both apoptotic and  

live cells from epithelial tissues87–91. The stretch-sensitive  
calcium channel Piezo1 was identified as the main responsi-
ble mechano-transducer in this process87. Since modulation of  
E-cadherin adhesions can trigger epithelial delamination92,93 and 
the distribution of tensile forces on E-cadherin junctions has been  
implicated in apical extrusion of apoptotic cells94,95, it will be 
interesting to test whether mechanotransduction by E-cadherin  
junctions plays a role in density-dependent cell extrusion as well.

Orienting cell divisions by intercellular forces
Shaping of tissues can be directed by the orientation of cell  
divisions and subsequent positioning of daughter cells. Division 
orientation is specified by the position of the mitotic spindle, 
which is controlled by pulling forces on astral microtubules that 
link the mitotic spindle to the cell cortex96. Across metazoan  
species, including Xenopus, zebrafish, Drosophila, and mam-
mals, it has been observed that epithelial divisions align with 
anisotropic tensile forces97–100. This serves to direct tissue  
elongation65,100,101 and to dissipate high levels of anisotropic tissue 
tension that may arise during morphogenesis97,98,101.

Initially, tension-oriented cell division was considered to be 
primarily a consequence of cell elongation along the tension  
axis65,97,98,101. This idea is supported by the “long axis rule”,  
postulated by Oscar Hertwig already in the late 19th century,  
stating that cells tend to divide along their longest axis. However, 
in epithelial monolayers, cell shape information is typically 
compromised by mitotic rounding. It was revealed in the  
Drosophila pupal notum how epithelial cells are able to pre-
serve information of their interphase shape during mitosis102.  
Tricellular junctions (TCJs), specialized adhesions at sites 
where three (or more) cells meet, recruit microtubule force gen-
erators via the dynein-associated protein Mud. The distribution 

Figure 3. Regulation of YAP and β-catenin mediated transcription by junctional tension. Phosphorylation by LATS establishes the nuclear 
exclusion of the transcriptional activator YAP under conditions of low junctional tension. The conformational opening of α-catenin upon 
elevated tension on E-cadherin adhesions (for instance, at decreased cell density) enables junctional recruitment of Ajuba-family proteins. 
Ajuba sequesters LATS at cell–cell contacts and keeps it inactive at this site, allowing nuclear entry of YAP. Also, the related Zyxin-family 
protein TRIP6 localizes to AJs, through an interaction with Vinculin, and binds and inhibits LATS (not shown). Note that additional LATS-
independent mechanisms have been proposed for the intercellular tension-dependent regulation of YAP (see text). The nuclear localization of 
the transcriptional coactivator β-catenin is also regulated by the level of tension on cadherin adhesions. Upon increased junctional tension, a 
subset of the junctional β-catenin pool is phosphorylated (on Y654 in mammals), resulting in its dissociation from E-cadherin. This promotes 
translocation of β-catenin into the nucleus to drive TCF-dependent gene transcription. Note that loss of tension on E-cadherin has also been 
shown to promote junctional release and transcriptional activity of β-catenin, independent of phosphorylation of Y65477.
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of TCJs aligns with cell shape and mechanical stress  
orientation within the tissue and this spatial information is  
retained upon mitotic rounding (Figure 4)102. Future experiments 
may answer whether Mud recruitment to TCJs is mechanically 
controlled, as TCJs are sites of increased intercellular  
tension103. Similar to Drosophila, the Mud homologue NuMA 
is required for cell divisions to align with the direction of  
tension in stretched mammalian epithelia104. However, in  
contrast to Mud, NuMA is retained within the nucleus during  
interphase105–107. Instead, during interphase in mammalian  
epithelia, the NuMA-interacting protein LGN is recruited to  
E-cadherin junctions in a tension-dependent manner, thereby  
localizing in a polarized fashion under conditions of aniso-
tropic junctional tension25. Following mitotic entry and nuclear  
breakdown, the E-cadherin/LGN complex directs the recruit-
ment of NuMA to cell–cell adhesions and enables orientation 
of the mitotic spindle along the axis of tissue tension (Figure 4). 
LGN competes for E-cadherin binding with p120-catenin107,108, 
which may underlie its force-dependent recruitment to cell–cell 
junctions as p120-catenin was recently shown to relocalize  
from cell–cell junctions to the cytosol upon increased inter-
cellular tension109. Application of a low level of stretch to 
mammalian epithelial monolayers showed not only that  
force-dependent recruitment of LGN to E-cadherin is required 
to align divisions along the tension axis but also that this  

mechanism can overrule cell shape in determining division  
orientation25. Shape-uncoupled orientation of division by tissue 
tension was recently also shown in vivo in the Drosophila  
mesectoderm and follicle epithelium, in which cells divide  
preferentially along the direction of tissue expansion that is 
perpendicular to the interphase long axis110,111. In these cells, 
this occurs independently of either TCJs or LGN/NuMA  
and instead involves anisotropic remodeling of the actomyosin 
cytoskeleton and cortical mechanics that may affect the ability 
of force generators to exert forces on the mitotic spindle110,111.  
Because of the role of E-cadherin in force-dependent remod-
eling of junctional actin, it will be interesting to explore whether 
regulation of the actomyosin cytoskeleton contributes to the 
ability of E-cadherin to align cell divisions with anisotropic  
tensile forces.

Mechanical forces underlying cell–cell intercalation
In addition to being transmitted by AJs and transduced into 
an intracellular response, mechanical forces can regulate  
tissue shape by remodeling of cell–cell contacts through force-
dependent regulation of AJ turnover109. This occurs most promi-
nently during cell intercalation, which drives convergence of 
the tissue along one axis and extension along the orthogonal  
axis112. Cell rearrangements underlying intercalation are driven 
by shrinkage and disassembly of junctions perpendicular to the 

Figure 4. Regulation of cell division orientation by intercellular forces. In the Drosophila pupal notum (top panel), the dynein-associated 
protein Mud is recruited to tricellular junctions (TCJs) during the G2 phase of the cell cycle. In this way, in mitosis TCJs form cortical anchor 
points for astral microtubules that generate dynein-dependent pulling forces to orient the mitotic spindle. The distribution of TCJs aligns with 
cell shape and mechanical stress orientations within the epithelium, which is preserved upon mitotic rounding. In mammalian and Xenopus 
laevis epithelia (bottom panel), the Mud homologue NuMA is retained within the nucleus during interphase. Instead, the NuMA-interacting 
protein LGN, which directly interacts with E-cadherin, is recruited to junctions that are under elevated tension, leading to its polarization 
in mechanically stretched epithelial monolayers. Following mitotic entry and nuclear breakdown, the E-cadherin/LGN complex directs the 
recruitment of NuMA to cell–cell adhesions and thereby aligns cell divisions with the tension axis, which can overrule the interphase long 
axis of the cell in orienting division. Although this is not directly apparent in mammalian epithelia25,107, LGN is enriched at TCJs in Xenopus 
epithelia113, implying that the tension-dependent recruitment of LGN by E-cadherin also provides a mechanism to align division with the 
position of TCJs.
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axis of extension, followed by formation of junctions with new 
neighbors. During Drosophila germband extension, shrinkage 
of dorsoventral junctions is controlled by polarized induction 
of actomyosin contractility114–116. The underlying increase in  
internalization of the cadherin complex in part involves Y667 
phosphorylation of β-catenin (Y654 in mammals)117,118, an event 
that was recently shown to be directly regulated by tensile force82.  
A possible explanation of the opposite effects of myosin- 
generated tension on cadherin junctions, either junction shrinkage  
or junction reinforcement (discussed earlier), may lie in the 
force orientation with respect to the junction. During junction  
shrinkage, forces parallel to the cell–cell contact orientation 
result in shear stress on the junction complex, which decreases 
E-cadherin levels at the junction119. In contrast, force that is  
oriented perpendicular to anterior–posterior junctions was 
shown to increase junctional E-cadherin levels119. While  
E-cadherin levels decrease in shrinking junctions, the tension- 
sensitive recruitment of the actin regulators Vinculin, Ajuba, 
and AIP1 is increased, enabling the junction to cope with the 
elevated mechanical load119–121. After shrinkage of dorsoventral  
junctions, the germband extends upon resolving the intermedi-
ate multicellular vertices and elongation of anterior–posterior  
junctions. For AJs to withstand the high level of tension at  
multicellular vertices and for subsequent vertex resolution, the 
force-sensitive recruitment of Ajuba is essential121. Intriguingly, 
junction elongation does not happen merely as a result of tissue 
relaxation but instead is actively controlled by actomyosin  
activity as well122,123. Clearly, a dynamic interplay between  
mechanically controlled AJ turnover and strengthening is essen-
tial during intercalation, and future studies will likely provide 
more insights into the role of E-cadherin mechanotransduction  
in this.

Future perspectives
AJs have emerged as integral components in the regulation of 
morphogenesis by mechanical forces. In recent years, molecu-
lar details of cadherin mechanotransduction in morphogenetic 
processes of collective migration, cell division, and cell inter-
calation have started to be resolved. Future research will likely 
shed more light on how cadherin mechanotransduction impacts 
other processes that regulate tissue development and home-
ostasis, such as the control of cell shape, differentiation, and  
delamination2,22,92,124. Several important questions remain just 
at the start of investigation, for instance how cells discrimi-
nate between forces of different magnitudes and timescales. 
Different timescales add the conundrum that the short-term 
responses of cells to intercellular forces (for example, cell 
shape change or Vinculin recruitment to adhesion sites) func-
tion to dissipate force and therefore potentially prevent long-term  
responses125. Moreover, it remains unanswered whether  
different force-dependent constituents of the AJ can be present 
simultaneously within the same cadherin complex, and mutual 
exclusivity is likely to exist (for example, between proteins 
competing for α-catenin binding). Understanding how the  
different components of cadherin mechanotransduction may  
be responsive to distinct magnitudes and types of force126 
will further help to explain why cells may adopt different,  

sometimes opposing, mechano-responses through cadherin  
junctions (for example, junction reinforcement or junction  
remodeling).

Although we have focused primarily on AJs, cell–cell contacts 
contain additional adhesion complexes (that is, tight junctions 
and desmosomes) that are exposed to external mechanical  
force127, adopt tension-sensitive changes in their composition128, 
and contribute to the transduction of intercellular forces39. 
Moreover, intercellular forces can be sensed by mechano- 
sensing complexes that respond to membrane deformations, a 
mechanism used by mechano-sensitive ion channels that adopt 
open and closed conformations depending on local force-induced 
membrane deformations129,130. So far, research on mechanotrans-
duction has predominantly approached the various mechano-
sensitive complexes as isolated units. To properly understand 
cellular responses to forces, it will be pivotal to know how they  
cooperate. Interplay further exists between AJs and mechano- 
sensitive complexes that are not localized at cell–cell contacts,  
such as focal adhesions that contain numerous mechano- 
sensitive components that are in part shared with the AJ6.  
Mechanotransduction by both adhesion complexes can con-
verge on similar transcription factors and may cooperate in the 
activation of signaling pathways as has been shown for the acti-
vation of β-catenin77. In coming years, unraveling the interplay 
between these different mechano-sensitive complexes will be 
instrumental in understanding the variety of cellular behaviors  
that are controlled by mechanical force.

Finally, it is becoming increasingly apparent that mechanical 
signals that cells receive from their environment continuously 
crosstalk with biochemical signals, such as growth factors and 
hormones. Not only can both impinge on the same intracellular 
signaling cascades, but several growth factor receptors are also 
directly (for example, Notch131,132) or indirectly (for example,  
EGFR21 and insulin receptor133) regulated by mechanical 
force. Moreover, biochemical signaling pathways may feed-
back to modulate the cellular mechano-response134. A better  
comprehension of the dynamic interplay between mechanical 
and biochemical signaling will be imperative to understand the  
complexities of animal development.
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