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Abstract: Autonomous vehicles (AV) are expected to improve, reshape, and revolutionize the future
of ground transportation. It is anticipated that ordinary vehicles will one day be replaced with
smart vehicles that are able to make decisions and perform driving tasks on their own. In order
to achieve this objective, self-driving vehicles are equipped with sensors that are used to sense
and perceive both their surroundings and the faraway environment, using further advances in
communication technologies, such as 5G. In the meantime, local perception, as with human beings,
will continue to be an effective means for controlling the vehicle at short range. In the other hand,
extended perception allows for anticipation of distant events and produces smarter behavior to
guide the vehicle to its destination while respecting a set of criteria (safety, energy management,
traffic optimization, comfort). In spite of the remarkable advancements of sensor technologies in
terms of their effectiveness and applicability for AV systems in recent years, sensors can still fail
because of noise, ambient conditions, or manufacturing defects, among other factors; hence, it is
not advisable to rely on a single sensor for any of the autonomous driving tasks. The practical
solution is to incorporate multiple competitive and complementary sensors that work synergistically
to overcome their individual shortcomings. This article provides a comprehensive review of the
state-of-the-art methods utilized to improve the performance of AV systems in short-range or local
vehicle environments. Specifically, it focuses on recent studies that use deep learning sensor fusion
algorithms for perception, localization, and mapping. The article concludes by highlighting some of
the current trends and possible future research directions.

Keywords: autonomous vehicles; self-driving cars; deep learning; sensor fusion; perception;
localization and mapping

1. Introduction

Autonomous vehicles (AVs) have made impressive technological progress in recent years;
these noticeable advancements have brought the concept of self-driving cars into reality. According to
a report published by the U.S. Department of Transportation, 94% of vehicle crashes occur due to
driver behavior [1]. For this reason, AVs are projected to lower the risk of drastic accidents and increase
road safety. Additionally, it is anticipated that AVs will assist in reducing carbon emission levels,
and hence protect the environment [2]. Moreover, self-driving cars are expected to smoothen traffic
flow, increase productivity, and have enormous economic impacts.
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According to the Society of Automobile Engineers (SAE) [3], there are six different levels of
automated vehicles, starting from level 0 where the driver is in full control of the vehicle, and ending
with level 5 where the vehicle is in full control of all driving aspects. These levels are portrayed in
Figure 1. Currently, it can be confidently stated that levels 2 and 3 are being adopted in some of the
commercial cars, such as GM’s Cruise [4], Tesla’s Autopilot [5], and BMW [6]. Several autonomous
features are already being performed in these cars, such as adaptive cruise control, automatic braking,
and lane-keeping aid systems.
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vehicle utilizes a group of onboard sensors to detect, understand, and interpret the surrounding 
environment, including static and dynamic obstacles, such as other moving vehicles, pedestrians, 
road signs, traffic signals, and road curbs. Localization and mapping tasks attempt to locate the 
vehicle globally with respect to world coordinates. Additionally, they are responsible for building a 
map of the vehicle’s surroundings and continuously tracking the vehicle’s location with respect to 
that map. Subsequently, path planning exploits the output of the previous two tasks in order to adopt 
the optimal and safest feasible route for the AV to reach its destination, while considering all other 
possible obstacles on the road [7]. Lastly, based on the selected path, the control element outputs the 
necessary values of acceleration, torque, and steering angle for the vehicle to follow that selected path 
[8]. Additionally, multiple studies consider adding connected vehicle technologies [9,10], such as 
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, where essential 
information is shared to create an enhanced cooperative driving environment, as shown in Figure 2. 
This extended and improved cooperative perception allows vehicles to predict the behavior of the 
key environmental components (obstacles, roads, ego-vehicles, environment, driver behavior) 
efficiently and to anticipate any possible hazardous events. 
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Although different AV systems may differ slightly from one to another, they all need to present a
solution for the autonomous navigation problem, which is generally divided into four main elements:
perception, localization and mapping, path planning, and control. In perception, the vehicle utilizes a
group of onboard sensors to detect, understand, and interpret the surrounding environment, including
static and dynamic obstacles, such as other moving vehicles, pedestrians, road signs, traffic signals,
and road curbs. Localization and mapping tasks attempt to locate the vehicle globally with respect to
world coordinates. Additionally, they are responsible for building a map of the vehicle’s surroundings
and continuously tracking the vehicle’s location with respect to that map. Subsequently, path planning
exploits the output of the previous two tasks in order to adopt the optimal and safest feasible route for the
AV to reach its destination, while considering all other possible obstacles on the road [7]. Lastly, based on
the selected path, the control element outputs the necessary values of acceleration, torque, and steering
angle for the vehicle to follow that selected path [8]. Additionally, multiple studies consider adding
connected vehicle technologies [9,10], such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) technologies, where essential information is shared to create an enhanced cooperative driving
environment, as shown in Figure 2. This extended and improved cooperative perception allows
vehicles to predict the behavior of the key environmental components (obstacles, roads, ego-vehicles,
environment, driver behavior) efficiently and to anticipate any possible hazardous events.
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One of the major considerations in any AV system is the selection of the proper group of sensors
and their optimal configuration, which will be utilized to mimic the human ability to sense and
create a reliable picture of the surroundings. It is always important to take into consideration the
advantages, disadvantages, and limitations of this group of sensors as a whole, i.e., a logical and
smart sensor. In many cases, the overall performance of the system is substantially improved when
multiple sensors operating on different wavebands are placed to collaborate and produce a fused
output. Consequently, sensor fusion is a vital process that is required in all AV systems to overcome
the limitations of individual sensors, and hence improve the efficiency of the overall AV system.

Presently, there is an enormous amount of effort invested in improving the performance, reliability,
robustness, and accuracy of self-driving vehicles modules, not to mention the cybersecurity and safety
operating issues that can also be critically important under real driving conditions. While keeping in
mind that vehicles are present in an environment that is highly complex, fast, and dynamic, the applied
algorithms should be crafted in a special way that balances accuracy and fast real-time processing.
With the emergence of new powerful computational technologies, such as graphics processing units
(GPUs) and the availability of a large amount of data (so-called “big data”), a subset of artificial
intelligent (AI) and machine learning known as deep learning has gained huge popularity in several
applications related to object detection, object identification, road situation recognition, and more
generally robotics issues [11]. Deep learning algorithms have been utilized in different aspects of AV
systems, such as perception, mapping, and decision making. These algorithms have proven their
ability to solve many of these difficulties, including computational loads faced by traditional algorithms
while maintaining decent accuracy and fast processing speed.

This review paper will focus on two components of the AV systems: perception, and localization
and mapping. The main aim is to provide a comprehensive review of the most useful deep learning
algorithms in the field of sensor fusion for AV systems. The paper is organized as follows. Section 2
provides an overview of the advantages of recent sensor combinations and their applications in AVs,
as well as different sensor fusion algorithms utilized in the field. Section 3 describes the task of
environmental perception and provides an overview of the latest deep learning detection algorithms,
along with an analysis of their performance. Section 4 discusses approaches for localization and
mapping, and compares different sensors used for that task. Additionally, it evaluates various
applications of deep learning algorithms and compares them with the traditional algorithms. Section 5
provides future research recommendations that might bridge the gap in research topics related to
AV systems.

2. Sensor Technology and Sensor Fusion Overview

Sensors are generally categorized into two classes based on their operational principle.
Proprioceptive sensors are the first category in which the sensor operates by capturing the dynamical
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state and the internal measurements of the dynamic system. Global positioning system (GPS),
encoders, gyroscopes, gyrometers, and accelerometers are examples of this category. The second
class covers exteroceptive sensors, with which the external variables of the surrounding system are
sensed. This applies to cameras (Complementary Metal-Oxide-Semiconductor (CMOS), Infrared,
fisheye, and cyclops), radio detection and ranging (radar), and light detection and ranging (LiDAR).
In addition to this categorization, sensors can be either passive or active. Passive sensors produce
outputs by sensing the surrounding energy using cameras and GPS, while active sensors transmit
energy and measure the reflected energy to produce outputs (LiDAR and Radar) [12].

In autonomous vehicles, different combinations of active and passive sensors are employed to
perform the two main tasks of perception. (1) Environmental Perception: RGB cameras, thermal
cameras, LiDAR, and radar are used for on-road vehicle detection and tracking, pedestrian detection,
tracking, road surface detection, road lane detection, and road sign detection. (2) Localization: global
navigation satellite systems (GNSS), inertial measurement units (IMU), inertial navigation systems
(INS), odometers, cameras, and LiDAR are used to obtain the relative and absolute positions of
the vehicle.

In general, it is difficult to generate data from a single independent source and use it in complex
applications, such as AVs. The reasons are either due to sensor shortages, the nature of the sensed
environment, or both. Sensors suffer from several inadequacies and limitations, which can degrade
their performance. Some sources of performance degradation are due to drifting errors, where a
small offset can lead to a huge error when readings are accumulated over time, as in IMU [13,14].
Additionally, errors can be due to low sensor resolution, surface irregularities, or wheel slipping,
as in-wheel odometers. Finally, they can be due to uncertainty in readings. Some high-accuracy sensors
exist that could overcome some of these limitations, such as differential global positioning systems
(DGPS), real-time kinematic (RTK) positioning systems, and fiber optics IMU; however, they are
often unavailable or impractical for use in AV systems due to their operating limits (occultation and
multireflection effect) and their high cost.

Besides the sensors’ own imperfections, the sensed environment conditions have an enormous
effect on the sensors’ outputs. Sensor noise, for example, disturbs camera images through sunlight
intensity and illumination. Similarly, low light at nighttime degrades the outputs of color cameras.
Moreover, GPS sensors are affected by outages in certain areas, such as tunnels and forests.

AV researchers use different combinations of sensors and fuse their readings at different levels
in order to compensate for the limitations of the individual sensors. Vision cameras are essential
sensors that generate a detailed environmental view of the AV surroundings. They are inexpensive
sensors for a given level of performance (e.g., resolution, accuracy) compared to active ranging
sensors, and can provide dense pixel information for the surrounding scene at relatively low cost.
However, normal vision-based systems fail to provide the depth information needed to model the 3D
environment. One alternative is to use a stereovision system that consists of multiple cameras with
different locations. Nevertheless, these systems are also extremely sensitive to external environmental
conditions, such as light intensity (low light and direct sunlight) [15]; and severe weather situations
such as fog [16,17], snow, and rain. Fusing a vision-based system with LiDAR, for instance, creates a
complementary output that provides the depth information while being robust to external weather
conditions [18–20].

The use of infrared and thermal imaging is another active field that researchers often investigate
for environment perception applications, especially in unfavorable light conditions and night vision.
These systems are often used for applications such as pedestrian detection and tracking [21–23] due
to their ability to detect humans regardless of the light intensity. In the literature, thermal cameras
have been fused with either RGB-D [24] or LiDAR sensors [25,26] to add depth, and hence improve the
system performance; however, this advantage can be dramatically compromised in extreme weather
conditions, such as high temperatures.
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Localization and mapping normally use a combination of different sensors, such as GPS, IMU,
LiDAR, and cameras, to obtain accurate and reliable results. Despite the availability of highly accurate
and reliable GPS sensors, it is common that GPS signals typically face blockages or outages in certain
environmental conditions. Hence, to compensate for losses of GPS signal, the localization system is
likely to be coupled with other sensors, such as IMUs [27].

Additionally, high-accuracy sensing devices are usually very expensive, making them unsuitable
for use in applications other than accurate ground truth readings for evaluation and validation of
the quality and the performance of an algorithm. Reducing the cost of sensing technologies while
maintaining an efficient output is one of the priorities in AV systems, hence combining low-cost
IMU data and GPS signals can yield continuous and accurate state estimations of vehicles [28].
Moreover, cameras and LiDAR [29,30] are used in a configuration that will allow extraction of specific
environment primitives (road markings and static interest points) for use in either map building
through simultaneous localization and mapping algorithms (SLAM) [31] or by matching them with
a pre-existing high-definition (HD) map [32] and then obtaining accurate positions for both the ego
vehicle and surrounding objects.

Table 1 provides a comprehensive list of various combinations, fusions, and association methods
of the most common sensors used in self-driving vehicles. The table also describes the limitations of
the sensors if they are to be used individually. Additionally, it lists the advantages of fusing a suitable
set of sensors to achieve the desired output.

Table 1. Summary of AV applications, limitations of sensors, and advantages of sensor fusion.

Study AV Application Fused Sensors Limitations without Fusion Fusion Advantages

[34–36] Pedestrian
Detection

Vision and
LiDAR

Sensitive to illumination
quality; Night vision

difficulties by vision camera
only

Low resolution of LiDAR 3D
scene reconstruction when

used alone.

Ability to measure depth
and range, with less

computational power;
Improvements in extreme

weather conditions (fog and
rain)

[37–42] Pedestrian
Detection

Vision and
Infrared

Night vision difficulties with
vision camera only;

Thermal cameras lose fine
details of objects due to their

limited resolution.

Robustness to lighting
effects and nighttime

detection; Infrared camera
provides distinct silhouettes
of objects; Ability to operate
in bad weather conditions.

[43–46] Road Detection Vision and
LiDAR

Illumination and lighting
conditions; High

computational cost for
vision depth measurements;

Limited resolution and
range measurements by

LiDAR;
Sparse and unorganized
point cloud LiDAR data

Road scene geometry
measurements (depth) while

maintaining rich color
information; Calibration of

scattered LiDAR point cloud
with the image

[47] Road Detection
Vision and

Polarization
camera

Sensitive to lighting
conditions; Lack of color

information

Polarized images enhance
scene understanding,

especially with reflective
surfaces.

[48–50] Vehicle Detection
Lane Detection

Vision and
Radar

Low resolution of radar.
Camera needs special lenses,

arrangements, and heavy
computation to measure

distance.

Measure distance accurately;
Performs well in bad

weather conditions; Camera
is well suited for lane
detection applications
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Table 1. Cont.

Study AV Application Fused Sensors Limitations without Fusion Fusion Advantages

[51] Visual Odometry
2D Laser

scanner and
Vision

2D scanners can miss
detection of objects in

complex environments; 2D
images are insufficient for

capturing all the features of
the 3D world.

Fusion of vision and 2D
scanners can replace the
need for 3D LiDAR, and
hence reduce price and

computation load.

[52,53] SLAM

Vision and
Inertial

Measurement
Unit

Illumination and lighting
conditions by the camera;

Camera suffers blur due to
fast movement; Drifting

error for IMU

Improved accuracy with less
computational load;

Robustness against vision
noise, and corrective for

IMU drifts.

[54] Navigation GPS and INS
GPS outage in denied and
canyon areas; Drift in INS

readings

Continuous navigation;
Correction in INS readings

[32,55] Ego Positioning Map, vision,
GPS, INS

GPS outage; INS drifts; HD
map accuracy; Visibility of

road markings

Accurate lateral positioning
through road marking
detection and HD map

matching.

Both sensor fusion and information fusion can be defined as the process of managing and handling
data and information coming from several types of sources in order to improve some specific criteria
and data aspects for decision tasks. In our case, the process of fusion consists of combining the outputs
of individual sensors or the outputs of specific algorithms (state vectors and uncertainty matrices) to
produce a new combined outcome that is enhanced, extended, enriched, more reliable, more confident,
and more robust than those generated by each of the individual sensors separately. The final goal is
to use the redundancies, complementarities, and advantages of a set of data in order to obtain good
enough perception data to make the best decision.

Figure 3 illustrates the five different levels of data processing for perception and decision
applications. The first level represents the raw input data collected from various combinations
of sensors. The second level portrays the process of filtering, spatial and temporal alignments,
and uncertainty modeling. The outputs of the latter are observations, which will in turn pass to the
third level, where feature extraction, object detection, clustering, data processing occur to generate
representations of objects (e.g., sizes, shapes, colors). Layer four concludes the perception layer,
where different objects can be identified by their behavior or specific properties and trajectories to
build a proper representation of their interactions, which are inputs to higher-level processing, such as
decision making at the fifth level. It is worth mentioning that an output is either used for one of the
perception levels (tracking stage, information looping, or strong coupling) or used for the final decision
layer [33].

The field of sensor fusion has been applied in multiple applications, ranging from military
applications such as automated target recognition [56] to medical applications [57], remote sensing [58],
and self-driving vehicles [59]. In autonomous vehicles, sensing of the surrounding environment is one
of the crucial steps in building a successful and complete system (perception, decision, and action).
Vehicles are usually equipped with different types of sensors that collaborate in order to initiate the
right decisions. With that said, an enormous amount of research has been conducted over the past
decade to adopt and improve sensor fusion methods for autonomous vehicles.

Searching the literature, it has been found that several categorization schemes of sensor fusion
methods exist. In this section, the most used classes will be listed. The first category is based on the
input type that is used in the fusion network, which includes data fusion (early fusion), where the
fusion takes place at the raw data level. The second category is feature fusion (halfway fusion),
where features are first extracted from sensor data and then these features are fused halfway through
the network. The last category is decision fusion (late fusion), in which multiple classifiers are used to
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generate decisions that are then combined to form a final decision. The architecture of the different
levels is illustrated in Figure 4.
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A different categorization was explained by Dasarathy in [60], where he listed five detailed
classification classes, including:

1. Data in, data out: The input to the fusion network is raw sensor data, while the output is
processed (typically enhanced) raw data.

2. Data in, feature out: Raw data is integrated to produce a set of output features.
3. Feature in, feature out: Where the input and output of the fusion network are feature vectors.

This class is commonly referred to as either feature fusion, symbolic fusion, or information fusion.
4. Feature in, decision out: As the name suggests, the input is a feature vector and the output is a

decision. This class is more common in pattern recognition activities, where feature vectors are
processed to be labeled.

5. Decision in, decision out: Where both inputs and outputs are decisions, usually referred to as
decision fusion networks.

Based on the source of the fused data, sensor fusion can also be categorized as a multimodal
fusion method [61], where the fused data are obtained from two or more different types of sensors.
Fusing LiDAR point cloud and camera images is a good example of this type of fusion, where the two
modalities complement the functionality of each other and provide an improved outcome. Another class
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of this category is multitemporal fusion, where data are obtained from the same sensor but at different
acquisition times. This type of fusion is common in satellite images used for monitoring changes on
Earth. The third type of fusion is multifocus fusion [62], where images are obtained from different
focal lengths. The last class is multispectral fusion [63], in which images are captured from different
wavelength sensors, such as an RGB camera and a thermal camera. This type of fusion is found in
applications similar to pedestrian detection and object recognition.

Additionally, based on sensor configuration, sensor fusion can be categorized into a complementary
configuration, in which two independent sensors are used and their outputs are combined to
complement each other. A perfect example of this type is the fusion of multiple ultrasonic sensors fixed
on a robot bumper to expand the coverage area. Fusion can also be of a competitive configuration
(also called redundant configuration), where multiple sensors are used to measure the same property
and the outputs are used for correction purposes, as is the case in multiple IMU measurements. The last
configuration is the cooperative configuration, where two or more sensors are used to provide an
output that cannot be achieved by the individual sensors, such as integrating the outputs of two
stereovision cameras in order to get a three-dimensional depth image.

Lastly, based on fusion architecture, sensor fusion can be categorized into centralized, decentralized,
and hybrid fusion architectures [33]. In centralized fusion, all data from the different sensors are
connected to a central processing unit. After all data are aligned to a common reference frame,
the central unit receives the output as one source of information in order to fuse it. In decentralized
fusion, data obtained from sensors are processed locally, then the obtained output is forwarded to a
global processing unit for fusion. A hybrid architecture includes sets of data processed locally and
forwarded to the global processor, where the remaining data will be processed and fused.

This review paper divides sensor fusion techniques and algorithms into classical algorithms and
deep-learning-based algorithms. However, the scope of this study is to review the implementation of
deep learning sensor fusion approaches in AV applications.

2.1. Traditional Sensor Fusion Approaches

There are several classical algorithms that utilize data fusion for the development of applications
that require to modeling and propagation of data imperfections (inaccuracy, uncertainty). These
algorithms apply methods and approaches that are based on theories of uncertainty, as illustrated in
Figure 5 These methods include probabilistic methods, statistical methods, knowledge-based methods
(fuzzy logic and possibility), interval analysis methods, and evidential reasoning methods. The
variations of each category are listed in Figure 6 In this section, Table 2 briefly summarizes the common
classical algorithms, along with their advantages and disadvantages. The readers interested in detailed
discussions about traditional fusion algorithms are recommended to refer to [33,64–66].

Table 2. A comparison between traditional sensor fusion algorithms, their advantages, disadvantages,
applications, and fusion level.

Algorithm Characteristics Advantages Disadvantages Applications
Areas

Level of
Fusion

Statistical
Methods

Utilized to enhance
data imputation
using a statistical

model to model the
sensory information

[64,67]

Can handle
unknown

correlations;
Tolerant [68,69]

Limited to linear
estimators;

Computation
complexity is high

[65]

Estimation Low [70]

Probabilistic
Methods

Based on probability
representation for

the sensory
information [64]

Uncertainty in the
provided

information is
handled. handles
nonlinear systems

(particle filter, UKF,
. . . )

Requires prior
knowledge of

systems model and
data

Estimation/
Classification

Low→Medium
[70]
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Table 2. Cont.

Algorithm Characteristics Advantages Disadvantages Applications
Areas

Level of
Fusion

Knowledge-based
Theory

Methods

Utilizes
computational

intelligence
approaches inspired

by human
intelligence

mechanisms. [71]

Handles
Uncertainty and

imprecision;
Ability to handle

complex nonlinear
systems [72]

Depends on the
expertise

knowledge and
extraction of
knowledge

Classification/
Decision

Medium→High
[70]

Evidence
Reasoning
Methods

Depends on the
Dempster

combination
mechanism to
implement the

model [71]

Uncertainty degree
is assigned to the

provided
information.

Identification of
conflicting
situation.

Modeling of
complex

assumption

High computation
complexity.

Require
assumption of

evidence.

Decision High [70]

Interval
Analysis theory

Shares the operating
space in intervals
[73]. Constraint

satisfaction problem
[74,75]

Guaranty integrity.
Ability to handle

complex nonlinear
systems

Discretization of
the operating space.
High computation

complexity.

Estimation Low

Sensors 2020, 20, x FOR PEER REVIEW 8 of 35 

sensors are connected to a central processing unit. After all data are aligned to a common reference 
frame, the central unit receives the output as one source of information in order to fuse it. In 
decentralized fusion, data obtained from sensors are processed locally, then the obtained output is 
forwarded to a global processing unit for fusion. A hybrid architecture includes sets of data processed 
locally and forwarded to the global processor, where the remaining data will be processed and fused. 

This review paper divides sensor fusion techniques and algorithms into classical algorithms and 
deep-learning-based algorithms. However, the scope of this study is to review the implementation of 
deep learning sensor fusion approaches in AV applications. 

2.1. Traditional Sensor Fusion Approaches 

There are several classical algorithms that utilize data fusion for the development of applications 
that require to modeling and propagation of data imperfections (inaccuracy, uncertainty). These 
algorithms apply methods and approaches that are based on theories of uncertainty, as illustrated in 
Figure 5 These methods include probabilistic methods, statistical methods, knowledge-based 
methods (fuzzy logic and possibility), interval analysis methods, and evidential reasoning methods. 
The variations of each category are listed in Figure 6 In this section, Table 2 briefly summarizes the 
common classical algorithms, along with their advantages and disadvantages. The readers interested 
in detailed discussions about traditional fusion algorithms are recommended to refer to [33,64–66]. 

 
Figure 5. Theories of uncertainty for modeling and processing of “imperfect” data. Figure 5. Theories of uncertainty for modeling and processing of “imperfect” data.



Sensors 2020, 20, 4220 10 of 35

Sensors 2020, 20, x FOR PEER REVIEW 9 of 35 

 

 

Figure 6. Classical approaches for sensor fusion algorithms. 

Table 2. A comparison between traditional sensor fusion algorithms, their advantages, 
disadvantages, applications, and fusion level. 

Algorithm Characteristics Advantages Disadvantages Applications Areas Level of Fusion 

Statistical 
Methods 

Utilized to 
enhance data 

imputation using 
a statistical model 

to model the 
sensory 

information 
[64,67] 

Can handle 
unknown 

correlations; 
Tolerant [68,69] 

Limited to linear 
estimators; 

Computation 
complexity is 

high [65] 

Estimation Low [70] 

Probabilistic 
Methods 

Based on 
probability 

representation for 
the sensory 

information [64] 

Uncertainty in 
the provided 
information is 

handled. handles 
nonlinear 

systems (particle 
filter, UKF, …) 

Requires prior 
knowledge of 

systems model 
and data 

Estimation/Classification 
Low→Medium 

[70] 

Knowledge-
based 

Theory 
Methods 

Utilizes 
computational 

intelligence 
approaches 
inspired by 

human 
intelligence 

mechanisms. [71] 

Handles 
Uncertainty and 

imprecision; 
Ability to handle 

complex 
nonlinear 

systems [72] 

Depends on the 
expertise 

knowledge and 
extraction of 
knowledge 

Classification/Decision 
Medium→High 

[70] 

Evidence 
Reasoning 
Methods 

Depends on the 
Dempster 

combination 
mechanism to 
implement the 

model [71] 

Uncertainty 
degree is 

assigned to the 
provided 

information. 
Identification of 

conflicting 
situation. 

Modeling of 

High 
computation 
complexity. 

Require 
assumption of 

evidence. 

Decision High [70] 

Figure 6. Classical approaches for sensor fusion algorithms.

2.2. Deep Learning Sensor Fusion Approach

Deep learning could be seen as an improvement of neural networks and is a subdivision of
artificial intelligence and machine learning that aims to imitates the functionality of the human brain.
The algorithms involve creating manifold networks that have multiple layers, allowing them to process
raw data and extract certain patterns to perform complex and intelligent tasks. The core concept of deep
learning is based on artificial neural networks (ANN), which can be traced back to 1943, when Walter
Pitts and Warren McCulloch [76] took the first steps towards building a model that based on the
working principle of a human’s brain neural networks. While the basics of deep learning were founded
long ago, its recent vast emergence is due to the development of powerful computing machines and the
availability of the “big data” needed to train the models. Recently, deep learning is being extensively
used in many different applications, such as in object detection [77], environment segmentation,
semantic object identification, healthcare [78], self-driving vehicles [79,80], and finance [81], to name
a few.

Several different algorithms exist that are listed under the category of deep learning. Each technique
has its own unique properties, and hence is used for a certain application, where the goal is
to achieve optimal performance. The frequently used deep learning methods can be listed as
(1) convolutional neural networks (CNN), (2) recurrent neural networks (RNN), (3) deep belief
networks (DBN), and (4) autoencoders (AE). Table 3 outlines an overview of these algorithms,
along with their applications.

There is a noticeable increase in the amount of research associated with deep learning sensor fusion
algorithms in autonomous driving. CNN and RNN are among the most commonly used algorithms in
AVs. This paper, hence, aims to provide a detailed overview of the recent advancements in sensor
fusion using deep learning approaches, while focusing on these two algorithms and their variations.
Figure 7 depicts different variations of CNN and RNN that have been utilized in AV applications.
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Table 3. A summary of different deep learning algorithms, their main properties, and applications.

DL Algorithm Description Applications

Convolutional Neural Network
(CNN)

A feedforward network with
convolution layers and pooling
layers. CNN is very powerful in
finding the relationship among
image pixels.

Computer Vision [82–84];
Speech Recognition [85]

Recurrent Neural Network
(RNN)

A class of feedback networks that
uses previous output samples to
predict new data sample. RNN
deals with sequential data; both
the input and output can be a
sequence of data.

Image Caption [86];
Data Forecasting [87];

Natural Language Processing [88]

Deep Belief Net
(DBN)

Multilayer generative
energy-based model with a visible
input layer and multiple hidden
layers. DBN assigns probabilistic
values to its model parameters.

Collaborative Filtering [89];
Handwritten Character

Recognition [90];
acoustic modeling [91]

Autoencoders
(AE)

A class of neural network that
tends to learn the representation of
data in an unsupervised manner.
AE consists of an encoder and
decoder, and it can be trained
through minimizing the
differences between the input and
output.

Dimensionality Reduction [92];
Image Retrieval [93];
Data Denoising [94]
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Figure 7. Common deep learning sensor fusion algorithms used in autonomous vehicle applications.
R-CNN: Region-Based CNN; SPP-Net: Spatial Pyramid Pooling network; YOLO: You only look
once; SSD: Single-Shot Multibox Detector; DSSD: Deconvolutional Single-Shot Multibox Detector;
LSTM: Long-Short Term Memory; GRU: Gated Recurrent Unit.
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In this review, the discussions around the power of deep learning methods are concentrated on:

1. Environmental perception, including vehicle detection, pedestrian detection, road surface
detection, lane tracking, and road sign detection.

2. Localization and mapping.

3. Environmental Perception: Local Dynamic Perception Map

Environmental perception is the process by which AVs tend to sense, understand, and build
a full awareness of the environment and the objects that surround it. This perception map is built
from the information coming from the five main key components of the environment (obstacle, road,
ego vehicle, environment, and driver). Vehicles are usually equipped with multiple sensors to assess
the first two key components and detect a variety of objects in the environment, such as vehicles,
pedestrians, signs, roads, and lanes. Generally speaking, RADAR, LiDAR, and vision-based systems
are the most common sensors used in environmental perception. Therefore, it is very common to find
literature discussing detection algorithms using convolutional neural networks (CNN), as they are
extremely powerful with visual data.

Before CNN was introduced in 2012, multilayer perceptron (MLP) was heavily used in image
recognition and classification. MLP is a feed-forward, fully connected neural network, which consists of
an input layer, a hidden layer, and an output layer. With current advancements, it has been concluded
that MLP has many limitations and is not a sufficient tool due to the following disadvantages. First, it has
a growing number of parameters that need to be trained. Second, it loses spatial information and
pixel arrangement of an image. Third, it is not translation-invariant. On the other hand, CNN is a
subset of deep learning algorithms that uses convolution operation to process pixels in images. It has a
different architecture compared to that of a MLP; the layers are organized into three dimensions of
width, height, and depth. Additionally, the neurons of CNN are not fully connected to the layers.

A general CNN usually consists of the following layers, as shown in Figure 8:

• Input layer: This contains the data of the input image.
• Convolution layers: Convolution operation is performed in this layer to extract important features

from the image.
• Pooling layers: Located between two convolution layers, which help in minimizing the

computational cost by reducing some—but maintaining the most dominant—spatial information
of the convoluted image.

• Fully connected layer: This serves as a classifier connecting all weights and neurons.
• Output layer: This stores the final output, which is the classification probability.
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CNN achieved its current popularity in 2012 [95] when Krizhevsky et al. proposed AlexNet
and won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Since that breakthrough,
there has been increased research interest in CNN. Going down the timeline, advancements in CNN
image detectors have gone through two parallel paths: (i) the two-stage detectors, which consist of
region proposals first, then prediction; and (ii) the single-stage detectors, in which prediction is carried
out directly without having an intermediate stage. Figure 9 presents the timeline of the most popular
CNN detectors of both types.
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3.1. R-CNN

Region-based CNN (R-CNN) was the first two-stage detector introduced by Girshick et al. [96].
The purpose of this algorithm is to reduce the computation load and enhance the detection speed.
This was achieved by creating 2000 regions in the image through a selective search algorithm instead
of covering all regions of the image. Selected regions are processed by a CNN network for feature
extraction, and later classified by a Support Vector Machine (SVM) classifier. The architecture of
R-CNN is illustrated in Figure 10. Sensor fusion based on R-CNN is applied to different applications of
AVs. Wanger et al. [39] studied the impact of fusing thermal images and visible images in pedestrian
detection in both daytime and nighttime. In their research, the R-CNN algorithm was used with
both early fusion (pixel-level) and late fusion architectures. Their results showed that pretrained
late fusion architecture achieved better performance compared to state-of-the-art baseline algorithms.
Similarly, in a different study, LiDAR depth features known as horizontal disparity, height above
ground, and angle (HHA) features were fused with RGB images to detect pedestrians [34]. A R-CNN
network was used and six different fusion architectures were generated based on the network layer
at which the fusion takes place. While both studies showed improvements in the mean percentage
error, the proposed approach still requires more work to reduce the processing time in order to be fully
efficient in embedded real-time AV applications.
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3.2. SPP-Net

Despite the astonishing accuracy of R-CNN at the time, it was not optimal enough to be used in
real-time autonomous driving application. The algorithm requires around 47 s for image detection,
which is too long for real-time applications. In addition, R-CNN has to classify around 2000 proposed
regions, which leads to massive training time. Multiple attempts have been made to overcome these
drawbacks. One of these attempts was the introduction of spatial pyramid pooling (SPP-Net) [97].
This new technique has the advantage of eliminating the need for cropping, resizing, or changing the
aspect ratio of the input image to a certain size by introducing multiple pooling layers with different
scales. In addition to its ability to generate a fixed-length representation regardless of the input size,
SPP-Net processes the full image at once instead of processing all 2000 regions generated by the
region proposal, which leads to a noticeable improvement in the processing speed of the algorithm.
The simplified architecture of the algorithm is illustrated in Figure 11, where regions and feature maps
are passed into multiple pooling layers, before they are concatenated and fed into a Fully Connected
(FC) Layer for classification and regression.
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3.3. Fast R-CNN

Fast R-CNN was also proposed by Girshick [98] to improve the speed of training and testing
and to improve detection accuracy. In fast R-CNN, instead of processing the region proposals by the
CNN network, the input image is processed and a convolutional feature map is produced. Regions of
interest (ROI) are generated from the feature maps and fed to the fully connected layer, as shown in
Figure 12. It is worth mentioning that fast R-CNN is nine times faster in training and 213 times faster
in inferencing than R-CNN [98].
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3.4. Faster R-CNN

Even though inferencing time was decreased from 47 s in R-CNN to 2.3 s in fast R-CNN, the latter
algorithm determines the regions and their bounding boxes using a selective search algorithm,
which itself causes a considerable delay in the process. In 2015, Ren et al. proposed the region proposal
network (RPN), which is a separate neural network used to predict the bounding boxes. This network
is merged with R-CNN, which share the convolution features. The new algorithm, named faster
R-CNN [99], has the architecture described in Figure 13. Faster R-CNN was the first place winner of
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the ILSVRC competition. Faster R-CNN reports a testing time of 0.2 s, which makes it suitable for
real-time applications.
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In comparison, faster R-CNN is noted as being the most used among other region-based
CNN algorithms due to its accuracy and fast processing time. Liu et al. [37] used faster R-CNN
in multispectral pedestrian detection, where thermal and color images are fused to provide the
complementary information required for daytime and nighttime detection. Having complementary
sensor data would undoubtedly enhance the detection results; however, choosing the correct fusion
architecture would yield a better detection outcome. In [37], four fusion models named early fusion,
halfway fusion, late fusion, and score fusion were designed and tested. It was found that halfway
fusion achieved the best detection results compared to those of the baseline faster R-CNN method.
By extending the work done in [37], two additional fusion architectures were added in [100], namely the
input fusion and score fusion II. Additionally, an illumination-aware gating network that assigns
different weights to the modalities based on the illumination condition was added. In a different
approach, faster R-CNN was used in [101] to detect pedestrians at nighttime by fusing successive
images from a monochrome image. It is claimed that successive frames can improve the detection
results by increasing the information contained in the image, especially in dark conditions with low
brightness and contrast.

Table 4 provides a quantitative comparison of the two-stage detector algorithms. It compares the
time needed to train each of the networks with respect to the baseline algorithm (R-CNN). Additionally,
the table lists the rate at which each algorithm needs to perform image recognition. The data shown in
the table are from the experimental results reported in each corresponding study [96–99].

Table 4. Comparison of the training time and testing time of different region-based detection algorithms
and improvements of each algorithm compared to R-CNN.

R-CNN SPP-Net Fast R-CNN Faster R-CNN

Training time (In hours) 84 25 9.5 NA
Speedup with respect to R-CNN 1× 3.4× 8.8× NA

Testing rate (Seconds/Image) 47 2.3 0.3 0.2
Speedup with respect to R-CNN 1× 20× 146× 235×

3.5. YOLO

Single-stage detectors, on the other hand, consist of a one-step regression rather than a multistage
classification process. One of the most popular algorithms is the “you only look once” detector (YOLO),
founded in 2016 by Redmon et al. [102]. As seen in Figure 14, the input image is divided into a defined
number of grids, then a single neural network is applied to predict bounding boxes and produce class
probability for the boxes, which is all performed in one stage. Compared to the previous detectors
mentioned above, YOLO is considered to have a very fast detection speed of 45 frames per second [102];
however, the use of YOLO is restricted due to its disadvantages of high localization error and low
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detection accuracy when dealing with small objects. These limitations were addressed by proposing
improved algorithms in YOLOv2, YOLO9000 [103], and YOLOv3 [104].
Sensors 2020, 20, x FOR PEER REVIEW 16 of 35 

 
Figure 14. The architecture of “you only look once” (YOLO) algorithm. 

3.6. SSD 

Throughout the literature, it has been noticed that the YOLO algorithm is mostly applied on 
large objects such as vehicles. In fact, according to [107], YOLO’s accuracy is degraded when dealing 
with small and variant-scale objects. Moreover, YOLO applies spatial constraints on the bounding 
boxes, limiting the classification to a single class of objects [108]. Many noticeable efforts have been 
put forth to solve such restrictions. One of the starting points is the single-shot multibox detector 
(SSD) [109], which is the result of a recent study involving significant improvements and attempts to 
overcome the limitations of the previous state-of-the-art methods. SSD is designed to have bounding 
boxes with different sizes and aspect ratios. This property enables the algorithm to detect different 
objects with different sizes in the same image. SSD is reported to be faster and more accurate than 
YOLO. It matches the accuracy of faster R-CNN, but with a speed of 59 frames per second (more than 
2500 times faster). 

In [110], Kim et al. used the SSD algorithm for general object detection in the autonomous 
driving applications. LiDAR 3D point clouds were converted into 2D images, then these images were 
used along with RGB images as inputs for two separate SSD networks. Finally, gated fusion units 
(GFU) were used to assign selective weights to fuse both feature maps produced by the two SSD 
networks through a feature fusion level. The experimental results showed that the proposed GFU–
SSD method outperformed the baseline SSD. The authors in [38] attempted to compare different 
fusion techniques with different CNN architectures while keeping SSD as the baseline detector. The 
fusion of thermal images and visible images was carried out with early and late fusion by using a 
SSD network and comparing it with other detectors, such as faster R-CNN and DefineNet. The results 
showed that the miss rate was reduced with the SSD detectors in both early and late fusion. Figure 
15 illustrates the architecture of the SSD. 

 
Figure 15. The architecture of the SSD algorithm. The CNN Network is VGG-16. 

3.7. DSSD 

Figure 14. The architecture of “you only look once” (YOLO) algorithm.

In many research attempts, LiDAR and visible cameras were used together to obtain better
detection results. In [105], for example, Asvadi et al. used depth maps (DMs), while reflectance maps
(RMs) generated by 3D LiDAR were fused with RGB images to detect objects on the road. Three YOLO
networks were used to process DM, RM, and RGB images separately and generate bounding boxes
from each network. Features are extracted from the three modalities and a decision-level fusion is
then applied to achieve vehicle detection. In a different study [106], LiDAR point cloud data were
used to construct a map of the vehicle’s view; then, these maps were used to generate regions of
interest, which were then projected on the camera image. A YOLOv3 network was then utilized to
perform real-time vehicle detection. In spite of the decent results that were presented in both papers,
small objects such as pedestrians were not considered.

3.6. SSD

Throughout the literature, it has been noticed that the YOLO algorithm is mostly applied on large
objects such as vehicles. In fact, according to [107], YOLO’s accuracy is degraded when dealing with
small and variant-scale objects. Moreover, YOLO applies spatial constraints on the bounding boxes,
limiting the classification to a single class of objects [108]. Many noticeable efforts have been put forth
to solve such restrictions. One of the starting points is the single-shot multibox detector (SSD) [109],
which is the result of a recent study involving significant improvements and attempts to overcome the
limitations of the previous state-of-the-art methods. SSD is designed to have bounding boxes with
different sizes and aspect ratios. This property enables the algorithm to detect different objects with
different sizes in the same image. SSD is reported to be faster and more accurate than YOLO. It matches
the accuracy of faster R-CNN, but with a speed of 59 frames per second (more than 2500 times faster).

In [110], Kim et al. used the SSD algorithm for general object detection in the autonomous driving
applications. LiDAR 3D point clouds were converted into 2D images, then these images were used
along with RGB images as inputs for two separate SSD networks. Finally, gated fusion units (GFU)
were used to assign selective weights to fuse both feature maps produced by the two SSD networks
through a feature fusion level. The experimental results showed that the proposed GFU–SSD method
outperformed the baseline SSD. The authors in [38] attempted to compare different fusion techniques
with different CNN architectures while keeping SSD as the baseline detector. The fusion of thermal
images and visible images was carried out with early and late fusion by using a SSD network and
comparing it with other detectors, such as faster R-CNN and DefineNet. The results showed that the
miss rate was reduced with the SSD detectors in both early and late fusion. Figure 15 illustrates the
architecture of the SSD.

3.7. DSSD

Due to the fact that small objects yield a limited number of pixels and information, the detection
of these objects becomes a burden. In most cases, the improvement of accuracy is traded with the
speed of detection [111]. Some variations of the SSD networks have been implemented to improve the
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accuracy with small objects while maintaining high detection speed. For example, the deconvolutional
single-shot detector (DSSD) [112] uses ResNet101 instead of the original Visual Geometry Group
(VGG) classifier and adds more context information into the existing SSD algorithm by augmenting
it with deconvolutional layers. This provides feature maps with better resolution, which enhances
the detection of small objects. For the pedestrian detection task, colored and thermal images were
fused using halfway fusion through the DSSD network [40]. As pedestrians are small objects, the new
algorithm was compared to previous studies that use different detectors. It has been shown that the
overall accuracy is improved.
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4. Ego-Localization and Mapping

An effective autonomous driving system requires the vehicle to determine its position and
orientation accurately. Vehicles need to have accurate, reliable, and robust localization algorithms to
assist in their maneuvering tasks, avoid surrounding obstacles, and perform the right driving actions.
Moreover, the localization system needs to be robust to handle variant complex environments and
severe weather conditions. Generally, localization is commonly performed using a variety of sensors,
such as GNSS; and dead reckoning devices, such as IMU, vision sensors, and LiDAR (for visual
odometry, primitive detection, and mapping, for example for SLAM algorithms). The fusion of two or
more of these sensors is also a common practice to enhance the overall localization performance.

It is worth mentioning that some emerging studies [113–115] propose different driving algorithms
that avoid the need for localization and mapping stages, and instead sense the environment and
directly produce end-to-end driving decisions. This is known as the behavior reflex approach [113].
In contrast to the classical method above, known as the “mediated perception approach”, this approach
aims to reduce the computational load by eliminating unessential information, hence improving the
speed of the process [113].

This section aims to analyze the localization techniques as part of the mediated perception
approach, while focusing on the fusion of different sensors through deep learning algorithms. Table 5
provides a summary of the common ego-localization and mapping techniques.

Table 5. Comparison of localization and mapping techniques in terms of the accuracy, cost,
computational load, source of external effects, and the storage size of data.

Method Accuracy Cost Computational
Load

External
Effect Data Size

GPS/IMU Low Medium Low Signal outage Low
GPS/INS/LiDAR/Camera High Medium Medium Map accuracy High

SLAM High Low High Illumination High
Visual Odometry Medium Low High Illumination High

Map-Based Matching Very High Medium Very high Map change Very High
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4.1. GNSS/IMU-Based Localization

GNSS is one category of the most commonly used sensors for localization in autonomous
vehicles. They have the advantages of low production cost and ease of integration within the vehicle
system. GNSS technology, however, has two main deficiencies that prevent them from being a reliable
standalone source of information. The first disadvantage is their insufficient accuracy (in the range
of 10 m). This range is unsatisfactory for AV applications, where accuracy in the centimeter range
is required. The second disadvantage is signal blockage and multipaths, where GNSS signals can
sometimes be interrupted in real driving environments. An adequate amount of research exists that
focuses on solving these two shortages; some of it has already provided acceptable results, which are
discussed below.

DGPS and RTK-GPS are used to enhance the accuracy of GNSS. Both DGPS and RTK rely on
having a base GPS station that has a known position of high accuracy. In the case of DGPS, the base
station uses its position for comparison with that calculated by GPS and sends the difference to the
receivers in order to use it for corrections. RTK, on the other hand, uses the carrier wave to determine
the number of cycles between the satellite and the receiver and performs corrections. Without the
use of DGPS, it is possible to build a dynamic DGPS with a distributed GPS configuration and with
the method proposed in [55]. Although results with decent accuracy were achieved with DGPS and
RTK, discontinuity of GPS signals in urban environments and tunnels remains the main issue with
these sensors.

GNSS needs to be integrated with other sensors that can compensate for the signal during any
possible outage. IMU is a type of sensors that exploit built-in accelerometers and gyroscopes to
measure both acceleration and velocity [116]. It then processes this information to estimate the state
of the vehicle at a given time with respect to its original position. It is worth mentioning that IMUs
suffer from drift error, which results from the accumulation of positioning error during the travel
of the vehicle. Hence, an IMU need continuous correction to its estimated position. Despite this,
the well-fused output of both GNSS and IMU achieves a state estimate of the vehicle and ensures a
continuous localization process.

Various examples of GNSS/IMU sensor fusions exist in the literature. In [117–119], the Kalman
filter was developed to integrate the outputs of both GPS and IMU. A Kalman filter (KF) consists
of two main equations, named the prediction equation, which is based on the system knowledge
(evolution matrix and command matrix) obtained from past measurements, and the update equation,
which works on updating the knowledge from the current measurements, i.e., an update of the
predicted estimation with the Kalman gain and the error between the predicted state vector and the
new observation (GPS data). Generally, enormous improvements happen when fusing both sensors
using the Kalman filter approach. Nonetheless, it is important to emphasize that the success of using
Kalman-filter-based fusion relies on the perfect match between the state–space system model and the
measurement model. Additionally, multiple assumptions should be taken into consideration, such as
the linearity of the system and the presence of Gaussian distributed data.

Since system dynamics are not always represented with linear equations, an extension named the
extended Kalman filter (EKF) was found to handle nonlinear systems. EFK works by linearizing the
system’s equations at each time step through the Taylor series and Jacobian matrix, then passing them
through the ordinary KF. The main disadvantage of this approach lies in the process of approximation
(linearization stage), as it introduces errors that will not be taken into consideration. The unscented
Kalman filter (UKF) was next introduced to improve the performance of EKF. Instead of taking one
point and approximating it to its linear state, UKF considers a group of weighted points, named sigma
points, and uses them for approximation. UKF has achieved better performance in terms of accuracy
compared to EKF [120]. Nevertheless, EKF and UKF are mono-model approaches. In order to improve
these two well-known approaches, multiple models and multiple hypothesis methods have been
developed. Included among these complex approaches are the particle filter approach, the interacting
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multiple model (IMM) approach [121], and the optimized Kalman particle swarm (OKPS) approach,
which is a merge of the particle filter and swarm method [122].

One of the key challenges in estimation methods is the need to have an accurate model of the
system. In some cases, it is difficult to provide an accurate model, especially for complex systems that
are highly dynamic. Additionally, most sensors are subject to inherent uncertainties, which usually
cannot be incorporated in the system model, yielding an inaccurate model [123]. In this context,
deep learning is extremely useful, as it allows for end-to-end learning, which eliminates the need for
mathematical modeling of each sensor individually.

Based on the current literature, there are few studies on deep learning sensor fusion in localization.
An early attempt to deploy artificial intelligence to fuse GNSS and INS is presented in [123], where an
input-delayed neural network is utilized to model the errors of the INS based on current and previous
data samples. The test results are compared to the conventional Kalman filter approach and they show
several improvements in position estimation during GNSS signal outage.

RNN is a powerful tool that can be used with time-series data. It has the ability to save previous
data samples through its memory feature. In [124], RNN was used to fuse both GNSS and INS sensors
and produce continuous and reliable navigation. Through the recursive network and memory function,
RNN uses past position and velocity data of INS to predict the errors in the current measurements.
The proposed method showed a 60% improvement when compared to the conventional EKF method
and 30% improvement compared to other neural network methods. Similarly, Kim et al. [125] integrated
both GNSS and IMU data using long short-term memory (LSTM), a variance of the RNN algorithm.
The purpose is to generate a model of the vehicle position estimation without the need to model
each sensor analytically. The LSTM network was trained with GNSS absolute position and IMU data,
and the predicted position was compared with the reference position obtained from a high-accuracy
RTK GPS. While the results of the study aim to validate the use of LSTM as a fusion technique, the study
needs to be further enhanced by testing it in real-life complex driving situations.

In a different context, Jiang et al. proposed the use of deep learning algorithms in [126] to model the
INS signal noise in order to eliminate it, which improved the navigation system outcomes. In general,
different statistical methods or artificial intelligent methods have been used to model the error signal,
but all techniques have their own limitations [126]. To overcome those limitations, the RNN algorithm,
along with a combination of LSTM and gated recurrent units (GRUs), was used for noise modeling.
Due to the training accuracy of LSTM and the convergence efficiency of GRU, significant improvements
were reported by the proposed hybrid algorithm.

4.2. Visual-Based Localization

Vision sensors are important elements in localization and mapping. Compared to other existing
usable sensors, such as LiDAR and radar imaging, cameras are often chosen due to their low
cost, availability, and ability to capture useful information (static and persistent primitives in
the environment). Visual localization has been an active research area for autonomous vehicles.
Visual-based localization includes (1) SLAM, (2) visual odometry (VO), and (3) map-matching-based
localization. This section aims to review the contribution of deep learning algorithms in advancing
each of the previous methods.

4.2.1. Simultaneous Localization and Mapping (SLAM)

SLAM is an algorithm that combines a set of sensors to build a map of the AV and its surroundings,
while simultaneously keeping track of the vehicle’s current position in reference to the built map.
Although SLAM algorithms were initially applied in the field of mobile robots, researchers have put
a noticeable effort into adjusting the algorithms to suit autonomous vehicle applications. This was
done by taking into consideration different key challenges, such as the need for faster processing,
the outdoor lighting conditions, and the dynamic road obstacles. It is important to point out that
while SLAM mainly relies on vision-based sensors, other sensors such as GPS, LiDAR, and sonar have
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also been used to implement SLAM algorithms. Surveys on recent SLAM methods have been done
by [53,127]. Additionally, some new methods with performance evaluations are available on the KITTI
website [128]. At this moment, the latest and best methods reported in [128], which do not use deep
learning approaches, are presented in Table 6. Different algorithms based on different perception types
are compared in Table 6 in terms of their accuracy (translation and rotation error) and the time required
to run the algorithm (running time). The performance data shows that “traditional” algorithms
generally do well in real-time SLAM implementations. Nonetheless, the continuous progress of
SLAM algorithms is still an interesting and active research topic in the computer science and robotics
community. It seems that in order to improve “traditional methods”, it is relevant to share static and
dynamic spaces. Such an approach has been proposed by [129]. From LiDAR data, this approach
shares the dynamic space (detection and tracking of dynamic obstacles) and static space using a belief
plot map concept. The interesting aspect of this method is its ability to model and account for large
size objects with nonlinear and complex shapes.

Deep learning approaches have shown great improvements in image classification and detection;
hence, there is good potential in applying these algorithms to enhance traditional SLAM algorithms.
Although the deep learning applications in this field are still not mature, some studies propose replacing
parts of classical SLAM blocks with deep learning modules to attain better accuracy, efficiency, reliability,
and robustness. These studies include attempts to improve aspects of pose and depth estimations,
loop closure detection, and feature descriptors of classical SLAM algorithms.

A very crucial aspect of a reliable SLAM system is its ability to perform well in dynamic
environments. Most conventional SLAM algorithms were designed to operate in a static environment;
hence, their overall performance, and in particular their accuracy, is dramatically compromised in
real-world driving scenarios, where objects are often dynamic and the driving conditions are sometimes
unpredictable. Traditionally, the behavior of dynamic objects in SLAM was estimated through filtering
or tracking. However, most of these approaches require immense computational power and are
impractical in real-time applications. For this purpose, Kaneko et al. [130] utilized deep-learning-based
semantic segmentation to exclude feature points that exist in the sky and moving cars. These two
categories are segmented and masked, and hence all feature points in the masked area are excluded.
Similarly, Xiao et al. [131] used an SSD network as an object detection framework, whereby the output
of the network is segmented into static objects and dynamic objects. The latter are considered as
outliers and discarded. The proposed method reported higher accuracy compared to the baseline
SLAM algorithm. A more generic solution was proposed in [132], where pixel-wise deep semantic
segmentation was used to produce semantic labels. A tracking thread will generate feature points,
out of which those belonging to moving objects will again be considered as outliers and excluded by
an outlier rejection network.

One of the ongoing challenges in SLAM systems is the ability of the sensors to accurately measure
the depth of the scene as captured by its vision sensors (stereo vision or optical flow). Although in some
cases depth sensors and RGB-D are used, these sensors have shortcomings, such as their inadequate
working range and their poor performance under direct sunlight. As an attempt to improve depth
estimation, researchers in [82,83] trained a deep learning CNN network to estimate depth using a
single monocular camera. Compared to classical monocular SLAM [133], CNN-based SLAM employs
learning abilities to learn the absolute scale and eliminate the need for geometric assumptions to
correct the scales of detected objects [134]. Another example of CNN-based depth estimation is
presented in [135], where a real-time algorithm named DeepFusion is used to reconstruct dense maps
by fusing the depth prediction of a stereo camera with the depth and gradient predictions of a CNN
network in a probabilistic manner. For further improvement, Lee et al. [136] proposed the addition
of a recurrent network to the existing CNN network to account for the spatiotemporal information
in the image or video sequence for better depth estimation. In [137], Kuznietsov et al. proposed
using a semisupervised deep learning method that can take the advantages of both supervised and
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unsupervised methods. The proposed technique uses the sparse ground truth data for learning and
utilizes CNN for depth prediction.

Table 6. SLAM algorithms based on non-deep-learning approaches, as reported on the KITTI website.

Date Reference Method Translation Rotation Runtime Sensor

2017 [138] SOFT-SLAM 2 0.65% 0.0014 0.1 s Stereo
2018 [139] LG-SLAM 0.82% 0.0020 0.2 s Stereo
2017 [140] ORB-SLAM2 1.15% 0.0027 0.06 s Stereo
2015 [141] S-LSD-SLAM 1.20% 0.0033 0.07 s Stereo
2018 [142] IMLS-SLAM 0.69% 0.0018 1.25 s LIDAR
2018 [143] MC2SLAM 0.69% 0.0016 0.1 s LIDAR
2018 [144] CPFG-slam 0.87% 0.0025 0.03 s LIDAR
2018 [145] SuMa 1.39% 0.0034 0.1 s LIDAR

Translation: relative translation error in percentage; rotation: relative rotation error in degrees per 100 m. Data in
bold represents highest performance.

Another significant module that contributes much to the accuracy of the SLAM system is loop
closure. This module checks the previously visited and mapped places and uses the results to reduce
the error of the built map. Previously, classical approaches were used to perform detection and
classification, such as bag-of-words (BoW), scale-invariant feature transform (SIFT), and speeded-up
robust features (SURF) approaches. These approaches use appearance-based methods that are created
through handcrafted features and have their own limitations. Deep learning can be highly utilized
in the loop closure field, as it has already been proven to be very powerful in image recognition
applications. Hou et al. [146] used a pretrained CNN-based descriptor to perform visual loop
closure. Merrill et al. [147] also proposed an unsupervised deep autoencoder system for loop closure.
The performance of the learning-based method was compared with several hand-crafted techniques
under various lighting conditions. CNN has achieved an enhanced performance in the case of major
light change and faster extraction speed as well.

Table 7 lists some of the recent deep learning SLAM algorithms. It is worth mentioning that in all
of the listed studies, deep learning has been used to replace only a specific module, and the proposed
algorithms have generally been built upon a traditional SLAM algorithm. Despite this, deep learning
has improved the overall accuracy, and in some cases it has solved critical issues, such as operating
in highly dynamic environments. With these continuous improvements, it is conceivable that in
the near future there will be an end-to-end deep learning SLAM algorithm with superior accuracy
and computational efficiency. Another point that can be observed from Table 7 is the diversity of
the testing datasets in the previous studies. Unlike the traditional algorithms presented in Table 6,
these algorithms are tested on different datasets; hence, a conclusive comparison of their performance
based on the published results is not easy.

Table 7. Summary of recent deep-learning-based SLAM algorithms.

Year Reference Contribution of
Deep Learning Description Architecture Testing Datasets Runtime

2018 [130] Semantic
Segmentation

Semantic segmentation
produces a mask and the
feature points on the mask
are excluded.

DeepLab V2 CARLA -

2019 [148] Feature
Descriptors

Replace handcrafted
descriptors with learned
feature descriptors.

TFeat EuRoC/TUM 90 ms

2018 [132] Semantic
Segmentation

Semantic segmentation
reduces the effect of
dynamic objects and is used
to build a dense map.

SegNet TUM/Real
Environment 76.5 ms
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Table 7. Cont.

Year Reference Contribution of
Deep Learning Description Architecture Testing Datasets Runtime

2019 [131] Semantic
Segmentation

SSD Network is used to
detect dynamic objects. The
selection tracking algorithm
is used to eliminate
dynamic objects and a
missed detection
compensation algorithm is
used for improvements.

SSD TUM/KITTI 45 ms

2018 [149] Pose Estimation

End-to-end trained model
that consist of a local pose
estimation model, pose
selection module, and
graph optimization process.

FlowNet
DTC

Viz-Doom
simulated maze -

2018 [147] Loop Closure

Compact unsupervised
loop closure algorithm that
is based on convolutional
autoencoders.

Autoencoders KITTI -

2019 [135] Depth Estimation

Real time algorithm that is
able to reconstruct dense
depth maps from RGB
images.

U-Net ICL-NUIMTUM
RGB 94 ms

2020 [136] Depth Estimation

A recurrent CNN network
that is used to process
spatial and temporal
information for map depth
estimation.

Convolutional
GRU

(U-Net)
KITTI 80 ms

4.2.2. Visual Odometry (VO)

Visual odometry (VO) is defined as the process of obtaining the pose of a vehicle by tracking
the change of its position from consecutive images over time. A general VO framework consists of
camera calibration, image acquisition, feature detection, feature matching, feature tracking, and pose
estimation. Traditionally, VO was performed through two main approaches: feature-based approaches,
where features such as lines or corners are detected, and appearance-based approaches, in which pixel
intensity values are considered instead [150]. Table 8 summarizes some of the recent traditional VO
algorithms extracted from the KITTI website. The V-LOAM algorithm [151] is ranked first because of
having the smallest reported translational and rotational errors. Despite the outstanding performance
of the conventional VO, deep learning has been extensively studied to replace it, as it works as a generic
feature extractor and improves the system by eliminating the need to design hard-coded features.
Additionally, fine-tuned feature parameters are not required for deep learning; thus, the robustness and
reliability of the systems are enhanced, which are otherwise sensitive to changes in the environment.
Moreover, deep learning algorithms tend to learn to recover the absolute scales, and hence no prior
information on the motion model or camera parameters are needed.

Many research articles attempt to evaluate the performance of deep learning algorithms in pose
estimation by comparing their results with traditional feature-based algorithms, such as SURF and ORB.
The results from [152] illustrate that a deep-learning-based algorithm performs better than conventional
methods. An early study was conducted by the authors in [153], where two CNN networks were
used in a supervised fashion with fully connected last layers, which regress the pose of the camera.
Several experiments were reported using a combination of known and unknown testing environments.
From the results obtained, it was shown that the network performs better with prior knowledge of the
environment over unknown environments. However, the results of both cases tend to accumulate
errors over time. As a result, it was recommended to add a recurrent network, which will help to
alleviate the drift problem.
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To demonstrate the advantage of adopting a recurrent neural network for VO, Wang et al. [154]
implemented an end-to-end deep recurrent convolutional network that takes sequential RGB images
and detects poses. Same authors then extended their study to take uncertainties into account [155].
A CNN network was utilized to extract important feature representations from the image and an
RNN network in the form of stacked LSTM was used to process sequential data and model motion
dynamics. The proposed method was tested for outdoor driving and the results were comparable to
those produced through classical algorithms. However, the performance of the algorithm degraded
when under certain conditions, including fast driving or driving in open areas, with fewer features
leading to more outliers. One solution is to increase the size of the training dataset for the network to
learn to reject the outliers. This requirement triggers a question—is it always possible to increase our
testing dataset? The challenge rests in the process of labeling these data. This leads to exploring the
field of self-supervised and unsupervised learning.

Table 8. Summary of recent VO approaches based on non-deep-learning approaches, as reported on
the KITTI website.

Date Reference Method Translation Rotation Runtime Sensors

2015 [151] V-LOAM 0.54% 0.0013 0.1 s MC + LIDAR
2019 [143] MC2SLAM 0.69% 0.0016 0.1 s IMU + LIDAR
2018 [156] LIMO2_GP 0.84% 0.0022 0.2 s MC + LIDAR
2017 [157] GDVO 0.86% 0.0031 0.09 s SC
2018 [156] LIMO 0.93% 0.0026 0.2 s MC + LIDAR
2018 [156] LiViOdo 1.22% 0.0042 0.5 s MC + LIDAR
2019 [158] SALO 1.37% 0.0051 0.6 s LIDAR
2019 [159] KLTVO 2.86% 0.0044 0.1 s SC

Translation: relative translation error in percentage; rotation: relative rotation error in degrees per 100 m. Data in
bold represents highest performance.

Unlike supervised learning, an unsupervised learning network does not rely on labeled data
or ground truth data for training. Instead, it trains the model by minimizing the photometric error.
In [160], Zhou et al. introduced two networks that are jointly trained from unlabeled video frames
to predict the depth map and relative camera pose while using view synthesis (i.e., the ability to
synthesize a target image by using the depth map and the pose of a nearby image). Li et al. [161]
trained the CNN network using stereo images instead of using consecutive monocular images. This
approach enabled the network to recover the absolute scale of the scene. In addition to depth and
pose estimations, some studies found it essential to incorporate the uncertainty estimation, as the
VO problem is considered as a state estimation problem. In [162], the network was trained in an
unsupervised manner, but it was further modified to predict the depth and pose, also considering the
uncertainty for VO optimization. A summary of the latest deep-learning-based VO studies is listed in
Table 9.

Table 9. Recent VO algorithms based on deep learning approaches.

Year Reference Description Architecture Testing
Datasets

Learning
Model

2017 [155]

End-to-end algorithm for
finding poses directly from
RGB images using deep
recurrent convolutional
neural networks.

CNN-LSTM KITTI Supervised

2019 [163]

Encode-regress network
that produces 6-Degree of
Freedom (DoF) poses
without the need of depth
maps.

ERNet KITTI Semi-Supervised
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Table 9. Cont.

Year Reference Description Architecture Testing
Datasets

Learning
Model

2016 [153]

Two parallel CNN
networks are connected at
the end by fully connected
layers to generate the
required pose.

AlexNet KITTI Supervised

2017 [160]

An end-to-end algorithm
that uses single-view
depth and multi-view
pose for camera depth and
motion estimation.

DispNet KITTI Unsupervised

2017 [152]

An approach that
generates a 7-dimensional
relative camera pose
orientation and position
vector.

AlexNet with
SPP DTU Supervised

2018 [161]

Pose and dense depth map
estimation with an
absolute scale. This
generates 6 DoF poses
from unlabeled stereo
images.

VGG-16 and
Encoder-Decoder KITTI Unsupervised

2020 [162]

The algorithm uses deep
networks for depth, pose,
and uncertainty estimation
of monocular odometry.

U-Net
(DepthNet and

PoseNet)

KITTI
EuROC MAV Unsupervised

2018 [164]

A global pose regression
and relative pose
estimation framework.
The network takes two
monocular frames and
regresses the 6 DoF poses
with inter-task correlation.

ResNet-50

Microsoft
7-Scenes

Cambridge
Landmarks

Supervised

4.3. Map-Matching-Based Localization

One of the well-known methods of AV localization and mapping is the use of prestored,
offline maps, known as “a priori maps”. In this method, a combination of sensors is used to
capture the surrounding environment while predriving the area. The sensor outputs are stored to form
a detailed map of the driven roads and areas, and later can be compared to current sensor outputs.
This approach can achieve centimeter-level localization, as required for AV navigation applications.
One of the key challenges in such methods is the need for frequent map updates to match the constantly
changing urban and driving environments.

One of the vast emerging technologies in the field of maps is the building process of HD maps.
HD maps provide very accurate lane-by-lane information, enabling vehicles to precisely localize
themselves with respect to those maps. Several leading companies such as HERE rely on using the
latest LiDAR technology to capture 3D point cloud data of different elements on the road, such as
lane markings, road curvatures, road obstacles, and road signs. At the same time, they accommodate
real-time changes by updating those maps [165] continuously.

In the last decade, localization based on map matching has received significant consideration.
In the literature, several different methods and algorithms exist to achieve accurate vehicle localization.
Traditional registration methods such as iterative closest point (ICP), Monte Carlo localization, and normal
distribution transform (NDT) have reported satisfactory results. Nevertheless, these algorithms
are highly dependent on manual calibration, postprocessing fine-tuning, and handcrafted features
for matching.
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Employing deep learning algorithms for localization is still an open research topic, even though
these algorithms have proven their effectiveness in performing detection, classification, and learning
semantics. Some recent studies demonstrate promising results, such as the one presented in [166],
which aims to localize vehicle position using LiDAR measurements and prestored point cloud map.
The proposed method consists of (i) keypoint extraction and feature descriptors, (ii) a 3D CNN
network that takes the cost volume and regularizes it in order to find the matching cost between each
captured key point and its equivalent location on the map, and (iii) an RNN module that is used to
learn historical relations between sequential frames and perform temporal smoothness for smoother
trajectory predictions.

In an attempt to improve the accuracy of localization, in [167] Vaquero et al. suggested improving
the quality of the prebuilt map first. They proposed segmentation of the dynamic moving objects in the
map, such as other vehicles and pedestrians, in order to obtain a map that is valid for use for a longer
period. For this, the LiDAR front view and birds eye viewpoint cloud are processed by dual deep CNN
networks to perform segmentation for both views and then filter out all the movable objects.

5. Conclusions and Future Research Recommendations

The field of autonomous vehicles and self-driving cars is vast, as it involves a great variety of
subjects ranging from electronics, sensors, and hardware to control and decision-making algorithms,
as well as all the social and economic aspects. For this reason, the research opportunities in this
field are endless and have growing potential for future expansion. Prospective AV research areas
related to technical aspects can cover more advanced sensor technologies, algorithm enhancement,
data collection and storage, communication security, and overall performance improvements.
In addition, research domains can be extended to cover nontechnical topics, such as the level
of societal acceptance of autonomous driving, environmental effects, changes to urban design,
and economic benefits.

In this study, we surveyed and critiqued work on perception, localization, and mapping tasks
of autonomous vehicles, particularly those empowered by deep learning algorithms that can take
advantage of data-driven knowledge discovery rather than physics-based models. As related to the
scope of the study, this section aims to summarize the potential research areas that will possibly improve
and enrich the field of autonomous vehicles. The recommendations will focus on both environmental
perception, localization and mapping, and how to further utilize deep learning algorithms to improve
the performance of sensor fusion networks.

5.1. Harsh Weather Conditions

One of the remaining challenges of self-driving cars is their compromised maneuverability
and performance in bad weather conditions, such as rain, snow, dust storms, or fog, which can
compromise vision and range measurements (degradation of the visibility distance). In such conditions,
the performance of most current active and passive sensors is significantly compromised, which in
turn leads to erroneous and even misleading outputs. The consequence of a partial or complete sensor
failure can be catastrophic for autonomous vehicles and their surroundings. A possible measure to
alleviate this problem is to evaluate the risk of failure early in the process based on learned experiences
and historical data using deep learning algorithms and to allow the driver to interrupt or completely
disengage the autonomous system. Approaching such an issue could go through two main paths.
The first path would be to utilize already existing sensors that have complementary outputs and
enhance the fusion algorithm through deep learning approaches [168]. The second path would be to
invest in the sensor hardware technology, as seen in short-wave gated camera and short-wave infrared
LiDAR approaches [169]. Both paths have room for further development and enhancement.
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5.2. Landmark Map-Matching

Improvement of localization and mapping is an ongoing research topic in the field of AV systems.
It is vital to achieving a sub-decimeter accuracy level to avoid collisions and navigate a vehicle safely.
One of the recently emerging techniques is to improve localization by detecting repetitive and distinct
landmarks, such as light poles, traffic signs, or road markings, and compare their perceived location
with an a priori offline map. Most of the previous work relies on traditional fusion algorithms with
inefficient detection algorithms [170–172]. Replacing those methods with deep learning algorithms
will accelerate learning if such landmarks and their possible variations, without the need to define
them explicitly. The generalization ability of deep learning methods will enhance the reliability of the
landmark matching, as its efficiency has already been proven in many related fields, such as object
recognition and detection. An important example is the emergence of 3D computer vision and 3D
image understanding, which refer to the analysis and recognition of the objects using volumetric
images and point clouds [11,173–175]. Benefiting from both visual and geometrical information,
3D or shape-based computer vision methods can be significantly more useful than 2D or image-based
methods in landmark recognition and matching. The superiority of 3D computer vision methods is
because volumetric images contain more information and features of the objects and are less affected
by camouflage, disguise, lighting conditions, image quality, and noise. However, three-dimensional
analyses of volumetric images are also more complex, and hence more prone to error, if not treated
properly. Thus, the implementation of the 3D computer vision paradigm in real-world settings imposes
additional challenges that need to be addressed before it becomes a practical and reliable solution for
AV applications.

5.3. Deep Learning Algorithms for Localization

Undoubtedly, it can be concluded that deep learning algorithms, in particular CNN, have been
heavily applied to perform environment perception. CNN is able to learn features automatically and is
very powerful in image-related tasks; hence, it is the ultimate choice for perception, where the majority
of the efforts include image recognition and classification. In contrast, applying deep learning to
localization has not drawn the same attention or reached the same level of maturity. Thus, there is great
potential to apply RNN algorithms to tackle the sequential localization data and improve it further.

Deep learning has been used to replace certain modules of the traditional SLAM algorithms,
and so far has improved the performance of localization and mapping to a certain extent. In the
future, learning algorithms may offer an end-to-end deep learning SLAM system that can avoid feature
modeling and data association, and consequently reduce errors and uncertainties associated with
unmodeled dynamics and imperfect modelling. Moreover, similar to the VO end-to-end systems,
the SLAM algorithms developed in this fashion will maintain a unified benchmark, making it possible
to compare the performance of different approaches.

5.4. Issues to Solve: Cybersecurity, Reliability, and Repeatability

While deep learning approaches have dramatically improved different AV perception and
localization modules, it is important to stress that these approaches require large datasets that are
generated over an extended period of time. The outcomes of these approaches depend on the quality
and comprehensiveness of the training datasets, and hence the results could vary in terms of relevance
and reliability. Merging classical model-based methods and deep learning approaches can improve the
robustness and reliability of the existing methods.

One important concern regarding the certification and homologation of the perception and
localization of deep learning-based approaches is to guarantee the maintenance of their high level of
efficiency. On the other hand, some recent experiments have revealed the sensitivity of the data-driven
approaches to small disturbances and interferences in the sensor data. In [176], for instance, the author
proposed adversarial physical conditions, which compromised object recognition and subsequently



Sensors 2020, 20, 4220 27 of 35

misled the whole system. AdvHat introduced in [177] is an interesting adversarial attack method
that attacks face ID systems. This method can easily breach the best public face ID model. The same
approach may be used to attack road perception functions and cause huge damage to the AV system.
Additionally, [178,179] introduced an overview that illustrates how deep learning methods can be
deceived and breached. Nevertheless, other researchers have demonstrated the robustness of deep
learning algorithms against computation failures [180].
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