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Infantile cataract is the main cause of infant blindness worldwide. Although previous

studies developed artificial intelligence (AI) diagnostic systems for detecting infantile

cataracts in a single center, its generalizability is not ideal because of the complicated

noises and heterogeneity of multicenter slit-lamp images, which impedes the application

of these AI systems in real-world clinics. In this study, we developed two lens partition

strategies (LPSs) based on deep learning Faster R-CNN and Hough transform for

improving the generalizability of infantile cataracts detection. A total of 1,643 multicenter

slit-lamp images collected from five ophthalmic clinics were used to evaluate the

performance of LPSs. The generalizability of Faster R-CNN for screening and grading

was explored by sequentially adding multicenter images to the training dataset. For

the normal and abnormal lenses partition, the Faster R-CNN achieved the average

intersection over union of 0.9419 and 0.9107, respectively, and their average precisions

are both > 95%. Compared with the Hough transform, the accuracy, specificity, and

sensitivity of Faster R-CNN for opacity area grading were improved by 5.31, 8.09,

and 3.29%, respectively. Similar improvements were presented on the other grading of

opacity density and location. The minimal training sample size required by Faster R-CNN

is determined on multicenter slit-lamp images. Furthermore, the Faster R-CNN achieved

real-time lens partition with only 0.25 s for a single image, whereas the Hough transform

needs 34.46 s. Finally, using Grad-Cam and t-SNE techniques, the most relevant lesion

regions were highlighted in heatmaps, and the high-level features were discriminated.

This study provides an effective LPS for improving the generalizability of infantile cataracts

detection. This system has the potential to be applied to multicenter slit-lamp images.

Keywords: lens partition strategy, infantile cataracts, automatic diagnosis, Faster R-CNN, multicenter slit-lamp
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INTRODUCTION

Artificial intelligence (AI) algorithms, especially deep learning,
hold great promise in the automatic diagnosis of extensive
diseases based on medical images, such as infantile cataracts (1–
4), diabetic retinopathy (5, 6), age-related macular degeneration
(7, 8), glaucoma (9), breast cancer (10, 11), skin cancer (12),
and autism spectrum disorder (13). These applications indicate
that deep learning has sufficient capabilities to provide high-
quality healthcare services, solve time-consuming and labor-
intensive problems in manual diagnosis, and alleviate the uneven
distribution of medical resources.

The previous studies mainly focused on the comparison and
selection of different classifiers, directly performing automatic
diagnoses based on the original images (5–13), or applying a
simple preprocessing method to obtain the approximate contour
of the lesion region (1–4). However, the precision of the lesion
region partition directly affects the performance of the diagnosis
model, especially for a lesion region surrounded by lots of noises.
The quantitative evaluation of the impact of automatic partition
strategies on diagnosis models was not well-investigated. In
addition, although transfer learning and data augmentation
techniques were applied to train ultradeep convolutional neural
networks (CNNs) based on medical images (14–17), the number
of available medical images is far less than that of natural images,
especially for rare diseases (18–21). And the complicated noises
and heterogeneity of multicenter images affect the diagnosis
result. Based on limited medical images, the generalizability of
deep learning on multicenter medical images is still unclear.
Therefore, it is urgent to compare and analyze the impacts
of different partition strategies and multicenter images on the
automatic diagnosis system.

Infantile cataract is a common and serious ophthalmic disease
for infants and young children, which often causes irreversible
visual impairment or blindness if it is not diagnosed and
treated in time (22–25). Ophthalmological diagnosis is a time-
consuming, labor-intensive, and subjective process. To more
accurately identify the severities of infantile cataracts using AI
methods, our team designed a new grading method for infantile
cataracts in the previous research (1). The severities of infantile
cataracts were graded from three perspectives, including opacity
area (extensive vs. limited), density (dense vs. transparent), and
location (central vs. peripheral). Lens opacity area that covers
more than 50% of the pupil is defined as extensive; otherwise, it
is defined as limited. Lens opacity density that completely blocks
the light is labeled as dense; otherwise, it is defined as transparent.
Lens opacity location that fully covers the visual axis of the pupil
is called central; otherwise, it is called peripheral. For the area,
density, and location of the lens opacity, this grading method
does not need to consider the specific types of infantile cataracts,
but can cover almost all types of infantile cataracts. And it is more
suitable for the processing flow of AI algorithms.

Based on this grading method, we have developed an
automatic diagnosis system CC-Cruiser (1, 3) based on CNNs,
which achieved satisfactory accuracy for infantile cataracts
detection based on a single-center dataset derived from
ZhongshanOphthalmic Center (ZOC) of Sun Yat-SenUniversity.

The Canny detection and Hough transform (26, 27) were used
to localize the lens region and eliminate noises such as iris,
eyelids, eyelashes, etc. However, the partitioned lens region
was not completely consistent with the true lens region, and
the impact of the partition strategy on the CC-Cruiser was
not studied. Recently, our team applied and extended the
CC-Cruiser to other four multicenter slit-lamp images (28).
However, the comparative experiments demonstrated that the
performance of the CC-Cruiser in multicenter was inferior to
that in single-center, and it was even weaker than that of senior
ophthalmologists based on a multicenter randomized controlled
trial. These studies indicated that although CC-Cruiser achieved
satisfactory accuracy for infantile cataracts detection in single-
center testing, its generalizability was weak on the multicenter
datasets. Therefore, the slit-lamp images of infantile cataracts
provide an ideal application scenario for us to study the
impact of partition strategies and multicenter datasets on the
generalizability of the diagnosis system.

In this study, we first collected slit-lamp images from other
four independent ophthalmic clinics to construct multicenter
datasets. Then, we proposed lens partition strategies (LPSs)
based on deep learning Faster R-CNN and Hough transform for
localizing the lens region and explored the impacts of different
LPSs on the performance of the diagnosis system. Furthermore,
we divided the partitioned multicenter dataset into five equal
size subsets and sequentially added one to four subsets into the
CC-Cruiser training dataset to analyze the impact of the sample
size of multicenter slit-lamp images on the generalizability of the
diagnosis system. Finally, we obtained a clinically applicable LPS
and minimal training sample size for infantile cataracts based on
multicenter slit-lamp images.

MATERIALS AND METHODS

Datasets and Participants
As shown in Table 1, the slit-lamp dataset consists of two parts.
The first part used to train CC-Cruiser was derived between April
2013 and February 2015 from ZOC of Sun Yat-Sen University,
including 476 normal images and 410 infantile cataract images
(1, 3). The second part included 336 normal images and 421
infantile cataract images that were obtained between August
2017 and May 2018 from the other four clinical institutions (the
Central Hospital of Wuhan, Shenzhen Eye Hospital, Kaifeng Eye
Hospital, and the Second Affiliated Hospital of Fujian Medical
University) distributed in different regions across China (28).
Furthermore, the baseline demographics and clinical features
of the two datasets are summarized in Table 1. Each slit-lamp
image was comprehensively evaluated and labeled by three
senior ophthalmologists from three-degree grading: opacity area
(extensive vs. limited), density (dense vs. transparent), and
location (central vs. peripheral). The definition of the three-
degree grading was consistent with previous studies (1, 3, 28, 29).

Recruited participants were required to meet the standard
inclusion criteria of the above five ophthalmic clinics.
Participants were eligible for this study when they were
younger than 14 years, with or without eye symptoms, and had
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TABLE 1 | Baseline demographics and clinical features of slit-lamp datasets.

Item CC-Cruiser dataset Multicenter dataset

No. of subjects 536 433

Age (years)* 4.25 (0.36) 6.24 (0.45)

No. (%) of male 299 (55.8%) 196 (45.3%)

No. (%) of family history of cataracts 46 (8.6%) 28 (6.5%)

Total no. of images 886 757

No. (%) of images with cataracts 410 (46.3%) 421 (55.6%)

Opacity area

Extensive# 238 (58.0%) 261 (62.0%)

Limited# 172 (42.0%) 160 (38.0%)

Opacity density

Dense# 231 (56.3%) 283 (67.2%)

Transparent# 179 (43.7%) 138 (32.8%)

Opacity location

Central# 260 (63.4%) 254 (60.3%)

Peripheral# 150 (36.6%) 167 (39.7%)

*Data are presented as the mean (standard deviation). #data are no. (%) of images.

no history of any eye surgeries. All participants were required
to undergo a slit-lamp imaging examination. If necessary, the
sedative was given to small, uncooperative infants and young
children. All slit-lamp images containing a clear lens were
enrolled in this study. Low-quality images were excluded from
this study.

Written informed consent was obtained from at least one
guardian of each participant according to the Childhood Cataract
Program of the Chinese Ministry of Health (18) when the slit-
lamp image was enrolled. In the study, all personal privacy
information of participants was removed, and only the slit-lamp
images were retained. The research protocol was approved by the
institutional review board/ethics committee of ZOC.

Study Design and Procedures
This research mainly focused on two aspects: LPS and
multicenter slit-lamp images. Specifically, two automatic LPSs
were proposed and compared to obtain an optimal partition
strategy. Then, multicenter slit-lamp images were divided into
five equal size subsets, which were sequentially added to the
single-center training dataset of CC-Cruiser to investigate the
impact of the sample size of multicenter datasets on the
generalizability of the diagnosis models.

As shown on the left side of Figure 1, two LPSs based
on deep learning Faster R-CNN and Hough transform were
implemented to localize the normal and abnormal lenses in the
CC-Cruiser dataset, and their performance was compared in
terms of partition accuracy and efficiency. Then, based on the
original dataset and two types of partitioned datasets, the models
for infantile cataracts screening and three-degree grading were
trained and evaluated using 5-fold cross-validation (30). After
obtaining the optimal lens partition, as shown on the right side
of Figure 1, the multicenter slit-lamp images were divided into
five equal size subsets. One subset was used for testing, and the

other four subsets were added to the CC-Cruiser training dataset
in a piece-by-piece manner. Thus, including the original model
without adding any multicenter training dataset, a total of five
classifiers were trained. Finally, the performance of five classifiers
was compared to evaluate the impact of the multicenter slit-
lamp images on the diagnosis model. The optimal classifier and
appropriate sample size were obtained.

Overall Architecture of LPS and Infantile
Cataracts Diagnosis
As shown in Figure 2, the overall architecture consists of
two modules: automatic LPS and infantile cataracts screening
and grading. Two LPSs are present to localize the lens
regions on the original slit-lamp images (Figure 2A). Then, the
partitioned lens regions are input into a 50-layer residual CNN
(ResNet5) for screening and three-degree grading of infantile
cataracts (Figure 2B).

For lens partition, consistent with our previous studies (1, 3,
4), the twice-applied Canny detection and Hough transform are
first used to detect the lens region. As shown in Figure 2A, the
general contour of the lens is identified on the H component
of HSV (hue, saturation, and value) using the first round of the
Hough transform, and then the finer boundary of the lens is
partitioned on the S component of HSV using the second round
of the Hough transform. In this study, an alternative partition
strategy based on the Faster R-CNN method (31) is proposed for
detecting lens regions (Figure 2A). The feature maps show the
output of the convolution layers. The region proposal network
employs an anchor mechanism to generate a batch of region
proposals of the normal and abnormal lens on the feature maps.
The region of interest (RoI) pooling performs maximum pooling
on the region proposals with non-uniform sizes to produce
the fixed-size feature maps. Each region proposal is compared
with the true lens region marked by ophthalmologists. Two
stages of the Faster R-CNN are applied to predict the boundary
coordinates of the lens region. As the backbone network, a
pretrained 50-layer ResNet model (32) based on the ImageNet
dataset was used in the Faster R-CNN for lens partition.

In the automatic diagnosis of infantile cataracts (1, 3, 4)
and multiple ophthalmic disorders (33–35), the AlexNet (36),
GoogleNet (37), and ResNet (32) were performed and compared
in detail, and the superiority of the ResNet was verified. In this
study, a 50-layer ResNet classifier is applied for infantile cataracts
screening and three-degree grading (Figure 2B). The overall
architecture of the ResNet mainly consists of convolution layers,
max-pooling operation, 16 residual blocks, batch normalization
technique, average pooling, softmax layer, transfer learning,
and data augmentation technique. The residual blocks are used
to address the degradation problem caused by the ultra-deep
networks (32, 38). As shown in Figure 2B, the “3x, 64–256”
represents three identical residual blocks where the sizes of the
input and output feature maps are 64 and 256, respectively. The
input of the ResNet is the lens region partitioned by Faster R-
CNN or Hough transform. The output of the ResNet is the
category of normal or infantile cataracts in screening and the
severity of infantile cataracts in three-degree grading. Two LPSs
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FIGURE 1 | The evaluation pipeline for the impacts of LPSs and multicenter slit-lamp images. (A) The evaluation module of the impact of the LPSs. (B) The evaluation

module of the impact of multicenter slit-lamp images. LPSs, lens partition strategies.

can perform lens partition based on slit-lamp images of any
size. And the size of the partitioned lens region is larger than
the minimum size (256 × 256 pixels) required by the ResNet.
Therefore, there is no special requirement on the minimum
size and pixels of the slit-lamp images in this study. For a
fair comparison, the same 50-layer ResNet and its training
parameters are used in all experiments.

Visualization Heatmaps and t-Distributed
Stochastic Neighbor Embedding
To verify the reasonability of diagnosis models, the gradient-
weighted class activation mapping (Grad-CAM) visualization
technique was employed to generate the heatmaps for
highlighting the disease-related regions on which the diagnosis
model focused most. The Grad-CAM is an explainable technique
for CNN-based models, which utilized the gradients of any target
concept flowing into the last convolutional layer to produce a
localization map highlighting remarkable regions in the image
for predicting the concept (39). The t-distributed stochastic
neighbor embedding (t-SNE) (40) was used to present the
discrimination ability of high-level features learned by deep
learning. The t-SNE is a dimensionality reduction technique
that visualizes high-dimensional data by giving each datapoint a

location in a two-dimensional map. The separability of different
types of datapoints in a two-dimensional map represents the
discrimination ability of high-level features in deep learning.

Evaluation Metrics and Statistical Analysis
This study was conducted using the PyTorch deep learning
framework (41), and all models were trained in parallel with
four NVIDIA TITAN RTX 24G GPUs. Five-fold cross-validation
(30) was applied to calculate the mean and standard deviation of
metrics, including accuracy, specificity, sensitivity, F1-Measure,
intersection over union (IoU), average precision (AP), receiver
operating characteristic (ROC) curve, and area under the ROC
curve (AUC), to evaluate the performance of different methods
for infantile cataracts detection. The accuracy represents the
proportion of correctly classified or graded samples in all
samples; the sensitivity and specificity are used to evaluate the
probability of misdiagnosis of patients and normal samples,
respectively. The F1-Measure, ROC curve, and AUC were used
to measure the overall performance of the diagnosis models. The
IoU and AP metrics were employed to evaluate the performance
of the LPSs, where the IoU represents the ratio between the
intersection and union of the prediction and ground truth
bounding boxes, and the AP refers to the AP of the RoIs. All
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FIGURE 2 | The overall architecture of LPS and diagnosis for infantile cataracts. (A) The automatic LPSs using Faster R-CNN and Hough transform. (B) The

automatic screening and grading of infantile cataracts using the ResNet50. LPS, lens partition strategy; RPN, region proposal network; RoI, region of interest.

statistical analyses were conducted using Python 3.7.8 and the
packages of Scikit-learn. The 95% confidence intervals (CIs) for
accuracy, specificity, sensitivity, and AUC were calculated with
the Wilson score approach.

RESULTS

Qualitative Analysis of LPSs
Two LPSs (Hough transform and Faster R-CNN) were employed
to localize the lens RoI. Four representative slit-lamp images,
including one normal image and three positive images with
various infantile cataracts, were presented to intuitively illustrate
the effectiveness of LPSs (Figure 3). Figure 3A denotes the
original slit-lamp images, and the bold green rectangles in
Figure 3D are the true lens regions manually marked by senior
ophthalmologists. Figures 3B,C are the partitioned results of

Hough transform and Faster R-CNN, respectively, and the bold
red rectangles indicated the lens regions partitioned by the above
two methods.

Quantitative Analysis of LPSs
Two metrics of IoU and AP were employed to quantitatively
evaluate the performance of two partition strategies. Using 5-fold
cross-validation, we obtained the IoU of normal and abnormal
lenses shown in Table 2. For the normal lens, the Hough
transform had a mean IoU of 0.897, and the Faster R-CNN had a
mean IoU of 0.9419. For the abnormal lens, the Hough transform
only obtained a mean IoU of 0.8138, whereas the Faster R-CNN
obtained a mean IoU of 0.9107. The boxplot of the AP metric for
the Faster R-CNN is shown in Figure 4. The median AP of the
partitioned normal lens was > 0.99, and even the median AP of
the abnormal lens also achieved more than 0.95. In addition, the
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FIGURE 3 | Examples of lens partition using two LPSs. (A) Four representative original slit-lamp images. (B,C) The automatic lens partition results of Hough transform

and Faster R-CNN, where the bold red rectangles denote the boundaries of the partitioned lens. (D) The true lens area is manually marked by senior

ophthalmologists. LPSs, lens partition strategies.

TABLE 2 | The IoU performance comparison of two LPSs.

Methods Normal lens

(mean ± SD)

Abnormal lens

(mean ± SD)

Hough transform 0.8970 ± 0.0160 0.8138 ± 0.0327

Faster R-CNN 0.9419 ± 0.0037 0.9107 ± 0.0143

IoU, intersection over union; SD, standard deviation; LPSs, lens partition strategies.

median APs of dense regions and transparent regions were 0.8854
and 0.8689, respectively.

To evaluate the efficiency of LPSs, we further calculated
the time consumption of training and testing procedures. The
training time contains a complete transfer learning procedure,
and the testing time refers to the average partition time on all test

images. As the Hough transformwas based on a priori hypothesis
that the lens is circular, it performed lens partition without any
training operation. Thus, the time consumption of training is
zero, as shown in Table 3. The training time of the Faster R-
CNN based on the transfer learning was 2,906 s. The testing time
of the Hough transform is 34.46 s, whereas the Faster R-CNN
only needs 0.25 s. For a comprehensive comparison, we listed the
average IoU of normal and abnormal lenses in the last column of
Table 3. Compared with the Hough transform, the average IoU
of the Faster R-CNN was improved by 0.0684.

Exploring the Impact of LPSs on the
Diagnosis Models
From the above qualitative and quantitative experiments, our
study confirmed that the performance of the Faster R-CNN
was superior to that of the Hough transform. To evaluate
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FIGURE 4 | The AP performance comparison of different object regions with

the Faster R-CNN partition strategy. AP, average precision.

the ultimate impact of LPSs on the diagnosis models, we
trained four classifiers for the infantile cataracts screening and
three-degree grading based on the CC-Cruiser dataset. Their
performance including accuracy, specificity, and sensitivity is
shown in Table 4. The ResNet denotes the diagnosis method
without using any LPS. The HT-ResNet represents the diagnosis
method using LPS based on Hough transform (1, 3). The Faster-
RCNN-ResNet represents the diagnosis method using LPS based
on Faster R-CNN. For infantile cataracts screening, the ResNet
model achieved a 93.08% specificity and a 91.95% sensitivity,
and the HT-ResNet model (specificity and sensitivity, 97.28 and
96.83%) was comparable to the optimal Faster-RCNN-ResNet
model (98.74 and 97.04%). For area grading, the performance of
three models from poor to excellent was as follows: ResNet (77.33
and 81.92%), HT-ResNet (86.63 and 90.75%), and Faster-RCNN-
ResNet (94.72 and 94.04%). For density grading, the ResNet
achieved a 79.85% specificity and an 81.81% sensitivity, and the
performance of the HT-ResNet (91.05and 93.94%) was inferior
to that of the Faster-RCNN-ResNet (92.14 and 95.62%). For
location grading, the ResNet achieved a 72.01% specificity and an
83.90% sensitivity; the sensitivity of HT-ResNet (93.08%) is close
to that of Faster-RCNN-ResNet (94.55%), whereas the specificity
of HT-ResNet (82.70%) was inferior to that of Faster-RCNN-
ResNet (90.64%). In addition, the standard deviation of Faster-
RCNN-ResNet for infantile cataracts screening and three-degree
grading was small.

Exploring the Impact of the Sample Size of
Multicenter Slit-Lamp Images on the
Generalizability of Diagnosis Models
Based on the above comparative experiments, we have obtained
the best diagnosis model Faster R-CNN-ResNet. Furthermore,

TABLE 3 | The efficiency comparison of two LPSs.

Methods Running time of

training (s)

Running time of

testing (s)

Average IoU of lens

(mean ± SD)

Hough transform 0 34.46 0.8554 ± 0.0501

Faster R-CNN 2,906 0.25 0.9238 ± 0.0170

IoU, intersection over union; SD, standard deviation, LPSs, lens partition strategies.

we explored the impact of the sample size of multicenter slit-
lamp images on the generalizability of the Faster R-CNN-ResNet.
Specifically, we collected the multicenter dataset from other four
ophthalmic clinics, employed the Faster R-CNN to crop the lens
region, and randomly divided these partitioned images into five
equal size subsets. Then, by sequentially adding one to four
subsets to the CC-Cruiser dataset, we trained four classifiers
and compared their performance on the remaining multicenter
testing dataset. Including the original model without any
multicenter training dataset, we have obtained five comparison
results in Table 5. When only the CC-Cruiser dataset (zero
subsets inTable 5) was involved in training, its generalizability on
the multicenter testing dataset was not ideal. The performance of
the zero-subset model are as follows: infantile cataracts screening
[specificity and sensitivity, 92.54% (95% CI, 0.862–0.988) and
96.43% (95% CI, 0.925–1.000)], area grading [78.12% (95%
CI, 0.638–0.925) and 88.46% (95% CI, 0.800–0.984)], density
grading [81.48% (95% CI, 0.668–0.961), and 87.50% (95% CI,
0.788–0.962)], and location grading [81.82% (95% CI, 0.687–
0.950) and 86.00% (95% CI, 0.764–0.956)]. With the addition
of multicenter slit-lamp images, the performance of the models
was gradually enhanced. The optimal performance (three subsets
or four subsets in Table 5) was as follows: infantile cataracts
screening [97.01% (95% CI, 0.929–1.000) and 97.62% (95%
CI, 0.944–1.000)], area grading [93.75% (95% CI, 0.854–1.000)
and 92.31% (95% CI, 0.851–0.996)], density grading [92.59%
(95% CI, 0.827–1.000) and 92.86% (95% CI, 0.861–0.996)], and
location grading [90.91% (95%CI, 0.811–1.000) and 92.00% (95%
CI, 0.845–0.995)]. In addition, the comparison results of the
other two methods (ResNet and HT-ResNet) were also obtained
after adding four subsets of multicenter slit-lamp images to the
training procedure (Table 6). It is not difficult to conclude that
the generalizability of the Faster R-CNN-ResNet is superior to the
other two methods.

Furthermore, to comprehensively evaluate the impact of
the sample size of multicenter slit-lamp images on the
generalizability of models, we presented the F1-Measure curve
with the addition of the multicenter training dataset shown
in Figure 5A. From zero to two subsets, the performance of
screening and three-degree grading increased rapidly. From
two to four subsets, the screening and the location grading
were stable, whereas the area and density grading were also
slightly improved. Furthermore, we showed the ROC curves
of infantile cataracts screening and three-degree grading when
three subsets multicenter slit-lamp images were included in the
training procedure. As shown in Figure 5B, the ROC of the
screening was closer to the upper-left corner with an AUC of
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TABLE 4 | Quantitative evaluation of different methods using the CC-Cruiser dataset.

Metric ResNet HT-ResNet Faster-RCNN-ResNet

Screening ACC (mean ± SD) (%) 92.57 ± 0.57 97.07 ± 0.85 97.96 ± 0.32

SPE (mean ± SD) (%) 93.08 ± 3.74 97.28 ± 1.06 98.74 ± 0.47

SEN (mean ± SD) (%) 91.95 ± 3.68 96.83 ± 1.83 97.04 ± 0.68

Area grading ACC (mean ± SD) (%) 79.95 ± 3.06 89.02 ± 0.99 94.33 ± 1.11

SPE (mean ± SD) (%) 77.33 ± 10.6 86.63 ± 5.81 94.72 ± 2.48

SEN (mean ± SD) (%) 81.92 ± 7.90 90.75 ± 4.28 94.04 ± 1.78

Density grading ACC (mean ± SD) (%) 80.95 ± 3.78 92.68 ± 0.61 94.10 ± 1.79

SPE (mean ± SD) (%) 79.85 ± 6.75 91.05 ± 1.92 92.14 ± 2.30

SEN (mean ± SD) (%) 81.81 ± 5.24 93.94 ± 1.71 95.62 ± 1.52

Location grading ACC (mean ± SD) (%) 79.62 ± 4.13 89.28 ± 3.23 93.11 ± 1.06

SPE (mean ± SD) (%) 72.01 ± 9.31 82.70 ± 6.16 90.64 ± 3.60

SEN (mean ± SD) (%) 83.90 ± 6.55 93.08 ± 3.87 94.55 ± 1.65

ACC, accuracy; SPE, specificity; SEN, sensitivity; SD, standard deviation; ResNet, the diagnosis model with the residual convolutional neural network; HT-ResNet, the ResNet diagnosis

model with LPS based on Hough transform; Faster-RCNN-ResNet, the ResNet diagnosis model with LPS based on Faster R-CNN.

TABLE 5 | Performance comparison of Faster-RCNN-ResNet model with different sizes of the multicenter dataset in the training procedure.

Metric 0-Subset 1-Subset 2-Subsets 3-Subsets 4-Subsets

Screening ACC (%)

(95% CI)

94.70

(0.911–0.983)

96.03

(0.929–0.991)

97.35

(0.948–0.999)

97.35

(0.948–0.999)

97.35

(0.948–0.999)

SPE (%)

(95% CI)

92.54

(0.862–0.988)

95.52

(0.906–1.000)

97.01

(0.929–1.000)

97.01

(0.929–1.000)

97.01

(0.929–1.000)

SEN (%)

(95% CI)

96.43

(0.925–1.000)

96.43

(0.925–1.000)

97.62

(0.944–1.000)

97.62

(0.944–1.000)

97.62

(0.944–1.000)

Area grading ACC (%)

(95% CI)

84.52

(0.768–0.923)

86.90

(0.797–0.941)

91.67

(0.858–0.976)

92.86

(0.874– 0.984)

92.86

(0.874– 0.984)

SPE (%)

(95% CI)

78.12

(0.638–0.925)

81.25

(0.677–0.948)

90.62

(0.805–1.000)

93.75

(0.854–1.000)

93.75

(0.854–1.000)

SEN (%)

(95% CI)

88.46

(0.800–0.972)

90.38

(0.824–0.984)

92.31

(0.851–0.996)

92.31

(0.851–0.996)

92.31

(0.851–0.996)

Density grading ACC (%)

(95% CI)

85.54

(0.780–0.931)

87.95

(0.810–0.950)

90.36

(0.840–0.967)

92.77

(0.872–0.983)

92.77

(0.872–0.983)

SPE (%)

(95% CI)

81.48

(0.668–0.961)

85.19

(0.718–0.986)

88.89

(0.770–1.000)

92.59

(0.827–1.000)

92.59

(0.827–1.000)

SEN (%)

(95% CI)

87.50

(0.788–0.962)

89.29

(0.812–0.974)

91.07

(0.836–0.985)

92.86

(0.861–0.996)

92.8

6 (0.861–0.996)

Location grading ACC (%)

(95% CI)

84.34

(0.765–0.922)

86.75

(0.795–0.941)

91.57

(0.856–0.975)

91.57

(0.856–0.975)

91.57

(0.856–0.975)

SPE (%)

(95% CI)

81.82

(0.687–0.950)

84.85

(0.726–0.971)

90.91

(0.811–1.000)

90.91

(0.811–1.000)

90.91

(0.811–1.000)

SEN (%)

(95% CI)

86.00

(0.764–0.956)

88.00

(0.790–0.970)

92.00

(0.845–0.995)

92.00

(0.845–0.995)

92.00

(0.845–0.995)

ACC, accuracy; SPE, specificity; SEN, sensitivity; CI, confidence interval; 4-subsets, the diagnosis model with four subsets multicenter slit-lamp images included in the training procedure.

0.997 (95% CI, 0.990–1.000). Among the three-degree grading,
the area grading showed the optimal result with an AUC of 0.979

(95% CI, 0.948–0.999), followed by the density grading with an

AUC of 0.970 (95% CI, 0.924–0.997), and location grading with

an AUC of 0.965 (95% CI, 0.922–0.995). In addition, we obtained

a 0.9246 AP and a 0.9600 IoU for lens partition on multicenter

slit-lamp images, which further verified the generalizability of the

Faster R-CNN in the multicenter dataset.

Interpretability Analysis of Infantile
Cataracts Screening and Three-Degree
Grading Models
In the multicenter testing dataset, the high-level features
extracted from the screening and three-degree grading models,
including 67 normal samples and 84 infantile cataract samples
with various severities, were mapped into a two-dimensional
space to visually demonstrate their discrimination (Figure 6).
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TABLE 6 | Evaluation of generalization of different methods on the multicenter dataset.

Metric ResNet HT-ResNet Faster-RCNN-ResNet

Screening ACC (%) (95% CI) 90.73 (0.861–0.954) 93.38 (0.894–0.973) 97.35 (0.948–0.999)

SPE (%) (95% CI) 91.04 (0.842–0.979) 94.03 (0.884–0.997) 97.01 (0.929–1.000)

SEN (%) (95% CI) 90.48 (0.842–0.968) 92.86 (0.873–0.984) 97.62 (0.944–1.000)

Area grading ACC (%) (95% CI) 77.38 (0.684–0.863) 88.10 (0.812–0.950) 92.86 (0.874– 0.984)

SPE (%) (95% CI) 75.00 (0.600–0.900) 87.50 (0.760–0.990) 93.75 (0.854–1.000)

SEN (%) (95% CI) 78.85 (0.677–0.899) 88.46 (0.798–0.971) 92.31 (0.851–0.996)

Density grading ACC (%) (95% CI) 75.90 (0.667–0.851) 87.95 (0.810–0.950) 92.77 (0.872–0.983)

SPE (%) (95% CI) 74.07 (0.576–0.906) 88.89 (0.770–1.000) 92.59 (0.827–1.000)

SEN (%) (95% CI) 76.79 (0.657–0.878) 87.50 (0.788–0.962) 92.86 (0.861–0.996)

Location grading ACC (%) (95% CI) 74.70 (0.653–0.841) 83.13 (0.751–0.912) 91.57 (0.856–0.975)

SPE (%) (95% CI) 69.70 (0.540–0.854) 78.79 (0.648–0.927) 90.91 (0.811–1.000)

SEN (%) (95% CI) 78.43 (0.665–0.895) 87.13 (0.764–0.956) 92.00 (0.845–0.995)

ACC, accuracy; SPE, specificity; SEN, sensitivity; CI, confidence interval; ResNet, the diagnosis model with the residual convolutional neural network; HT-ResNet, the ResNet diagnosis

model with LPS based on Hough transform; Faster-RCNN-ResNet, the ResNet diagnosis model with LPS based on Faster R-CNN.

FIGURE 5 | The impact of the sample size of multicenter training datasets on infantile cataracts screening and three-degree grading. (A) The F1-Measure curves with

the increase of multicenter training samples for screening and three-degree grading. (B) The ROC curves for screening and three-degree grading. ROC, receiver

operating characteristic curve; AUC, area under the ROC curve.

Visualized maps of the screening (Figure 6A), opacity density
(Figure 6B), opacity location (Figure 6C), and opacity area
(Figure 6D) are presented separately in Figure 6, where the
red dots represent infantile cataract patients in screening or
severe patients in grading, and the green dots denote normal
samples or mild infantile cataract patients. Furthermore, eight
representative slit-lamp images and their visual heatmaps are
displayed in Figure 7. For screening, the upper and lower rows
are infantile cataract patients and normal samples (Figure 7A),
both of which include the original slit-lamp image and the

corresponding heatmap. Similarly, in each subheatmap of opacity
density (Figure 7B), location (Figure 7C), and area (Figure 7D),
the upper row represents severe infantile cataract patient, and the
lower row denotes mild patient.

DISCUSSION

In this study, we proposed an effective LPS based on deep
learning Faster R-CNN for improving the generalizability of

Frontiers in Medicine | www.frontiersin.org 9 May 2021 | Volume 8 | Article 664023

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jiang et al. LPS for Infantile Cataracts Detection

FIGURE 6 | The feature maps of the multicenter testing dataset for screening and three-degree grading using t-SNE. (A–D) Two-dimensional feature maps for

screening, opacity density grading, opacity location grading, and opacity area grading, respectively. The red dots represent infantile cataract patients in screening or

severe patients in grading, and the green dots denote normal samples or mild infantile cataract patients. t-SNE, t-distributed stochastic neighbor embedding.

the infantile cataracts screening and three-degree grading.
The impacts of LPSs and multicenter slit-lamp images on
the performance of the diagnosis models were investigated.
Qualitative and quantitative experiments demonstrated that
the Faster R-CNN was the optimal LPS with higher accuracy
and efficiency compared to the Hough transform. The sample
size of the multicenter slit-lamp images had a significant
impact on the performance of diagnosis models. With the
addition of multicenter slit-lamp images, the performance of the
diagnosis models was gradually enhanced. Through comparative
experiments, the minimal training sample size of multicenter
images was achieved to ensure the better generalizability
of diagnosis models. Moreover, the Grad-CAM and t-SNE
techniques provided an interpretable path for the diagnosis of
infantile cataracts, further validating the effectiveness of the
Faster R-CNN.

The performance of the Faster R-CNN was superior to that of
the Hough transform on both normal and abnormal lenses. First,
the qualitative experiment presented that the lens partitioned by
Faster R-CNN perfectly matched the true lens marked by senior
ophthalmologists, and the difference between them is small.
Previously, our previous studies (1, 3) reported the lens partition
method HT-ResNet based on Hough transform. However, there
was a large deviation between the lens regions partitioned by
Hough transform and the true lens regions, especially on the

abnormal lenses from rows 2 and 4 of Figure 3. Second, the
average IoU of lens partition based on the Faster R-CNN was
higher when compared to the Hough transform. Especially on
the abnormal lens, the average IoU of the Faster R-CNN was
improved by 0.0969. Third, regardless of the normal or abnormal
lenses, the distribution of the AP boxplot of the Faster R-
CNN was compact, and their median exceeded 95%. The above
analysis indicated that the lens partition of the Faster R-CNNwas
effective. It removed most of the noises around the lens, which
was conducive to improving the performance of the diagnosis
models. Furthermore, according to the grading standard of
opacity density, senior ophthalmologists also marked the dense
and transparent lesion regions, and then we calculated the AP of
these regions in the same way. However, the APs of the dense
and transparent lesion regions showed lower and more scattered
characteristics in the boxplot. We speculated that this result was
due to the scattered distribution of opacity lesion regions of
infantile cataracts.

The lens partition efficiency of Faster R-CNN is high.
Although the training time of the Hough transform is zero,
its average testing time exceeded half a minute. In contrast,
the average testing time of the Faster R-CNN was only 0.25 s.
As the training procedure can be performed on the local GPU
server in advance, the testing time will not be affected after
the trained model is deployed in ophthalmic clinics. Therefore,
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FIGURE 7 | The representative heatmaps of infantile cataracts screening and three-degree grading using Grad-CAM. (A–D) The representative positive and negative

slit-lamp images and their corresponding visualization heatmaps for infantile cataracts screening, opacity density grading, opacity location grading, and opacity area

grading, respectively. In each figure, the upper row indicates infantile cataract patients in screening or severe patients in grading, and the lower row represents normal

images or mild infantile cataract patients. Grad-CAM, gradient-weighted class activation mapping.

the Faster R-CNN can be applied to real-time lens partition for
infantile cataracts.

The LPS directly affected the performance of the diagnosis
models. First, for infantile cataracts screening, the accuracy,
specificity, and sensitivity of the two LPSs have been improved
approximately by 4–5%, which were slightly better than
the ResNet without using any LPS. Second, for infantile
cataracts three-degree grading, compared with the ResNet, the
performance of the Faster-RCNN-ResNet was greatly improved,
followed by HT-ResNet. For example, the accuracy, specificity,
and sensitivity of the Faster-RCNN-ResNet were increased
by 14.38, 17.39, and 12.12% in the opacity area grading,
respectively, and those indicators of the HT-ResNet were
increased by ∼9%. Similar conclusions were presented on the
other grading of opacity density and location. Third, in all
grading, the Faster-RCNN-ResNet was superior to the HT-
ResNet. It was worth mentioning that the specificity of the
Faster-RCNN-ResNet was improved by 8.09 and 7.94% in the

opacity area and location, respectively, when compared to the
HT-ResNet method.

The multicenter slit-lamp images affected the generalizability
of diagnosis models because fewer single-center images cannot
represent the diversity of real data in multicenter clinics. In
our previous study, we had verified that the model trained
with only the CC-Cruiser dataset did not perform well in other
clinical institutions (28). In this study, with the addition of
multicenter slit-lamp images to the CC-Cruiser dataset, although
the performance improvement of infantile cataracts screening
was subtle, the performance of three-degree grading was greatly
improved. As shown in Figure 5, when more than two subsets of
the multicenter dataset were added, the F1-Measure indicator of
three-degree grading tended to be stable. This result is attributed
to the following three factors. First, the difference was large
between abnormal images but small between normal images.
Three screening models distinguished the normal lens from
the abnormal lens with high accuracy. Second, if there is no
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or only a small size of multicenter data involved in training,
the characteristics of multicenter slit-lamp images cannot be
adequately learned by models. In addition, the noises and
heterogeneity between abnormal images collected in multicenter
were large. These factors affected the generalizability of models in
three-degree grading.

Although deep learning, like a black box, was applied in
extensive disease diagnosis, their insufficient interpretability
characteristic was criticized by doctors and patients. Exploring
the reasons for the rationale of deep learningmodels can facilitate
their acceptance and application. In this study, we explored the
discrimination ability of high-level features extracted from deep
learning using the t-SNE technique (Figure 6). The features of
the infantile cataracts screening mapped to a two-dimensional
space were highly separable, whereas the separability of the
three-degree grading was slightly weak. These results were
consistent with our quantitative testing results of infantile
cataracts screening and grading. Furthermore, we performed
heatmap visualization on the multicenter testing dataset (67
normal and 84 abnormal slit-lamp images) using the Grad-
CAM technique. Eight representative images were presented to
illustrate the regions contributing the most to the outcome of
the models. Inspiringly, the visualization results showed that
all abnormal images highlighted the lesion regions of infantile
cataracts, and normal images highlighted the lens region, which
further corroborated the reasonability of the proposed diagnosis
system. Interpretability analysis provided strong evidence for the
acceptance of the Faster R-CNN-ResNet in ophthalmic clinics.

Several limitations exist in this study. First, although both
normal and abnormal lenses were partitioned, the specific
lesions regions were not accurately partitioned because the
distribution of the lesions was diffuse and sparse. Segmentation
methods may be another path for addressing lesions regions.
The dense labeling and segmentation methods of lesions
need to be further studied, which may provide a more
accurate diagnosis for infantile cataracts. Second, only slit-
lamp images had been studied for the automatic diagnosis
of infantile cataracts, the diagnostic system may miss a few
patients whose lesions occur on the back of the lens. It is
necessary to explore multimodality image fusion methods to
comprehensively evaluate the severity of infantile cataracts.
Third, this study mainly focused on the severities of infantile
cataracts from three-degree grading: opacity area, density, and
location. However, there are other types of infantile cataracts
from other grading perspectives, such as punctate cataract,
lamellar cataract, posterior polar cataract, and so on. The
performance of LPSs on different types of infantile cataracts
will be explored in future research. In addition, our AI
diagnosis system did not fully consider infantile cataracts with
wobbly movements, which will be further explored by video
detection methods.

CONCLUSION

This study presented a feasible LPS and diagnosis system for
infantile cataracts that can be applied to the multicenter slit-
lamp images. An appropriate LPS and sample size of multicenter
images can help to improve the reliability and generalizability of
the diagnostic system. Qualitative and quantitative experiments
verified that the Faster R-CNN-ResNet was superior to other
conventional methods in infantile cataracts screening and three-
degree grading. Furthermore, the discrimination of high-level
features and the most relevant heatmaps were visualized using
t-SNE and Grad-Cam techniques, respectively, which made the
diagnosis results by the model interpretable. This study also
provided a valuable reference for the analysis of other rare
diseases and improved the generalizability of deep learning
technology in clinical applications.
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