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Influences of Geometric Configurations of Bypass Grafts on 
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Background: Although considerable efforts have been made to improve the graft patency in coronary artery bypass 
surgery, the role of biomechanical factors remains underrecognized. The aim of this study is to investigate the in-
fluences of geometric configurations of the bypass graft on hemodynamic characteristics in relation to anastomosis. 
Materials and Methods: The Numerical analysis focuses on understanding the flow patterns for different values of 
inlet and distal diameters and graft angles. The Blood flow field is treated as a two-dimensional incompressible 
laminar flow. A finite volume method is adopted for discretization of the governing equations. The Carreau model 
is employed as a constitutive equation for blood. In an attempt to obtain the optimal aorto-coronary bypass con-
ditions, the blood flow characteristics are analyzed using in vitro models of the end-to-side anastomotic angles of 
45o, 60o and 90o. To find the optimal graft configurations, the mass flow rates at the outlets of the four models 
are compared quantitatively. Results: This study finds that Model 3, whose bypass diameter is the same as the 
inlet diameter of the stenosed coronary artery, delivers the largest amount of blood and the least pressure drop 
along the arteries. Conclusion: Biomechanical factors are speculated to contribute to the graft patency in coronary 
artery bypass grafting.
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INTRODUCTION

A great deal of effort has been put into avoiding bypass 

graft failure and improving graft patency in coronary artery 

bypass surgery, including through the use of arterial graft in-

stead of saphenous vein. However, the role of biomechanical 

factors, which could initiate progress of focal intimal hyper-

plasia around the anastomosis and finally cause graft failure, 

has been relatively little known [1-4]. For the initiation and 

development of atherosclerosis in the arteries, four hemody-

namic hypotheses have been postulated, namely, the pres-

sure-related hypothesis [5], high wall shear stress hypothesis 
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Fig. 1. Geometric configuration of end-to-side coronary artery by-
pass grafting (m=Mass flow rate; d=Diameter of bypass graft; 
D=Diameter of coronary artery).

Table 1. Model dimensions of the bypass grafts

Model di d0 Remark

Model 1

Model 2

Model 3

Model 4

 Di

 D0

 Di

 D0

 D0

 Di

 Di

 D0

Tapered diameter 

Reversely tapered diameter

Constant diameter

Constant diameter

di=Inlet diameter of graft vessel; d0=Outlet diameter of graft 

vessel; Di=Inlet diameter of coronary artery; D0=Outlet diame-

ter of coronary artery. Di＞D0.

[6], low wall shear stress hypothesis [7], and turbulence-re-

lated hypothesis [8]. However, the pathogenesis of the ini-

tiation and progression of the disease is not yet completely 

understood.

Biomechanical factors are related to fluid dynamics or wall 

mechanics. Low-wall shear stress and high-wall mechanical 

stress/strain are the primary biomechanical factors predispos-

ing a patient to coronary bypass graft disease [9]. Various 

factors including vessel geometry and coronary artery move-

ment have been identified as directly affecting the primary bi-

omechanical factors [10-12]. Several authors [13,14] have re-

ported the results of some numerical analysis for the flows in 

end-to-side anastomosis.

The aim of this study is to investigate the influences of 

geometric configuration in coronary artery bypass grafting on 

the hemodynamic characteristics related to anastomosis. 

MATERIALS AND METHODS

1) Geometric shape of the model

The geometric shape of the coronary artery with an aor-

to-coronary bypass is shown in Fig. 1, and the geometric di-

mensions of the aorto-cononary bypass models are given in 

Table 1. The coronary artery is assumed to be a tapered 

straight vessel with proximal stenosis. The graft angle (θ) is 

selected as a parameter and is set to be 45
o
, 60

o
, or 90

o
.

The degree of coronary artery stenosis is assumed to be 

70% at which point the patient feels chest pain. The geo-

metric configuration for the numerical analysis is modeled 

from the stenosed coronary artery bypassed by a graft vessel 

with end-to-side anastomosis.

In an aorto-coronary bypass surgery, the autologous conduit 

is frequently a saphenous vein. Proximal and distal end diam-

eters of the harvested vein graft are usually different. 

In order to investigate the influences of the diameter 

changes of the bypass grafts on hemodynamic characteristics, 

the proximal and distal end diameters of the graft (di→d0) 

were set as shown in Table 1. Di represents the inlet diame-

ter of the stenosed coronary artery and Do represents the out-

let diameter which is identical to the the diameter just distal 

to the end-to-side anastomosis. The diameter of bypass graft 

in Model 1 is gradually tapered from Di to D0 (Di＞D0); and 

the diameter in Model 2 is reversely tapered from D0 to Di, 

which is the opposite of Model 1. The diameters of the by-

pass grafts in Model 3 and Model 4 are not changed and uni-

formly Di and D0, respectively.

2) Numerical analysis

(1) Governing and constitutive equations: The following 

governing equations are used for the numerical analysis. Eqs. 

(1) and (2) are continuity and momentum equations for 

3-dimensional, steady, and incompressible flows.

     


                      (1)

     


−

 ＋


     (2)

where p, ui, and p are the density, velocity vector, and pres-

sure, respectively. The shear stress tensor, τij, in Eq. (2) 

may be expressed as the shear rate in Eq. (3): 
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Fig. 2. Geometric mesh of the model for numerical analysis.

       

 ＋

         (3)

where η denotes the apparent viscosity. 

Once the local shear rate is calculated, the local 

non-Newtonian viscosity can be determined from the viscosity 

model

To take into account the non-Newtonian viscosity effect of 

blood, a constitutive equation that represents the apparent vis-

cosity of blood as a function of the shear rate is needed. 

Among various constitutive equations, the Carreau model, 

well-known rheological simulation model for a non-Newto-

nian fluid, in Eq. (4) is used to specify the apparent viscosity 

of blood as a function of shear rate. 

       ∞＋ −∞ ＋  
−

     (4)

where γ denotes the shear rate. η∞ and ηo are the apparent 

viscosities at infinite-shear-rate and zero-shear-rate, respec-

tively. λ and q represent the characteristic time and index of 

this model, respectively. Rheological values of blood as a 

non-Newtonian fluid are taken to be ηo=0.056 Pa s, η∞

=0.00345 Pa s, λ=3.313 s, and q=0.356. Once the local 

shear rate is calculated, the apparent viscosity of blood can 

be determined by Eq. (4). 

  (2) Numerical method: Distributions of velocity and shear 

stress of blood flow in aorto-coronary artery are obtained by 

solving the governing equations. The governing equations are 

discretized with non-staggered grid systems using a finite vol-

ume method. In the non-staggered grid system, the velocity 

components such as u, v, and w in the momentum equations 

are calculated for the same points that lie on the grid points 

of pressure. This grid system not only simplifies the dis-

cretization equations but also reduces the memory space re-

quired for computation efficiently. However, it may bring out 

the chequerboard oscillation when calculating the pressure 

field. This oscillating problem is removed by adopting the 

Rhie-Chow algorithm which is necessary for flow simulations 

using a collocated grid. The fully implicit scheme is utilized 

to solve the physiological flow problem, where the time step 

is set to be 0.01second. The hybrid scheme is adopted for 

discretizing the convective term and the SIMPLE algorithm 

for treating the pressure term in the governing momentum 

equations. A two-dimensional mesh of the aorto-coronary by-

pass is shown in Fig. 2.

RESULTS

The mass flow rates ṁ
1
, ṁ

2
 and ṁ

0
 represent the rates 

through the stenosed coronary artery, the bypass graft, and 

the outlet coronary artery, respectively (Table 2). Rate ṁ
0
 is 

the sum of ṁ
1
 and ṁ

2
. The mass flow rate is determined by 

the conservation equations of mass. 

Model 3 delivers the largest amount of flow rate among 

the models studied. This phenomenon is related to the large 

bypass diameter and the least flow. In the case of the artifi-

cial arteries, Model 3 delivers approximately 10% more blood 

than Model 4. This implies that the larger the bypass diame-

ter, the greater the mass flow rate guaranteed in the 

anastomosis. In case of the models with tapered or reversely 

tapered diameter, Model 2 delivers approximately 1% more 

blood than Model 1 even though the difference between the 

flow rates of the two models is not significant.

As the anastomotic angle in Model 3 is changed from 45o 

to 60o, the flow rate of the model is increased by about 4%. 

This increase is also seen in Model 2 and Model 4. Major 

flow occurs through the bypass graft and only a minimal 

amount of blood flows through the stenosed coronary artery 

(Table 2).

For a given single artery, the pressure drop depends on the 

mass flow rate through the artery. However, for a given ar-

tery system such as the models in this study, the pressure 

drop along the stenosed coronary artery is related to the mass 

flow rates through the coronary artery and bypass graft. The 
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Table 2. Comparison of the mass flow rates for different models

　Mass flow rate Anastomotic angle Model 1 Model 2 Model 3 Model 4

m1 (g/s)

m2 (g/s)

m0 (g/s)

45
o

60o

90o

45o

60o

90o

45o

60o

90o

0.444

0.466

0.362

3.060

3.094

2.714

3.504

3.560

3.077

0.399

0.376

0.288

3.140

3.324

3.216

3.539

3.700

3.504

0.316

0.304

0.246

3.430

3.600

3.286

3.746

3.904

3.532

0.528

0.481

0.388

2.832

3.050

2.584

3.360

3.531

2.971

m1=Mass flow rate through the stenosed coronary artery; m2=Mass flow rate through the bypass graft; m0=Mass flow rate through 

the outlet coronary artery.

Fig. 3. Pressure variations along the coronary arteries and bypass grafts for an anastomotic angle of 45o.

geometric dimensions and shapes of the coronary and bypass 

arteries play important roles in the pressure drop character-

istics along the arteries. Model 3 delivers the least amount of 

blood through the stenosed coronary artery because this mod-

el has the least flow resistance in the bypass graft. The same 

reason applies to Model 4, which has the largest flow resist-

ance in the bypass graft. In comparing the mass flow rates, 

the bypass grafts in Model 3 and 4 are the idealized uniform 

arteries of different diameters, with Model 3 having a greater 

diameter and Model 4 a smaller diameter; Model 3 shows 

much less flow resistance in the bypass graft than Model 4 

does. 

In order to investigate the effects of the geometric di-

mensions on the hemodynamic characteristics, the pressure 

variations along the coronary artery and bypass graft with an 

angle of 45o are presented in Fig. 3. All the models show a 

similar tendency toward pressure variation along the coronary 

artery in Fig. 3A. However, the pressure drop along the coro-

nary artery of each model is different due to the change in 

the incoming flow rate through the bypass artery.

Models 1 and 2 represents idealized bypass grafts with in-

creasing or decreasing diameters, having orientations opposite 

each other for the aorto-coronary bypass. Model 1 shows a 

larger pressure drop than that of Model 2. This implies that 

the pressure drop along the host coronary artery and the graft 

is strongly affected by the geometric orientation of the graft 

in the given anastomotic angle. From Table 2, it can be seen 

that Model 1 delivers more mass flow through the stenosed 
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Fig. 4. Pressure variations along the coronary arteries and bypass grafts for an anastomotic angle of 60o.

Fig. 5. Pressure variations along the coronary arteries and bypass grafts for an anastomotic angle of 90o.

coronary artery than Model 2. However, Model 2 delivers 

more mass flow through the bypass artery than Model 1. On 

the whole, Model 2 delivers more mass flow and experiences 

a smaller pressure drop than Model 1. 

The pressure variations along the bypass arteries are pre-

sented in Fig. 3B. The general tendency of the pressure varia-

tion along the bypass artery is similar to that of the coronary 

artery. Model 3 shows the smallest pressure drop, and Model 

1 shows the largest pressure drop along the bypass artery. 

Pressure variations for the anastomosis angles of 60o and 90o 

are also calculated in this study. No significant differences 

are found for the different anastomotic angle. Results of the 

pressure drop along the coronary artery and bypass graft for 

the anastomotic angle of 60o and 90o are presented in Fig. 4 

and 5. 

Distributions of the dimensionless wall shear stress are 

shown in Fig. 6 to investigate the effects of the anastomotic 

angle. Wall shear stress distributions along the outer wall of 

the bypass graft for the anastomotic angles of 45o, 60o and 

90o are presented in Fig. 6, respectively. For the given anas-

tomotic angle and model, the wall shear stress in the prox-

imal region of the bypass graft is almost constant except for 

the area very close to the toe site. The wall shear stress value 

is slightly different depending on the models. The wall shear 

stress values vary slightly depending on the shape of the 

artery. A slight increase in wall shear stress in Model 1 and 
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slight decrease in Model 2 along the upstream artery of the 

proximal region are observed in this figure.

The wall shear stresses of all models increase rapidly as 

the flow approaches the toe site, showing their maximum val-

ues at the toe. Shear stress decreases sharply just downstream 

of the toe site, showing its minimum negative value. The 

shear stress increases rapidly just downstream of the toe and 

reaches its developed value as the flow moves far 

downstream. The negative value of the wall shear stress in 

the distal region just downstream of the toe implies that the 

flow reversal phenomenon prevails in that region. The wall 

shear stress along the bypass is larger than that along the 

outer wall of the stenosed coronary artery.

In the upstream region of the toe, the wall shear stress val-

ues of all models for the anastomotic angle of 45o are larger 

than those for the angle of 60o. However at the site near the 

toe, the maximum values of the wall shear stress for the an-

gle of 60o are larger than those for the angle of 45o. The 

wall shear stress distributions along the outer wall of the ste-

nosed coronary artery are shown in Fig. 7. The wall shear 

stresses of all the models are very similar and small because 

the flow rates through the stenosed coronary artery of all the 

models are much smaller than those through the bypass 

grafts.

The wall shear stress distributions along the inner wall of 

the bypass grafts for the different anastomotic angles are 

shown in Fig. 8. The shear stresses vary slightly depending 

on the model, but the differences are negligible in the up-

stream region of the heel. However, the anastomotic angle ef-

fect is quite significant near and at the heel site. The shear 

stress near the heel site increases rapidly at the anastomotic 

angle of 60o. 

Fig. 6. Wall shear stress distributions along the outer wall of the 
bypass grafts for different anastomotic angles.
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DISCUSSION

This study showed the effects of the geometric dimension 

(bypass graft diameter and tapered direction) and the anasto-

motic angle on the mass flow rate, pressure drop, and wall 

shear stress along the stenosed coronary artery and 

end-to-side bypass graft by using numerical simulation. These 

effects are summarized as follows:

(1) Model 3 delivers the largest amount of mass flow and 

the least pressure drop along the bypass graft. It is recom-

mended that a uniform bypass graft whose diameter is the 

same as the inlet diameter of the stenosed coronary artery be 

used.

(2) Orientation of the nonuniform bypass graft is an im-

portant biomechanical factor. When comparing the two non-

uniform graft models, Model 2, where the inlet diameter is 

smaller than the distal diameter, is preferable to Model 1, 

where the inlet diameter is larger and tapered off. 

(3) Formation of the recirculation zones along the outer 

walls at the region distal to the anastomosis depends on the 

geometric shape of the bypass graft and the anastomotic 

angle. 

(4) The wall shear stresses of all models near the toe and 

heel are strongly affected by the geometric shape of the by-

pass graft and the anastomotic angle. The wall shear stress 

along the outer wall of the bypass graft increases abruptly 

near the toe for all models and all anastomotic angles. Near 

the heel, however, the rapid increase of wall shear stress 

along the inner wall of the bypass graft can only be seen at 

the anastomotic angle of 60o. 

Although the use of an arterial graft may improve 

long-term graft patency, a saphenous vein graft is still widely 

Fig. 7. Wall shear stress distributions along the outer wall of the 
stenosed coronary artery for different anastomotic angles.
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used for aorto-coronary bypass. Numerical studies on the eti-

ology of perianastomotic neointimal hyperplasia, which sets 

the foundation of the later atherosclerotic process [15,16], 

have been performed in order to improve graft patency, in 

particular, of the saphenous vein graft. However, relatively 

little is known about any biomechanical factors which may 

play an important etiologic role. This study based on compu-

tational and mathematical models demonstrated part of the 

relevant biomechanics of the bypass grafts, which should be 

further elucidated. In terms of anastomotic neointimal hyper-

plasia, several hypotheses have been suggested including a 

compliance mismatch between the graft and host artery [17], 

high frequency flow and wall shear stress [18], and abnormal 

flow dynamics at the distal anastomosis [19]. 

According to a recent review [9], the relevant bio-

mechanical factors predisposing to host coronary artery and 

bypass graft disease are classified into primary and secondary 

factors. The primary biomechanical factors are (1) low-wall 

shear stress or highly oscillatory wall shear stress and (2) 

high-wall mechanical stress or strain. The secondary bio-

mechanical factors include vessel wall characteristics and the 

presence of reflection waves, vessel geometry, and vessel 

movement. Low-wall shear stress is associated with plaque 

thickening [20] and increased atherosclerosis progression [21] 

for several possible reasons: unfavorable alignment with the 

flow direction and shape of the endothelial cells [22]; in-

creased uptake of atherogenic particles [23]; or decreased 

oxygen flux into the vessel wall [24]. High-wall stress, result-

ing in localized stress concentration and pressure distension 

of the bypass graft, is associated with being susceptible to 

atherosclerosis [25]. Several possible reasons for this have 

been proposed: generation of reactive oxygen species and up-

Fig. 8. Wall shear stress distributions along the inner wall of the 
bypass grafts for different anastomotic angles. 
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regulation of redox-sensitive pro-inflammatory gene products 

stimulated by mechanical arterial wall deformation [26]; ex-

pression of endothelial adhesion molecules resulting from 

pressure distension of the saphenous vein [27]; or pro-

liferation of the smooth muscle cells stimulated by pulsatile 

stretch [28]. The results of this study indicated effects of the 

geometric dimensions and the bypass angle of the graft as 

possible secondary biochemical factors that could directly af-

fect the primary biomechanical factors.

This study showed that severe variation of the wall shear 

stress occurs at the toe and heel sites and that the anasto-

motic angle plays a very important role in wall shear stress 

and the shear stress gradient. High wall shear stress and the 

shear stress gradient near and at the toe and heel may result 

in altered fluid dynamics as demonstrated by Freshwater et 

al. [29] with computational models. 

Generally, the wall shear stress is lowest along the inner 

curvature and it becomes greater as the curvature increases 

[9]. This is partly in line with the results of this study. At 

the anastomotic angle of 45o and 90o, the wall shear stress 

along the inner curvature of the bypass graft and at the heel 

were small. However, at the angle of 60o, the wall shear 

stress increased rapidly near the heel, which is interesting. 

This observation will be quite valuable knowledge for choos-

ing anastomosis techniques if it is firmly supported by 

in-vivo studies in the future, considering that the low-wall 

shear stress and recirculation zone are likely to occur around 

the heel and are associated with progression of intimal hyper-

plasia affecting the long-term patency of the bypass graft 

[29]. 

CONCLUSION

The present study may have clinical implications and pro-

vide insight into the biomechanics of various configurations 

of end-to-side coronary artery bypass grafting. Although the 

present study is not based on in-vivo measurement but on the 

mathematical and computational modeling, these methods are 

good tools for analyzing the biomechanical factors which are 

speculated to contribute to graft patency in coronary artery 

bypass grafting.
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