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Dyslexia, also known as reading disability, is defined as difficulty processing written

language in individuals with normal intellectual capacity and educational

opportunity. The prevalence of dyslexia is between 5 and 17%, and the

heritability ranges from 44 to 75%. Genetic linkage analysis and association

studies have identified several genes and regulatory elements linked to dyslexia

and reading ability. However, their functions and molecular mechanisms are not

well understood. Prominent among these is KIAA0319, encoded in the DYX2 locus

of human chromosome 6p22. The association of KIAA0319 with reading

performance has been replicated in independent studies and different

languages. Rodent models suggest that kiaa0319 is involved in neuronal

migration, but its role throughout the cortical development is largely unknown.

In order to define the function of KIAA0319 in human cortical development, we

applied the neural developmental model of a human embryonic stem cell. We

knocked down KIAA0319 expression in hESCs and performed the cortical

neuroectodermal differentiation. We found that neuroepithelial cell

differentiation is one of the first stages of hESC differentiation that are affected

by KIAA0319 knocked down could affect radial migration and thus differentiation

into diverse neural populations at the cortical layers.
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Introduction

Reading is a complex trait influenced by both environmental

and genetic factors. Dyslexia, also known as reading disability, is

characterized by reading difficulty in the setting of normal

intelligence and adequate education. Dyslexia is associated

with long-term detrimental effects on educational achievement

and socioeconomic status (Schatschneider and Torgesen, 2004).

It is the most common learning disability, with a prevalence of

5–17% and a heritability of 0.34–0.76 (DeFries et al., 1987;

Shaywitz and Shaywitz, 2005; Hawke et al., 2006). Genetic

studies have identified nine dyslexia loci (DYX1-9), contingent

on aspects of reading performance (Gayan et al., 1999; Fisher and

DeFries, 2002). The most frequently replicated locus is DYX2 on

chromosome 6p21.3, and the most frequently replicated dyslexia

genes on DYX2 are KIAA0319 and DCDC2 (Deffenbacher et al.,

2004; Francks et al., 2004; Meng et al., 2005; Brkanac et al., 2007;

Zhao et al., 2016).

Animal models show that kiaa319 interacts with intracellular

trafficking protein AP-2. Additionally, KIAA0319 undergoes N- and

O- glycosylation, associated with the plasma membrane, suggesting

that KIAA0319 plays a role in cell maintenance and cell-cell signaling

in the endocytosis pathway (Velayos-Baeza et al., 2008; Levecque

et al., 2009). Kiaa0319 is also associated with extracellular signaling

pathways (Franquinho et al., 2017; Wu et al., 2020), via Smad2/3.

Both endocytosis and extracellular signaling pathways are essential

for regulating neurogenesis (Cope and Gould, 2019).

Several dyslexia genes, including kiaa0319 and dcdc2, affect

neuronal radial migration during rat embryogenesis (Peschansky

et al., 2010). Radial migration begins at the neuroepithelial cell stage

of neurogenesis. Individual cortical layers are then populated by

neuronal progenitor cells (Stockinger et al., 2011; Ji et al., 2017).

Neuronal progenitor cells are differentiated into neurons, astrocytes,

and oligodendrocytes, providing the diversity in neuronal subtypes

essential for neural circuitry construction, maintenance, and

function (Gotz and Huttner, 2005; Klausberger and Somogyi,

2008; Bergles and Richardson, 2015; Molofsky and Deneen, 2015;

Durkee and Araque, 2019). Regulation of neuronal progenitor cell

differentiation in the dentate gyrus of the hippocampus is associated

with learning andmemory and critical for propagating new neurons

in the adult brain (Cameron and Glover, 2015).

While animal models provide insights into some of the

cellular functions of dyslexia genes (Paracchini et al., 2006;

Szalkowski et al., 2012), they do not account for the

complexity of reading or the critical skills that subserve

reading, such as decoding, phonological awareness, or

orthographic coding. Modeling genetic variants associated

with specific human neurons and tissues could provide a way

to reference findings to brain regions critical to reading (Powers

et al., 2016; Fitch, 2017; Kirby, 2017).

Gene editing approaches in pluripotent cells, such as human

embryonic stem cells (hESCs) and induced pluripotent stem cells

(iPSCs), have been successfully used to model the effects of genetic

variants on neuronal differentiation (Wang et al., 2017; Xiang et al.,

2020). Pluripotent stem cells can be induced to differentiate into

many cell types, including glutamatergic neurons, GABAergic

neurons, and glial cells that populate the human brain

(Damdimopoulou et al., 2016). Neuroectodermal differentiation of

hESCs can reproduce developmental stages during embryonic brain

development and gene expression patterns (Howard et al., 2008).

Combined with gene editing tools, hESCs provide powerful

experimental systems for dissecting the function of genes

associated with neurodevelopmental or neuropsychiatric disorders

(Kolagar et al., 2020).

The KIAA0319 variants associated with dyslexia are at the

promoter region and thus the cell type and the temporal regulation

of KIAA0319 expression is perhaps a major cause of the dyslexia.

Here, as one of the first attempts to understand how KIAA0319

regulates the human cortical development, we set out to investigate

the function of KIAA0319 in the context of the loss of function. We

used a hESC model of cortical neural differentiation and probe the

function of KIAA0319 during neurogenesis. We knocked down

KIAA0319 in hESCs and performed neuroectodermal differentiation

to examine how the neural differentiation is affected by loss of

function of KIAA0319 throughout the neuronal development. We

found that KIAA0319 is critical in neuroepithelial cell

differentiation, which could affect radial migration and further

differentiation into diverse populations of brain cells. These

results suggest that one of the mechanisms whereby dysregulated

expression of KIAA0319 could influence human cortical

neurodevelopmental process is the neuroepithelial differentiation,

which could underlie the complex traits such as reading.

Results

KIAA0319 regulates the transition of
neuroepithelial cells into neuronal
progenitor cells

To determine how KIAA0319 gene expression changes, we first

examined transcriptome profiles of somatic tissues during human

fetal development. KIAA0319 is strongly expressed throughout

human cortical development and in all brain regions

(Supplementary Figures S1A–D), (Pletikos et al., 2014; Cardoso-

Moreira et al., 2019).

To study the potential effects of KIAA0319 on neurogenesis, we

knocked down (KD) expression using CRISPRi/dCas9-KRAB in

H7dCas9−KRAB-b6 hESCs (Figure 1A) targetting the transcription start

site. Both qRT-PCR and immunofluorescence confirmed decreased

expression of KIAA0319 in CRISPRi cells compared to controls

during neuronal differentiation at days 7, 14, 21, and 28 (Figures

1B–D). We then assessed the expression of genes representative of

transitional stages during neuronal differentiation by qRT-PCR and

immunostaining on days 7, 14, 21, and 28 of cortical differentiation.

We focused on neuronal stage lineage markers SOX10, PAX6, TBR2,
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TBR1, and MAP2 to quantitate the population of neuroepithelial,

neuronal progenitor, immature neuron, and mature neurons,

respectively. Compared to controls, SOX10 expression by qRT-

PCR and immunofluorescence, a marker of neuroepithelial cells,

was suppressed at day 21 in KIAA0319 KD cells (Figures

2A–C,E). Conversely, PAX6 expression by qRT-PCR and

immunofluorescence, a marker of neuronal progenitor cells,

increased in KIAA0319 KD cells on days 14 and 21 (Figures

2D–F). Together, these results suggest that KIAA0319 is critical for

regulating the transition of SOX10 + neuroepithelial cells to PAX6+

neuronal progenitor cells.

KIAA0319 KD arrests cells in a non-
proliferative neuronal progenitor cell
stage

Next, we characterized how KIAA0319 regulates PAX6+

neuronal progenitor cells at later stages of differentiation. We

simultaneously measured KI67, a marker for proliferation, and

PAX6 by qRT-PCR and immunofluorescence, and quantified the

proliferation of neuronal progenitor cells at two later time points of

differentiation (days 28 and 42) (Figures 3A,B). We found that the

fraction of KI67 + cells remained relatively low inKIAA0319KD cells

compared to controls (Figure 3C), while the fraction of PAX6+ cells

was relatively the same (Figure 3D). However, the fraction of KI67 +

cells among PAX6+ cells decreased, suggesting an overall decrease in

the population of proliferating neuronal progenitor cells (Figure 3E).

Overall, these results suggest that KIAA0319 KD could be driving

PAX6+ neuronal progenitor cells into cell cycle arrest, inducing

apoptosis in the proliferating cells, or prematurely inducing transition

into downstream stages of neuronal differentiation.

To assess whether the decrease in KI67 + PAX6+ neuronal

progenitor cells was due to apoptosis, we stained KD and

control cells with cleaved caspase-3 antibody, a marker of cell

death induction, at day 28 (Figure 4A). KIAA0319 KD did not

induce apoptosis, suggesting that the decrease in KI67 +

PAX6+ neuronal progenitor cells was not due to dying

FIGURE 1
Depletion of KIAA0319 by CRISPR interference (CRISPRi) (A)Workflow for generating KIAA0319 KD using CRISPRi in hESCs. (B) Confirmation of
KIAA0319 KD by qRT-PCR in H7 cells after transfection and puromycin selection. (C)Confirmation of KIAA0319 KD by qRT-PCR on days 7, 14, 21, and
28 of neuronal differentiation in H7 cells by qRT-PCR in neuronally differentiated H7 cells. (D) Immunofluorescence images of KIAA0319 KD and
control on day 28. Green: KIAA0319, grey: DAPI. Scale bar: 50 µm.

Frontiers in Cell and Developmental Biology frontiersin.org03

Paniagua et al. 10.3389/fcell.2022.967147

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.967147


FIGURE 2
KIAA0319 KD decreases expression of neuronal epithelial marker SOX10 but increases neuronal progenitor marker PAX6. (A) After 14 days of
neuronal differentiation, immunofluorescence was performed for SOX10 (green), PAX6 (red), and DAPI (grey). (B) After 21 days of neuronal
differentiation, immunofluorescence was performed for SOX10 (green), PAX6 (red), and DAPI (grey). qRT-PCR for SOX10 (C) and PAX 6 (D) were
performed on days 14 and 21 of KIAA0319 KD and Control H7 cells. The percentage of the population of SOX10+ (E) or PAX6+ (F) cells were
calculated on day 14 and day 21 of differentiation for KIAA0319 KD and Control H7 cells.
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cells. Next, we examined markers at later stages of neuronal

differentiation to quantify if KIAA0319 KD induces the

premature transition from neuronal progenitor cells into

downstream stages of neuronal differentiation. Compared

to controls at day 28, KIAA0319 KD significantly

decreased the expression of markers of intermediate

progenitor cells (TBR2), immature neuronal cells

(TBR1 and β-Tubulin), and mature neuronal cells (MAP2)

(Figure 4B). The results of these experiments show that

KIAA0319 KD arrests cells in a non-proliferative neuronal

progenitor cell stage, and that KIAA0319 is important for

transitioning neuronal epithelial cells into and through the

neuronal progenitor cell stage and to later stages of neuronal

differentiation.

FIGURE 3
KIAA0319 KD decreases the percentage of proliferating neuronal progenitor cells. (A–B) Immunostaining of KIAA0319 KD and control cells for
KI67 (green) and PAX6 (red) in Dapi (gray) on day 28 (A) and day 42 (B) of neuronal differentiation. Scale bar: 50 µm. Percentage of KI67 + cells (C) and
PAX6+ population (D) among DAPI + cells at day 28 and day 42. Percentage of PAX6+ cells among KI67 + population at day 28 and day 42 (E).
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FIGURE 4
KIAA0319 KD cells do not continue differentiating. (A) Images of KIAA0319 KD, Control, Control + DMSO (Positive Apoptosis Control) at day
28 of neuronal differentiation stained with cleaved-caspase 3 (green) and DAPI (grey). (B) QRT-PCR at day 28 for neuronal lineage markers TBR1,
TBR2, β-Tubulin, and MAP2.

FIGURE 5
KIAA0319 KD RNA-Seq shows pathways that promote cell cycle arrest of neuronal progenitor cells. (A) RNA Sequencing performed at four
distinct timepoints separated by 7-day intervals during cortical neuronal differentiation. (B) Ingenuity Pathway Analysis revealed enrichment of
pathways appearing in multiple time points. (C) Ingenuity Pathway Analysis revealed enrichment of genes appearing in multiple time points.
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KIAA0319 KD drives neuronal progenitor
cells into cell cycle arrest

To examine how KIAA0319 regulates proliferation in neuronal

progenitor cells, we performed RNA-sequencing on the

differentiating cells from day 7, 14, 21, and 28 (Figure 5A).

Ingenuity Pathway Analysis (IPA) showed that endocytosis,

exocytosis, lysosome, differentiation, proliferation, and metabolism

are affected by theKIAA0319KD (Figure 5B), which were previously

implicated in cell-cycle arrest of neuronal progenitor cells (Kobayashi

et al., 2019; Harada et al., 2021; Zhang et al., 2021). Individual gene

analysis showed a consistent decrease in expression of genes

associated with differentiation at neuroepithelial and neuronal

progenitor cell stages (Figure 5C). The changes in expression of

genes associated with extracellular matrix, metabolism, cell

maintenance, and cell-cell signaling further support the findings

that KIAA0319 KD drives neuronal progenitors into cell cycle arrest.

Discussion

Here, we tested our hypothesis that the clinical association of

KIAA0319 with reading performance and dyslexia is a consequence

of altered expression during early stages of neurogenesis. KIAA0319

KD showed a decrease in the SOX10 + neuroepithelial cells

concurrent with an increase in the PAX6 neuronal progenitors

and suppression of ensuing neurogenesis. These findings are

consistent with a decreased proliferative state at the neuronal

progenitor cells due to cell cycle arrest, highlighting the

importance of tight regulation of KIAA0319 expression during a

critical period of brain development.

Decreased expression of KIAA0319 appears to promote early

exit from the neuroepithelial cell stage and entry into the neuronal

progenitor cell stage. This suggests that KIAA0319 plays a critical

role as an upstream gatekeeper for neurogenesis, slowing or

enhancing downstream differentiation by arresting cells at the

neuronal progenitor cell stage. Transcriptome analysis suggests

that KIAA0319 could regulate cell proliferation through

endocytosis-related pathways. Indeed, dysregulation of the

endocytosis pathways has been shown to drive neuronal

progenitor cells into a stage of cell cycle arrest (Zhang et al.,

2021). Our results provide a new avenue for studying the

regulation of neurogenesis in human neurons.

This is the first study to suggest that KIAA0319, which has been

associated with reading performance in multiple independent studies,

may act by regulating neurogenesis at a critical checkpoint between

neuroepithelial cells and proliferating active neuronal progenitor cells.

The population of mature adult neurons is tightly regulated by the

proliferation of active neuronal progenitors. Our results suggest that

KIAA0319 is a critical check on this transition by either actively driving

neuronal progenitors into cell cycle arrest, or by blocking release from

cell cycle arrest into proliferating active cells and development into

downstream lineages.

The KIAA0319 genetic variants associated with reading and

dyslexia in clinical studies are in the promoter region and regulate

expression. Spatial and temporal regulation of KIAA0319 expression

that are affected by the variants could affect an isolated high-order

trait such as reading without global effects on brain development or

cognition; children and adults with dyslexia typically have normal

brain development and cognition.While this study has a limitation in

its design to reveal the function of the KIAA0319 variants in human

cortical neurogenesis, it is one of the first studies to show the role of

KIAA0319 in early neurogenesis in human cells. Future studieswill be

needed to define the function of the specific KIAA0319 genetic

variants associated with dyslexia in the genesis of specific cell

lineages and brain development. Use of the 3D cell culture brain

organoid models and single cell-based assay, like scRNA-seq, or

scATAC-seq will be critical in reveaingl the cell type specific function

of the variants.

Methods

Cell culture

HEK 293T cells were maintained in 6-well plates at 37°C

with 5%CO2. Cells were tested for mycoplasma and passaged

every 3 days using Gibco TrypLE™ Express with Phenol Red

for dissociation. Culture media consisted of 88% v/v DMEM,

10% v/v FBS, 1% v/v Glutamax, and 1% v/v Penicillin/

Streptomycin. H7dCas9−KRAB-b6 (WiCell, WA07, H7) human

ESCs were maintained in feeder-free culture conditions

using Matrigel-coated cell culture dishes and

mTeSR1 media at 37°C and 5% CO2. Cells were tested for

mycoplasma and passaged every 7 days following

dissociation with Dispase (0.83 U/ml). All experiments

involving hESCs were approved by the Yale Embryonic

Stem Cell Research Oversight Committee (ESCRO).

Neuronal differentiation

Pre-differentiated cells were removed before hESC

colonies, dissociated into single cells using Accutase, and

plated on 24-well plates at 500,000 cells/well with 50 µM

Y27632 and mTeSR1. Once plates reached 90% confluency,

cells were grown for 10 days with neural induction media

(47.5% v/v; DMEM/F12, 47.5% v/v Neurobasal media, 2% v/v

B27 supplement, 1% v/v DMEM-NEAA, 1% v/v

N2 supplement, 1% v/v Glutamax, 20 μg/ml Insulin,

100 nM LDN-193189, 50 µM β-Mercaptoethanol, 10 μM

SB431542, 2 µM XAV939), changing media every day.

Cells were dissociated using Accutase on day 11 and

plated on new 24-well plates along with 50 µM

Y27632 and progenitor expansion media (neural induction

media without inhibitors: LDN-193189, SB431542, and
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XAV939), changing media every other day. On day 19,

culture media was changed to maturation media (95% v/v

Neurobasal media, 2% v/v B27 supplement, 1% v/v

N2 Supplement, 1% v/v Glutamax, 1% v/v Penicillin/

Streptomycin) with 25 ng/ml BDNF, changing media every

2 days for 2 weeks and every 4 days thereafter. Cells were

dissociated using Accutase and replated on new 24-well plate

on day 25 at 100,000 cells/well when confluency was reached.

KIAA0319 lentivirus

Single Guide RNA (sgRNA) and reverse complement were

designed using CRISPR PAM sites (crispr.mit.edu) targeting the

transcription start site of KIAA0319 (KIAA0319 KD plasmid)

and synthesized by Keck (sgRNA KIAA0319 KD and Control

listed in Table 1). Oligos were annealed using 50% v/v NEB

Annealing Buffer, 46% v/v ddH20, 2% v/v top oligo, and 2% v/v

bottom oligo (Oligos listed in Table 1). Oligos were incubated at

95 °C and left to cool to room temperature. Plasmid pCRISPia-

V2, encoding a Puromycin resistance gene, had a sgRNA

insertion site opened using digestion enzymes BstXI and Blpl.

Ligation reactions consisted of 70% v/v ddH2O, 10% v/v of 10X

T4 ligase buffer, 10% v/v 1:20 diluted annealed oligos, 5%

pCRISPia-V2 (totaling 100 ng of digested plasmid), and 5% v/

v T4 Ligase at room temperature for 1 h.

Ligation reactions were transformed into One Shot™
TOP10 Chemically Competent cells following manufactures

instructions and plated on 10 cm LB Agar + Ampicillin (100ug/

ml) plates from Recombinant Technologies, LLC at 37°C for culture

overnight. Surviving colonies were cultured overnight in Gibco LB

Broth with Ampicillin at 100ug/ml in a 37°C shaker, followed by

plasmid purification using QIAGEN Plasmid Mini Kit and sequence

confirmation.

KIAA0319 KD and Control plasmids were individually

transfected into HEK293T cells along with 2.5 ugs of packaging

plasmids using X-treme GENE nine DNA transfection reagent

following manufacturer’s instructions. Supernatants containing

lentivirus were collected and concentrated 48 h after transfection

and stored at −80°C. H7 cells were infected with KIAA0319 KD

lentivirus and control lentivirus. Infected cultures were selected

following puromycin selection for 5 days.

TABLE 1 CRISPRi oligos.

Gene target Forward sgRNA Bottom sgRNA

KIAA0319 ttgTGGTAACCGCGGCGGCGGAAAGGgtttaagagc ttagctcttaaacCCTTTCCGCCGCCGCGGTTACCAcaacaag

Control ttgGACCAGGATGGGCACCACCCgtttaagagc ttagctcttaaacGGGTGGTGCCCATCCTGGTccaacaag

TABLE 2 qRT-PCR gene target primers.

Gene target Forward primer Reverse primer

KIAA0319 GGAAACCAGAGCAGTGACGATC GAAGGTATGGCGTCTGTACTCC

NANOG CTCCAACATCCTGAACCTCAGC CGTCACACCATTGCTATTCTTCG

SOX10 ATGAACGCCTTCATGGTGTGGG CGCTTGTCACTTTCGTTCAGCAG

PAX6 CTGAGGAATCAGAGAAGACAGGC ATGGAGCCAGATGTGAAGGAGG

TBR2 AAATGGGTGACCTGTGGCAAA CTCCTGTCTCATCCAGTGGGAA

TBR1 TCACTGGAGGTTTCAAGGAGGC TTTCTTGGCGCATCCAGTGAGC

MAP2 CCACCTGAGATTAAGGATCA GGCTTACTTTGCTTCTCTGA

β-Tubulin TCAGCGTCTACTACAACGAGGC GCCTGAAGAGATGTCCAAAGGC

GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA

GFAP GTACCAGGACCTGCTCAAT CAACTATCCTGCTTCTGCTC

OLIG2 ATGCACGACCTCAACATCGCCA ACCAGTCGCTTCATCTCCTCCA

Frontiers in Cell and Developmental Biology frontiersin.org08

Paniagua et al. 10.3389/fcell.2022.967147

http://crispr.mit.edu
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.967147


Real time quantitative PCR

Four wells of a 24-well plate of H7 cells transfected with

KIAA0319 KD or control samples were collected on days 7, 14,

21, and 28 of neuronal differentiation per replicate. Samples were

homogenized using QIAGEN QIAshredder columns, and total RNA

was isolated using the RNeasy Mini Kit following the manufacturer’s

instructions. One ug of total RNAwas used to synthesize cDNAusing

amfiRivert cDNA Synthesis Platinum Master Mix. Real-time

quantitative PCR (RT-PCR) was performed using amfiSure

qGreen Q-PCR Master Mix (2X), Low Rox on a CFX96 R-PCR

System at amfiSure manufacture cycling conditions with primers

listed in Table 2. Gene expression was quantified using the ΔΔCT

method with GAPDH as a housekeeping gene control. t-test was

performed for the statistical analysis. p values are given at each figure.

Immunostaining

Twelve wells of a 24-well plate of KIAA0319 KD or Control

cells were washed once in PBS before fixing in 4% formaldehyde/

PBS at room temperature for 15 min and then washed in PBS (3 ×

for 15 min). In addition, samples were permeabilized by

incubating with 0.1% Triton-100/PBS at room temperature for

1 hour and then washed in PBS (3 x for 15 min) before storing at

4°C in PBS.

Blocking was done with 3% BSA/0.1% Triton-100/PBS at 4°C

for 2 hours before incubating with primary antibodies diluted to

the manufacturer’s recommendation in 3% BSA/0.1% Triton-

100/PBS at 4°C overnight. Samples were then washed in PBS (3 x

for 15 min) before incubating with secondary antibody diluted in

3% BSA/0.1% Triton-100/PBS at room temperature for 1 h.

Samples were washed in PBS (3 x for 15 min) before staining

with DAPI to highlight nuclei for 5 minutes before final PBS

wash. Immunofluorescence images were captured on a Leica TCS

SP5 Spectral Confocal Microscope using Leica LAS AF software.

Images were processed using ImageJ-Fiji.

RNA-sequencing

Cell pellets from three biological replicates of KIAA0319 KD and

controls for days 7, 14, 21, and 28 were collected. RNA were isolated

from cell pellets, processed for library prep, and then subjected to

150bp paired-end sequencing on a NOVA-seq for 50 million reads

per sample at the Yale Center for Genomic Analysis (YCGA).

FASTQ files were processed using an RNA-Sequencing

pipeline developed at the YCGA. Raw RNA-Sequencing

reads were trimmed and aligned using Hierarchical

Indexing for Spliced Alignment of Transcripts 2 (HISAT2)

(Kim et al., 2019). Aligned reads are then concatenated using

StringTie/Ballgown, followed by quality control using Picard

(Frazee et al., 2015; Pertea et al., 2015). R package

DESeq2 was used to generate summary reports and

heatmaps using default setting (Love et al., 2014)

(Supplementary Figures S2–S5).

Ingenuity Pathway Analysis (QIAGEN)

Ingenuity Pathway Analysis (QIAGEN IPA, QIAGEN

Inc, content version: 70750971) (Krämer et al., 2014) was

used for pathway bioinformatics analysis. Significant genes

that expressed differently in KD and control groups were

identified by DESeq2 using Benjamini–Hochberg correction

to guarantee a false discovery rate (FDR) ≤ 0.05. IPA

performed a core analysis based on these significant genes

and identified the significant pathways for each time point

using a right-tailed Fisher’s exact test with a p-value

threshold of 0.05. Finally, the pathways and genes were

grouped by GO Term.
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