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2, Axel Kola3, Dafna YahavID
4,
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Abstract

The aim of this study is to analyze patient movement patterns between hospital departments to

derive the underlying intra-hospital movement network, and to assess if movement patterns dif-

fer between patients at high or low risk of colonization. For that purpose, we analyzed patient

electronic medical record data from five hospitals to extract information on risk stratification and

patient intra-hospital movements. Movement patterns were visualized as networks, and net-

work centrality measures were calculated. Next, using an agent-based model where agents

represent patients and intra-hospital patient movements were explicitly modeled, we simulated

the spread of multidrug resistant enterobacteriacae (MDR-E) inside a hospital. Risk stratifica-

tion of patients according to certain ICD-10 codes revealed that length of stay, patient age, and

mean number of movements per admission were higher in the high-risk groups. Movement net-

works in all hospitals displayed a high variability among departments concerning their network

centrality and connectedness with a few highly connected departments and many weakly con-

nected peripheral departments. Simulating the spread of a pathogen in one hospital network

showed positive correlation between department prevalence and network centrality measures.

This study highlights the importance of intra-hospital patient movements and their possible

impact on pathogen spread. Targeting interventions to departments of higher (weighted)

degree may help to control the spread of MDR-E. Moreover, when the colonization status of

patients coming from different departments is unknown, a ranking system based on department

centralities may be used to design more effective interventions that mitigate pathogen spread.
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Citation: Tahir H, López-Cortés LE, Kola A, Yahav

D, Karch A, Xia H, et al. (2021) Relevance of intra-

hospital patient movements for the spread of

healthcare-associated infections within hospitals -

a mathematical modeling study. PLoS Comput Biol

17(2): e1008600. https://doi.org/10.1371/journal.

pcbi.1008600

Editor: Roger Dimitri Kouyos, University of Zurich,

SWITZERLAND

Received: June 8, 2020

Accepted: December 2, 2020

Published: February 3, 2021

Copyright: © 2021 Tahir et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This publication was made possible by

grants from following national funding agencies:

National Science Centre, Poland, Unisono: 2016/

22/Z/ST1/00690 (University of Warsaw, Faculty of

Mathematics, Informatics and Mechanics, Institute

of Applied Mathematics and Mechanics) and

01KI1704C (Martin-Luther-University Halle-

https://orcid.org/0000-0003-3047-9174
https://orcid.org/0000-0002-9347-527X
https://orcid.org/0000-0003-3181-9791
https://orcid.org/0000-0003-1511-074X
https://orcid.org/0000-0003-0156-8290
https://orcid.org/0000-0002-9907-344X
https://orcid.org/0000-0003-1271-7204
https://orcid.org/0000-0002-4394-7697
https://doi.org/10.1371/journal.pcbi.1008600
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008600&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008600&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008600&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008600&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008600&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008600&domain=pdf&date_stamp=2021-02-03
https://doi.org/10.1371/journal.pcbi.1008600
https://doi.org/10.1371/journal.pcbi.1008600
http://creativecommons.org/licenses/by/4.0/


Author summary

Pathogens including multidrug resistant enterobacteriacae (MDR-E) inside hospital set-

tings are associated with higher morbidity, mortality, and healthcare costs. Better under-

standing of the transmission routes of these pathogens is required to develop targeted and

efficient measures to contain the spread of MDR-E in a hospital. We analyzed datasets

from five hospitals in different countries to explore patient movement patterns between

departments of these hospitals (intra-hospital movements). We assessed whether move-

ment patterns differ between patients at high or low risk of colonization. Our results show

that in every intra-hospital network, there exist a few departments which are strongly con-

nected and many peripheral departments which are loosely connected. High-risk patients

stay on average longer in the hospital, and move more frequently between departments

than low-risk patients. Targeting interventions to strongly connected departments may

help to reduce pathogen spread inside the hospital. To explore this, we simulated the

spread of MDR-E inside one hospital using an agent-based model that includes patient

movements. In the simulations, we found positive correlations between departments’

prevalence and network characteristics such as degree and weighted degree, thus

highlighting the importance of targeting interventions to departments of higher

(weighted) degree to control the spread of MDR-E.

Introduction

Multidrug resistant enterobacteriacae (MDR-E) are a common cause of hospital-acquired

infections (HAIs) [1–4] and are considered a major public health threat. HAIs due to MDR-E

are associated with higher morbidity, mortality, and healthcare costs [5,6]. A better under-

standing of the transmission routes of MDR-E pathogens may provide valuable insight to

develop more effective and targeted infection control measures. When dealing with the spread

of MDR-E in a single hospital, several factors such as contact precautions, inadequate hygiene

protocols, and prolonged hospital stays play an important role. However, in recent years,

inter-hospital patient movements between healthcare facilities have been recognized as an

important route of transmission of pathogens between healthcare facilities. Various studies

have used data on inter-hospital transfers of patients to construct healthcare networks. Based

on those networks, various innovative infection control measures were proposed to contain

the spread of HAIs [7–10]. Moreover, the burden of HAIs in a healthcare system has been pro-

posed to be dependent on the structure of the inter-hospital network [9–12].

Similar to the role of inter-hospital patient movements, patient movements between the

departments of a single hospital (intra-hospital movements) may contribute to spread of patho-

gens within a hospital. The effect of intra-hospital movements of patients on pathogen spread in

a single hospital, however, is not fully understood. Various studies have reported the spread of

MDR-E pathogens inside a hospital [13–17]. However, such studies were either limited to inten-

sive care units (ICUs), or to some specific medical specialty departments, and patient move-

ments between the departments were not assessed. Few modeling studies related to the spread

of Methicillin-resistant Staphylococcus aureus (MRSA) [18,19] and Carbapenem-resistant Kleb-
siella pneumoniae [20] have evaluated the role of patient movements inside a hospital, but either

very few departments were considered or departments other than ICUs were considered equal

in terms of department structures (e.g. similar number of beds per department, similar move-

ment rates between the departments etc.). These studies did not account for the hospital
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department network when investigating the role of intra-hospital patient movements. Certain

departments such as ICUs, emergency and surgery departments tend to have more patient

movements than others. Applying infection control strategies to those departments may, there-

fore, help to limit the spread of the pathogen. A detailed understanding of how patient move-

ments inside a hospital contribute to the spread and prevalence of pathogens in departments

and in the entire hospital may help to develop more effective infection control strategies.

Several risk factors for acquiring HAIs due to MDR-E pathogens have been reported in the

literature such as prolonged ICU or hospital stays [21,22], prior antibiotic usage [21,23–25],

older age [26], renal dysfunction [26,27], mechanical ventilation [27], and recent invasive surgi-

cal procedures [22,25]. However, a patient’s risk of acquiring colonization varies between

patients, and not all patients are equally likely to become colonized with MDR-E pathogens.

Multiple illnesses such as cancer, diabetes mellitus, dialysis, chronic renal disease, chronic alco-

holism, chronic liver disease, and solid-organ transplantation have also been identified as risk

factors for infection with MDR-E pathogens, as they weaken host defenses and thus increase

host susceptibility to developing an infection [27–31]. It is, however, not yet clear whether such

illnesses are associated with acquisition and colonization, or only with infection [27]. It is also

worth noting here that a patient’s susceptibility to acquiring colonization may not differ

between patients with or without chronic diseases, but that observed differences in colonization

rates between patients might be due to difference in exposure. Patients with severe disorders or

chronic diseases are more likely to be in need of repeated hospital admission, and require more

intense care from healthcare workers. Frequent contacts with healthcare workers may put such

patients at high risk for acquiring colonization during their hospital stay.

The aim of this study is to assess and understand patient movement patterns in hospitals

from different countries based on electronic hospital information systems data. Our analysis

includes a stratification of movement patterns by risk level based on ICD-10 codes at dis-

charge. To study the impact of intra-hospital patient movements on pathogen spread, we per-

formed simulations using an agent-based transmission model including patient movements

between departments. We analyzed the association between departments’ prevalence and vari-

ous network centrality measures obtained from the agent-based simulations. Finally, we dis-

cuss implications for targeted intervention measures to reduce pathogen spread in hospitals.

Material and methods

Data

We obtained routine hospital admission data of five hospitals from Spain, The Netherlands,

Germany, and Israel. The pseudonymized admission data were extracted from electronic hospi-

tal information systems and do not include any sensitive information. Participating hospitals

were: University Medical Center Utrecht (UMCU), Utrecht, The Netherlands; Hospital Univer-

sitario Virgen Macarena (HUVM), Seville, Spain; Charité Universitätsmedizin (CUM), Berlin,

Germany; Beilinson Hospital (BH), Rabin Medical Center, Petah Tikva, Israel; and Universi-

tätsklinikum Halle (UKH), Halle, Germany. Basic details of every dataset are given in Table 1.

The provided data included: patient ID, hospital ID, patient birth year, admission and dis-

charge dates, and ICD-10 diagnosis codes. Additionally, the names of all departments in which

patients stayed during their hospital stay were provided for the respective time periods. Data

extraction periods were different for every hospital. Since information on patients who were

transferred to other hospitals was not available from every hospital, we considered those move-

ments as discharges.

We have, further, excluded admissions with a hospital length of stay (LOS) of less than a

day (outpatient admissions) and only considered inpatient admissions (hospital LOS > 1 day)
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in the study. The reason behind this exclusion is that outpatients may not be exposed to the

parts of the hospital where inpatients stay, and therefore do not contribute to spread of patho-

gens. Moreover, admissions to psychiatric departments were excluded because patients in

those departments tend to have completely different (often very long) LOS and are usually not

bedridden. We also excluded admissions in obstetrics departments because we observed that

newly born children do not immediately get their own patient and admission ID, but those of

their mothers instead. Thus, it is difficult to differentiate between newborn children from their

mothers in our data. Moreover, in obstetrics departments, transfers to other departments are

rare and the duration of stay is short. Table 1 reports the total number of admissions included

in the current study from every hospital after the above exclusions.

Patient risk stratification

Patients having severe disorders or chronic diseases and immunocompromised patients may

have a higher risk of acquiring colonization and subsequent infection. A risk stratification into

low-risk and high-risk patients [32], was implemented based on certain diagnoses (ICD10

codes), which are known to be associated with patient disabilities (Table 2). This risk stratifica-

tion was applied consecutively to any further hospitalization of the patient, i.e. once a patient is

defined as a high-risk person, the patient will automatically be defined as high-risk for any

consecutive hospitalization independent of the respective diagnoses.

Intra-hospital movements

When a patient is transferred from one department to another, we counted this transfer as a

single movement. From department-level data, we extracted such intra-hospital movements

for every hospital stay. Patient movements within a single department were not considered in

this study.

We did not put any constraints on a minimum time between movements. However, if a

patient stays in another department only for a short time, the probability that transmission

Table 1. Descriptive data of participating hospitals.

Hospitals University Medical Center

Utrecht, The Netherlands

(UMCU)

Hospital Universitario

Virgen Macarena, Spain

(HUVM)

Charité Universitäts-

medizin, Germany (CUM)

Beilinson Hospital,

Israel

(BH)

Universitäts klinikum

Halle, Germany (UKH)

Data Period 01.01.2014–31.12.2017 01.01.2016–30.01.2017 01.01.2016–31.12.2016 01.01.2012–31.12.2017 01.01.2017–31.12.2017

Hospital Size

(number of beds)

1042 950 3011 800 950

Number of

Departments

61 36 58 26 58

Number of patients

per year �
30,823 26,724 416,751 17,410 32,863

Number of

admissions

per year ��

81,516 34,364 841,221 33,754 47,279

Total number of

admissions (N) ��
326,064 37,227 841,221 202,524 47,279

Number of

admissions used in

the analysis (N (%))

117,758 (36.12) 28,191 (75.73) 124,946 (14.85) 169,541 (83.71) 37,977 (80.33)

� A patient can be admitted more than once. Every patient gets a unique patient ID and it remains unchanged for future admissions.

�� Admissions include both in-patient and out-patient admissions. For every (re)admission, a unique admission ID is assigned to a patient.

https://doi.org/10.1371/journal.pcbi.1008600.t001
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occurs is very small, so short stays do not contribute much to overall transmissions in the hos-

pital. Using intra-hospital movements data, we created a directed movement network for each

risk group and for each hospital in order to visualize patient movements patterns. In such a

network, nodes represent departments and links represent patient transfers between the

departments. We further computed network statistics such as degree, weighted degree, graph

density, average path length, average clustering coefficient and network diameter.

Data analysis tools

Python Pandas [33] was used for data cleaning, filtering, stratification, and analysis. From

Python Pandas, patients’ intra-hospital movements for each hospital were exported as

weighted edge-lists, where weights represent numbers of patient movements in each direction.

These weighted edge-lists were later imported into Gephi software [34] for network visualiza-

tion and computation of network statistics. In this study, we used the mean and standard devi-

ation for most of the descriptive quantities, but for some other variables we used median and

show interquartile range (IQR).

Agent-based model

In order to evaluate the role of patient intra-hospital movements and their implications towards

MDR-E spread, we developed a discrete-event agent-based model (ABM) to simulate the spread

of a pathogen inside a hospital. To demonstrate our methods, we performed simulations for the

Spanish hospital HUVM, for which we had the most complete data. The model was built using

Python library Mesa which is an open source ABM framework [35]. In the HUVM hospital, there

were 34 departments present in total. Number of beds in each department was estimated from the

HUVM dataset using mean number of patients present every day in each department (S10 Fig).
In the model, we simulated patients explicitly as individual agents and every agent had sev-

eral descriptive attributes, namely unique id, risk score, length of stay (LOS), disease state,

department number, and bed number. In the ABM, agents’ attributes were updated in discrete

time steps of 5 minutes. During the simulation, the new patient’s arrivals process is modeled as

a Poisson process with estimated daily arrival rate. Moreover, for all the simulations, patients

were uniformly distributed at admission to available beds in the departments. At the time of

admission, a LOS in discrete time units was assigned to every individual agent from an expo-

nential probability density function (estimated from the HUVM dataset). At every time step,

patient’s LOS was decremented by 1, and once the LOS for a patient reached zero, the patient

was discharged from the hospital. Our model does not account for changes in the patient pop-

ulation due to death.

Table 2. Patient risk stratification. A patient having any of the mentioned ICD-10 codes was considered as a high-

risk patient.

Disease ICD-10 Code(s)

Cancer C00-C96

Diabetes mellitus E10-E14

Heart failure I50

Chronic kidney disease (moderate or severe) N18.3-N18.6

Immune system disease D80-D89

Systemic sclerosis and other systemic involvement of connective tissue M34-M35

Psoriasis (chronic skin disease) L40

Abnormal immunological findings in serum R76

https://doi.org/10.1371/journal.pcbi.1008600.t002
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In the data, for patients who moved at least twice during their stay in the HUVM hospital,

we observed that in 81% of such movements, patients were moved back to the previous ward.

Based on this observation, we implemented in the ABM that there is an 81% chance to return to

the previous ward for patients with two or more movements. For the remaining 19% of the

movements, patients follow the department selection algorithm through a preference matrix

explained below. Daily patient movement rates to other departments were estimated for every

department of the HUVM hospital (S11 Fig). These movement rates were then divided by the

size of the departments to obtain department-specific daily movement probabilities. Given

those daily movement probabilities, numbers of patients to be moved to other departments

were calculated for every department every simulated day, and added to a department specific

counter. This counter kept track of the number of patients to be moved from every department.

For each patient movement, we determined a future department using a preference matrix

composed of preference probabilities [36]. For this preference matrix, a pivot table was first

computed based on every department’s weighted in-degree and weighted out-degree from the

HUVM hospital. This pivot table was then normalized row-wise to obtain preference probabil-

ities. Given those preference probabilities [36], a patient’s next department was selected and

the patient is moved to the new department. It is worthwhile to note, that there are fixed num-

bers of beds per department, which can all be occupied at a certain moment. If all beds in

potential new departments were occupied at a certain moment, the patient stayed in the cur-

rent location and the above explained procedure is repeated in the next time step.

Each patient also has a disease state: susceptible, colonized, or infected. A patient in a suscep-
tible state can immediately become colonized after being exposed to MDR-E pathogens. A

patient in a colonized state remains asymptomatically colonized with MDR-E and can transmit

the pathogen to others upon contact. A patient in an infected state is symptomatically colo-

nized showing disease symptoms. Infected patients can still spread the pathogen to others. In

the model, we assumed that the transition from susceptible to infected requires passing through

colonized and, therefore, neglect a direct pathway from susceptible to infected. More details on

the disease progression can be found in S12 Fig. When a patient becomes infected in the

model, no further movement of that patient will be allowed. This assumption is based on dis-

cussions with clinicians from the participating hospitals, where the majority of the patients

after infection diagnosis are only moved to other departments in case of emergencies.

Intra-hospital models usually assume that transmission occurs via the cross-transmission

route, which involves effective contacts between patients and healthcare workers (HCWs).

Since we did not model HCWs explicitly, the transmission was implemented as a force of

infection (FOI), which gives the probability per unit of time t for a susceptible patient to

acquire the pathogen and to become colonized. The FOI was dependent on the transmission

parameter β, the number of colonized and infected patients, and the total number of patients

present in a given department. Martin et al. [27] reported that approximately 5% of the

patients with gastrointestinal carriage of Carbapenem-resistant Klebsiella pneumoniae devel-

oped an infection. We calibrated our model to achieve a similar cumulative percentage of

infected patients using a probability of 0.012/day in Bernoulli trials. Once the disease state of a

patient was changed to infected, the LOS of that patient was increased by three days. After the

end of this extended LOS period, the patient returned back to a colonized state. Since infected

patients return back to a colonized state, they may become infected again in the model. The

increase in the LOS by three days for infected patients was a parameter in our model; thus, we

also checked the effects of varying this parameter on the department prevalence (S13–S15
Figs). In our model, daily transmission rates for both high-risk and low-risk patients were the

same. However, it was assumed that there was a difference in the mean LOS, with a slightly
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longer LOS for high-risk patients when compared to the low-risk group. Further details on the

model and parameters are given in S1 and S1A Text, respectively.

To evaluate the role of patient movements for pathogen spread, we tested the four different

scenarios using the ABM described below. We apply these scenarios starting from day 30 so

that a stable hospital population of susceptible patients can be assumed.

• Scenario 1: On day 30 (simulation time) one colonized patient was admitted to the highest

weighted degree centrality department (ICU–department 8). The motivation for this sce-

nario is to highlight the impact of patient movements on pathogen spread in case of a single

imported case (no continuous inflow of colonized patients).

• Scenario 2: continuous inflow of 1% colonized patients from day 30 onwards. We used a

probability of 0.01 for a patient to arrive in a colonized state into the hospital. These colo-

nized patients were then randomly distributed to all departments of the hospital.

• Scenario 3: continuous inflow of 5% colonized patients from day 30 onwards, distributed

randomly to all departments of the hospital.

• Scenario 4: continuous inflow of 15% colonized patients from day 30 onwards, distributed

randomly to all departments of the hospital.

In all scenarios, we tested different values of the transmission parameter β (range 0.0005–

0.30 per day). Spearman’s rank correlation coefficients between departments‘network charac-

teristics and departments‘prevalence were computed to evaluate the association between these

two quantities. For scenarios with continuous inflow of colonized patients, we used stable

prevalence states for the Spearman’s rank correlation test.

Results

Descriptive statistics of hospital data

Descriptive statistics for each risk group for every hospital are shown in Table 3. In all hospi-

tals, proportions of male patients and proportions of male admissions in the high-risk groups

were always higher when compared to proportions of low-risk male patients and admissions.

Proportions of high-risk admissions vary between 30.20%– 36.69% between the hospitals with

CUM being the lowest and HUVM having the highest proportion.

Patients in the high-risk groups were on average older than low-risk patients (Fig 1A). Fig
1A shows that BH hospital had the highest mean age in both risk groups. Fig 1B displays LOS

distributions where we observed longer mean LOS in the high-risk groups when compared to

Table 3. Descriptive statistics for data included in the analysis for participating hospitals.

Hospitals UMCU HUVM CUM BH UKH

Low-risk High-risk Low-risk High-risk Low-risk High-risk Low-risk High-risk Low-risk High-risk

Patients Total (N) 52590 16870 15368 6910 68755 23008 70369 26480 19491 8487

Males (%) 53.16 57.27 50.78 55.18 48.24 56.10 52.98 54.56 47.60 56.00

Admissions Total (N

(%))

75147

(63.82)

42611

(36.18)

17848

(63.31)

10343

(36.69)

87219

(69.80)

37727

(30.20)

109985

(64.87)

59556

(35.13)

24071

(63.38)

13906

(36.62)

Males (%) 52.91 57.67 51.70 56.39 48.26 57.30 52.89 55.25 48.6 57.92

Admissions per day (SD) 51.43

(21.02)

29.16

(14.03)

44.49

(13.57)

25.67 (8.45) 238.3

(133.8)

103.07

(85.31)

50.17 (17.15) 27.16

(11.37)

65.94

(28.77)

38.09

(20.64)

Mean LOS (Days (SD)) 5.52 (9.88) 7.19 (11.46) 6.09 (8.84) 8.49 (9.59) 5.31 (8.06) 8.74 (13.69) 4.85 (7.16) 6.61 (9.55) 5.52 (7.94) 10.09 (12.7)

Patient Age (Median

(IQR))

38 (6–62) 64 (50–72) 57 (34–74) 72 (61–81) 52 (31–69) 66 (54–76) 65 (47–78) 72 (62–81) 52 (27–67) 67 (57–77)

https://doi.org/10.1371/journal.pcbi.1008600.t003
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low-risk groups in each hospital. High-risk groups in CUM, UKH and HUVM had large vari-

ability in the LOS as shown by the box plots (Fig 1B). We further plotted the proportion of

admissions versus LOS in all the hospitals and risk groups on a log-linear scale to display the

distributions of LOS. Fig 1C shows that in all hospitals, a large proportion of admissions in

both risk groups had short LOS. Moreover, low-risk groups have a higher proportion of

patients with short LOS (between 1–4 days). For both risk groups in each hospital, their LOS

was approximately exponentially distributed.

Patient movements

Patient intra-hospital movements were estimated from patient transfers between the depart-

ments in every admission. Fig 2A shows mean movements per day normalized by hospital size,

number of departments, and number of admissions per year in each risk group for every hos-

pital. It is clear from Fig 2A that UKH had the highest mean intra-hospital movements per day

in the high-risk group. Moreover, high-risk groups in all hospitals had a higher mean number

of movements per day except for the UMCU. Mean number of intra-hospital movements per

hospital admission are shown in Fig 2B. High-risk groups had notably higher means when

compared to low-risk groups, except for the UMCU where there was little difference between

the risk groups. BH had the lowest mean number of movements per admission.

Fig 1. (A) Box plots showing patient age distribution for each hospital and risk group, (B) Box plots for admission LOS distribution for each hospital and risk

group. In A and B, purple lines in the boxes show mean value whereas the grey line in the boxes show median of the data. (C) Proportion of admissions versus

LOS on log-linear scale for each risk group in every hospital. To better visualize the trends between the risk groups at smaller LOS, proportion of admissions

with LOS over 100 days are not shown in C. There are however, few data points above 100 days LOS (see S1 Numerical Data for complete data).

https://doi.org/10.1371/journal.pcbi.1008600.g001
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The majority of patients in each hospital did not move between the departments during their

hospital stay. For UMCU, HUVM and BH, more than 83% of admissions in both risk groups

had no movements. This effect was even more pronounced in the BH where patients in 93% of

Fig 2. Patients movement results. (A) Mean number of movements per day normalized by hospital size, number of departments and the number of

admissions per year in each risk group for every hospital. (B) Mean number of movements per hospital admission for each risk group and for each hospital.

Error bars show standard deviation. (C) Proportion of admissions versus number of movements in each risk group for every hospital on log-linear scale. It is

worth noting here that major proportion of admissions in each hospital has zero movements (UMCU (Low-risk 86.62%, High-risk 87.06%), HUVM (Low-risk

89.05%, High-risk 83.79%), CUM (Low-risk 64.81%, High-risk 64.43%), BH (Low-risk 96.6%, High-risk 93.63%), and UKH (Low-risk 76.45%, High-risk

66.01%)). (D) Mean number of movements versus admission LOS for each risk group and every hospital. To better visualize the trends between the risk groups

at smaller LOS, data over 100 days LOS are not shown in D. There are however, few data points above 100 days LOS (see S2 Numerical Data for complete data).

https://doi.org/10.1371/journal.pcbi.1008600.g002
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the admissions in the high-risk group, and 96% in the low-risk group, did not move between

the departments. The German hospitals CUM and UHK had smaller proportions of admissions

with zero movements (low-risk 64.8% versus high-risk 64.4% in CUM, low-risk 76.5% versus

high-risk 66% in UKH). In Fig 2C, we plotted the proportion of admissions with a given num-

ber of movements for all admissions with at least one movement on a log-linear scale.

When plotting admission LOS against mean number of movements per admission (Fig 2D),

we observed a positive correlation in all participating hospitals, indicating that a patient with

longer LOS is more likely to move more frequently between the departments during the hospital

stay. To identify differences between the risk groups for the data shown in Fig 2D, we plotted

number of movements against LOS for every hospital admission in each risk group for every

hospital. There seems to be no clear difference between the risk groups for every hospital.

Characteristics of intra-hospital movement networks

The intra-hospital movements were visualized as a weighted directed network, where nodes

represent departments in a hospital and links are defined by patient flows. Directed weights of

the links are based on the number of patient movements in each direction. Degree of a depart-

ment is defined as the number of its connections to other departments. Weighted degree indi-

cates the number of patients moving in and out from one department to other departments.

Fig 3 shows the visualization of the HUVM intra-hospital movement networks for both risk

groups as well as for the complete data without stratification. Nodes were ordered alphabeti-

cally based on node names in a counter clockwise direction from the top node. The color of

the node is based on node degree (sum of in-degree and out-degree), whereas the size of the

node is based on node weighted degree (sum of weighted in-degree and weighted out-degree).

The width of the link is based on weights (number of patient movements), where the thickness

of a link is based on the number of patients moving in that direction. A clustering layout of the

HUVM network is also shown in S1 Fig. Moreover, the number of patient movements between

the departments are visualized as a heatmap (S1 Fig). The hospital movement networks for

other considered hospitals are shown in S2–S9 Figs. Networks displayed in Figs 3 and S2–S9
clearly show that these networks had several central hubs with much incoming and outgoing

patient movements, and many peripheral nodes that were only loosely connected to the net-

work. The most common departments to act as hubs for both risk groups include ICU, emer-

gency department, internal medicine, anesthesiology, cardiology and cardiothoracic surgery,

neurology, cardiovascular surgery, and nephrology. However, pediatric departments tended to

appear in the top few nodes for all networks in the low-risk groups except for BH, where no

pediatric patients were admitted due to the absence of a pediatrics specialty.

To better compare the networks, we computed network statistics as shown in Table 4 (see

supplementary S1 Text for methods of calculating the reported network statistics). Number of

edges and average degree were higher in the high-risk groups except HUVM and CUM where

an opposite trend was observed. When compared to low-risk groups, slightly higher maximum

degrees (degree range) were observed for high-risk groups for all hospitals. There were no

clear relationships observed in the weighted degree, network diameter, and average path length

between the risk groups and between the hospitals as these characteristics largely depend on

the number of movements in each risk group of every hospital. Table 4 also shows that average

clustering coefficients in the high-risk groups were slightly higher except for HUVM. Among

hospitals, the largest average clustering coefficients in both risk groups were observed in the

BH. Similarly, graph density, showing the completeness and connectedness of a network, was

higher in the high-risk groups for all hospitals except HUVM and CUM, where it was slightly
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lower than the density of the low-risk group network. BH showed relatively high graph density

in both risk groups when compared to other hospitals (Table 4).

Simulation results

Based on patient movement patterns, we investigated the impact of movement network struc-

ture on pathogen spread. To do that, we used an agent-based model parameterized with data

from the HUVM hospital. Fig 4A represents a network of patient movements averaged over 50

simulations. Visually, this network matches well with the un-stratified network of the HUVM

(Fig 4B). Fig 4A shows the large variation in weighted degree of the nodes (departments), where

the ICU acts as the biggest hub with highest weighted degree compared to other departments.

For each scenario, distributions of department specific daily MDR-E prevalence (calculated

as sum of colonized and infected patients divided by the total number of patients in a

Fig 3. Intra-hospital hospital networks of HUVM showing patient directed movements from one department to another. Nodes represent departments

and arrows represent patient movements between these departments. Color of the nodes was based on nodes degree whereas size of the nodes was based on

nodes weighted degree. Arrows thickness is based on the directed number of transfers (weights) between the departments and color of an arrow is assigned

similar to the node color from where the arrow is originating. For visualization of the clustering, a clustering layout of the complete HUVM network is also

shown in the supplementary S1 Fig.

https://doi.org/10.1371/journal.pcbi.1008600.g003
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department) are plotted as box plots in Fig 5. Although we ran simulations with different val-

ues of β (S1A Text), we only showed results from β = 0.25 in Fig 5.

It is clear from Fig 5A that when MDR-E pathogen transmissions occurred in a highly-

connected ICU department (scenario 1), it affected all the major departments of the hospi-

tal connected via patient movements. Although scenario 1 was a hypothetical scenario

with only a single admission of a colonized patient, it highlights the impact of patient

movements on pathogen spread (Fig 5A). In reality, hospitals continuously receive

Table 4. Intra-hospital hospital networks statistics for each risk group. Complete data correspond to unstratified data including low-risk and high-risk groups.

Hospitals UMCU HUVM CUM BH UKH

Complete Low-

risk

High-

risk

Complete Low-

risk

High-

risk

Complete Low-

risk

High-

risk

Complete Low-

risk

High-

risk

Complete Low-

risk

High-

risk

Nodes 59 34 56 24 56

Edges 1026 703 729 335 252 218 1219 1004 904 435 370 375 1076 720 871

Graph Density 0.3 0.205 0.213 0.298 0.225 0.194 0.396 0.326 0.294 0.788 0.67 0.679 0.349 0.234 0.283

Degree Mean 17.39 11.92 12.356 9.85 7.41 6.41 21.77 17.93 16.14 18.13 15.42 15.62 19.21 12.86 15.55

Range

(min—

max)

1–86 0–76 0–79 2–58 0–48 0–50 8–74 7–62 0–66 16–46 11–42 10–46 1–82 1–65 0–78

Avg. Weighted

Degree per year

235.35 150.6 83.14 158.54 85.63 81.12 1118.6 723.14 366.48 63.83 31.40 32.43 340.80 172.73 168.07

Network

Diameter

3 5 4 4 4 4 3 3 4 2 2 2 4 5 5

Avg. Clustering

Coefficient

0.641 0.564 0.588 0.595 0.507 0.494 0.566 0.52 0.554 0.841 0.767 0.789 0.592 0.479 0.53

Avg. Path Length 1.759 1.968 2.03 1.852 1.962 1.855 1.644 1.757 1.857 1.212 1.332 1.321 1.769 2.03 1.884

https://doi.org/10.1371/journal.pcbi.1008600.t004

Fig 4. (A) Patient movements network generated from the ABM simulation, (B) Actual HUVM patient movement network without stratification of patients

into low-risk and high-risk. Nodes represent departments and arrows represent patient movements between these departments. Color of the nodes is based on

nodes degree and dark orange color refers to low values of degree whereas purple color refers to high degree. Size of the nodes is based on nodes weighted

degree.

https://doi.org/10.1371/journal.pcbi.1008600.g004
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colonized patients at admission. Fig 5B shows a steady state department specific daily

prevalence of MDR-E pathogen for scenarios 2, 3, and 4, which consider 1%, 5% and 15%

of daily arrivals being colonized at admission, respectively. Fig 5B clearly illustrates that an

increase in the percentage of colonized patients at admission has a direct impact on the

departments’ MDR-E prevalence. Scenarios shown in Fig 5B show quite high prevalences

Fig 5. (A) Distribution of daily departments’ prevalence of MDR-E for a period of 395 days for scenario 1 where a single colonized patient was admitted to the

ICU on day 30. (B) Distribution of steady state daily departments’ prevalence of MDR-E (from 200 days onwards) for scenario 2, 3 & 4 which include 1%, 5%

and 15% daily arrivals of colonized patients respectively from day 30 onwards. Yellow lines represent the mean prevalence per department for every scenario.

For all results shown in Fig 5, transmission parameter β = 0.25 was used for all departments. Departments are ordered by size with internal medicine

department being the largest department. Results shown in Fig 5 are based on 50 simulations for every scenario.

https://doi.org/10.1371/journal.pcbi.1008600.g005
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in the larger and high centrality departments such as ICU, internal medicine, general sur-

gery, cardiology and cardiovascular surgery. When the percentage of incoming colonized

patients is low (1%, scenario 2), stochastic variations in departments’ mean prevalence are

large for the large departments. However, with the increase in daily colonized arrivals

(15% scenario 4), the majority of the large departments show similar levels of MDR-E

mean prevalence.

In order to quantify the impact of network characteristics on department specific MDR-E

mean prevalence, we calculated Spearman’s rank correlation coefficients between depart-

ments’ MDR-E mean prevalence and network characteristics such as nodes degree (Fig 6A)

and nodes weighted degree (Fig 6B) for different transmission rates (β) and for every scenario

presented in Fig 5. Fig 6A and 6B show that when a colonized patient is admitted to a high-cen-

trality ICU department (scenario 1), departments’ prevalences showed a positive correlation

with degree and weighted degree centralities respectively for all values of β. The correlations

were much stronger for high β values (β> 0.10). For scenarios with continuous inflow of colo-

nized patients (scenarios 2–4), strong associations between departments’ prevalences and both

network degree and weighted degree were observed for β> 0.05 (Fig 6A and 6B). At extremely

low β value (β = 0.0005), no association between departments’ prevalences and network cen-

tralities was observed for scenarios 2–4. At low β values (0.001� β� 0.05), scenarios 2 and 3
showed weak correlations, however, scenario 4 did show an increasing trend between β values

(0.001� β� 0.05) and correlation coefficients.

Considering our modeling results and assuming no interventions in place, Table 5 indicates

the top three departments with highest mean prevalence expected in the event of MDR-E

spread for the considered hospitals, based on the above-mentioned network characteristics.

Controlling patient movements out of these departments or applying other infection control

interventions targeted to those high centrality departments may prevent MDR-E from spread-

ing to remaining departments of the hospital.

Fig 6. Spearman’s rank correlation coefficient results between averaged network statistics from 50 simulations and departments’ prevalence of MDR-E.

(A) Correlation between departments’ degree and departments’ mean prevalence. (B) Correlation between departments’ weighted degree and departments’

mean prevalence. In all scenarios, different transmission parameter β values were tested. For Scenario 1, mean prevalence over a period of 395 days was used.

For Scenario 2–4, steady state mean prevalence from 200 days onwards was used. Joining datapoints with lines was only done to improve readability but it does

not show a functional relationship as x-axis is a categorical axis. For both A and B, errorbars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008600.g006
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Impact of intervention

We used the model to assess the impact of two interventions: (i) contact isolation of infected

patients where we assumed that contact isolated patients were placed in separate rooms and

their contacts with HCWs were reduced. We also assumed that HCWs were required to wear

gloves and gowns and to follow strict hand hygiene protocols when entering contact isolated

patients’ rooms. Depending on the effectivenss of these measures, contact isolated patients

contributed less towards transmissions in the hospital. For this intervention, we tested differ-

ent contact isolation effectiveness scenarios (30%, 70% and 100%), (ii) a network intervention

where patients moving in and out from the highest (weighted) degree department (ICU) were

screened (see Table 5). If a patient was detected as positive, the patient was put on contact iso-

lation (assuming 90% effectiveness of contact isolation) for the remaining hospital stay. We

calculated the percent reduction in the number of transmissions from the baseline scenario,

where no intervention was applied. Fig 7 shows the impact of both interventions as percent

reduction in the number of transmissions in the hospital over a period of 395 days for different

transmission rates (β). We observed a clear impact of the contact isolation effectiveness where

100% effectiveness resulted in larger reductions in number of transmissions as compared to

30% and 70% contact isolation effectiveness. Depending on the transmission rate (β), the net-

work intervention applied to just one department with the highest degree and weighted degree

resulted in 8–11% reduction in the number of transmissions. Results for extremely low β val-

ues (β< 0.01) are not plotted in Fig 7 because the number of transmissions were very low and

percent reduction results did not make any sense. Fig 7 also shows that a contact isolation of

Table 5. Top three departments of each participating hospital with simulated high mean prevalence based on network characteristics with respect to a hospital-

wide MDR-E spread in the absence of interventions.

Hospital Degree Weighted Degree

UMCU ICU, Neurology, Internal Medicine ICU, Cardiothoracic surgery, Pediatrics ICU

HUVM ICU, Internal Medicine, Anesthesiology ICU, General surgery, Anesthesiology

CUM CVK Anesthesiology, CVK Nephrology/Internal Intensive Care, CCM

Anesthesiology

CBF Emergency Department, CVK Internal Emergency Department, CVK

Anesthesiology

BH Internal medicine D, Internal medicine A, Internal medicine C Internal medicine D, Internal medicine E, Internal medicine B

UKH ICU, Anesthesiology 1, Anesthesiology 2 Interdisciplinary emergency, ICU, Cardiac surgery 1

https://doi.org/10.1371/journal.pcbi.1008600.t005

Fig 7. Impact of interventions on transmissions percent reductions for different β values. Error bars represent 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008600.g007
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infected patients which is 100% effective is best, but if contact isolation is not perfect, a net-

work based approach may be better. Instead of targeting just one highest degree and weighted

degree department, extending the network intervention to include several departments may

result in more reductions in the number of transmissions in the hospital.

Discussion

Our study provides a detailed description of patterns of patients’ movements between depart-

ments in a hospital based on data from several hospitals, and an analysis of how these move-

ments may impact the transmission of bacterial pathogens within hospitals.

Our analysis includes a stratification by patients’ risk levels and its implications for patients’

movements and risk of becoming colonized. Risk of acquiring colonization may differ between

patients and may be determined by several factors such as functional status, immune

responses, chronic or severe diseases. Taking such factors into account, we stratified patients

into low-risk and high-risk groups based on certain ICD-10 codes. Results indicate that high-

risk patients were on average slightly older and stay longer in the hospital than low-risk

patients. High-risk patients moved between departments slightly more often per admission

than low-risk patients; however, this higher number of movements may be due to their longer

hospital stay. We further visualized patient intra-hospital movement patterns from participat-

ing hospitals as networks, and used an ABM to further assess the impact of intra-hospital

movements on pathogen spread. Our modeling results clearly show that a MDR-E spread in

one of the high centrality departments can spread out to all the departments in a hospital. Posi-

tive correlations between departments’ centralities and departments’ mean prevalence show

that departments with high centralities will eventually have high prevalence at higher transmis-

sion rates. Therefore, consideration of departments’ centralities and patient movements in a

given hospital could improve the efficiency of interventions.

Patient movements inside the hospital have been included in few modeling studies for

MRSA and MDR-E pathogens [18–20] but those studies have considered only a few specialty

departments and the departments’ structure (e.g. different department sizes) is often neglected.

Rocha et al. [37] and Pei et al. [38] have recently studied MRSA spread in a hospital network

where they developed a large scale data-driven contact network model including the dynamics

of patient referrals within and between wards and hospitals. Since their model captures the

interaction patterns that were formed from time varying real-world contact data, they did not

explicitly consider the department types and structure of hospitals. Here we identified, based

on data from specific hospitals and data on network centrality, which departments may play a

crucial role in the spread of MDR-E in the entire hospital. In the absence of interventions, sim-

ulation results showed a strong positive correlation between departments’ mean prevalence

and network characteristics such as degree and weighted degree.

Study limitations

Disparities in the department structure exist between hospitals, e.g., a hospital could have

two departments that might be a single department in another hospital. Every hospital

structure is different and a generalization of the hospital structure is therefore not possible.

For the hospitals included in our study, the German hospitals (CUM and UKH) did include

data from emergency departments, but other hospitals did not include emergency depart-

ments in their data set. Such differences in the hospital structures and data sets made it

much harder to compare these hospitals with each other. Moreover, the CUM hospital is a

very large hospital in Berlin which has three separate campuses across Berlin. Although it

would also be possible to consider these CUM campuses as separate hospitals, we did
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observe substantial patient movements between these campuses. Furthermore, the BH did

not have a pediatrics department, and ICU data were stored in a separate database, which

was not provided for the analysis.

In the current work, movement networks were created from routine patient data. It

could be that some patient movements in the datasets were not physical movements, but

represented administrative events, when a patient received treatment from another depart-

ment, while staying in the same place. We are aware of this issue, however we did not have

sufficient information to filter out such movement records from the datasets. A more accu-

rate way of tracing patient movements between the departments of a hospital would be to

use wireless wearable sensors as used in the close proximity interaction studies [39–41],

however, gathering data with such methods is often limited to shorter time periods given

the high costs and privacy protection issues.

In the presented model, upon a successful transmission, a patient is assumed to become

immediately colonized, and starts transmitting the pathogen to others, which may not be the

case in reality. In future work, a latent period may be included to allow some time delay for a

patient to acquire enough bacterial load before transmitting to others. We do not expect strong

impact of a latent period on the correlation results, but a latent period might affect prevalence

levels. Moreover, it can be considered to include a direct pathway from susceptible to an

infected disease state.

Implications for clinical practice

In the current study, patient movements between the departments of a single hospital were

extracted from anonymized hospital admission data. Such data is stored in almost every

hospital information system. This work highlights the potential of using such data to evalu-

ate patient movement patterns and their implications for pathogens spread inside the

hospital.

When an infectious disease is severe, large changes in the patient movement patterns may

become necessary, and will be implemented as witnessed during the COVID-19 pandemic.

However, changing patient movements in a hospital to prevent spread of pathogens such as

MDR-E may not be a viable option. In view of our results about correlation between network

characteristics and prevalence, one could consider establishing a ranking system based on

departments’ network characteristics, such as degree and weighted degree. In such a ranking

system, departments are sorted by their degree and weighted degree. When the colonization

status of patients coming from different departments is unknown, a risk assessment may be

based upon the rank of the department the patient is coming from. If the respective depart-

ment has a high rank, the patient may be placed in isolation or increased hygienic measures

could be taken as a precautionary infection control measure. The advised intervention should

only be applied when there are available resources, in terms of free beds available in the depart-

ment. Moreover, priority should be given to patients in need of urgent medical care and after

that, if resources are still available, patients coming from different departments can be handled

based on the movement ranking system. This may prevent spread of pathogens among depart-

ments that are connected via patient movements.

To conclude, our study emphasizes the importance of intra-hospital patient movements

and their impact on pathogen spread. Applying interventions by targeting hubs, i.e. depart-

ments of higher degree and weighted degree centrality may help to control the spread of

MDR-E. Moreover, when the colonization status of patients coming from different depart-

ments is unknown, a department ranking system based on centrality measures could be used

to improve the efficiency of the interventions.
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S1 Text. Agent Based Intra-hospital model.
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S1 Fig. (A) Inter-department complete HUVM hospital network showing clustering of the

departments. Clustering is computed based on the modularity algorithm in the Gephi software

which detects nodes that are more densely connected together than to the rest of the network.

Node colors show the cluster to which a node belongs. The color of the arrow is based on the

color of the node from where the arrow is originating. The thickness of the arrow is based on

the number of patient’s transfers (weight). The size of the node is based on the weighted

degree. (B) Heat map showing the number of transfers from one department to another

department for the complete HUVM network. A patient is transferred from the source to the

target department.

(PDF)

S2 Fig. Inter-department hospital networks of the UMCU hospital showing patient

directed movements from one department to another. (A) Complete UMCU network with-

out stratification, (B) Low-risk UMCU network, (C) High-risk UMCU network. Nodes repre-

sent departments and arrows represent patient movements between these departments. The

color of the nodes was based on nodes degree whereas size of the nodes was based on the

nodes’ weighted degree.

(PDF)

S3 Fig. (A) Inter-department complete UMCU hospital network showing clustering of the

departments. Clustering is computed based on the modularity algorithm in the Gephi software

which detects nodes that are more densely connected together than to the rest of the network.

Node colors show the cluster to which a node belongs. The color of the arrow is based on the

color of the node from where the arrow is originating. The thickness of the arrow is based on

the number of patient’s transfers (weight). The size of the node is based on the weighted

degree. (B) Heat map showing the number of transfers from one department to another

department for the complete UMCU network. A patient is transferred from the source to the

target department.

(PDF)

S4 Fig. Inter-department hospital networks of the CUM hospital showing patient directed

movements from one department to another. (A) Complete CUM network without stratifi-

cation, (B) Low-risk CUM network, (C) High-risk CUM network. Nodes represent depart-

ments and arrows represent patient movements between these departments. The color of the

nodes was based on nodes degree whereas size of the nodes was based on nodes weighted

degree. CBF, CCM and CVK are different campuses of the CUM hospital.

(PDF)

S5 Fig. (A) Inter-department complete CUM hospital network showing clustering of the

departments. Clustering is computed based on the modularity algorithm in the Gephi software

which detects nodes that are more densely connected together than to the rest of the network.

Node colors show the cluster to which a node belongs. The color of the arrow is based on the

color of the node from where the arrow is originating. The thickness of the arrow is based on

the number of patient’s transfers (weight). The size of the node is based on the weighted degree.

(B) Heat map showing the number of transfers from one department to another department for

the complete CUM network. A patient is transferred from the source to the target department.

(PDF)
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S6 Fig. Inter-department hospital networks of the BH hospital showing patient directed

movements from one department to another. (A) Complete BH network without stratifica-

tion, (B) Low-risk BH network, (C) High-risk BH network. Nodes represent departments and

arrows represent patient movements between these departments. The color of the nodes was

based on nodes degree whereas size of the nodes was based on the nodes’ weighted degree.

(PDF)

S7 Fig. (A) Inter-department complete BH hospital network showing clustering of the

departments. Clustering is computed based on the modularity algorithm in the Gephi soft-

ware which detects nodes that are more densely connected together than to the rest of the

network. Node colors show the cluster to which a node belongs. The color of the arrow is

based on the color of the node from where the arrow is originating. The thickness of the

arrow is based on the number of patient’s transfers (weight). The size of the node is based

on the weighted degree. (B) Heat map showing the number of transfers from one depart-

ment to another department for the complete BH network. A patient is transferred from the

source to the target department.

(PDF)

S8 Fig. Inter-department hospital networks of the UKH hospital showing patient directed

movements from one department to another. (A) Complete UKH network without stratifi-

cation, (B) Low-risk UKH network, (C) High-risk UKH network. Nodes represent depart-

ments and arrows represent patient movements between these departments. The color of the

nodes was based on nodes degree whereas size of the nodes was based on the nodes weighted

degree.

(PDF)

S9 Fig. (A) Inter-department complete UKH hospital network showing clustering of the

departments. Clustering is computed based on the modularity algorithm in the Gephi soft-

ware which detects nodes that are more densely connected together than to the rest of the

network. Node colors show the cluster to which a node belongs. The color of the arrow is

based on the color of the node from where the arrow is originating. The thickness of the

arrow is based on the number of patient’s transfers (weight). The size of the node is based

on the weighted degree. (B) Heat map showing the number of transfers from one depart-

ment to another department for the complete UKH network. A patient is transferred from

the source to the target department.

(PDF)

S10 Fig. Mean number of patients present per day in every department of the HUVM hos-

pital. This data was used to define department size in terms of beds per department.

(PDF)

S11 Fig. Daily inter-department discharge rates from every department in the HUVM hos-

pital. Departments are ordered by department size as shown in S10 Fig.

(PDF)

S12 Fig. Patient disease state flow chart. S refers to Susceptible, C refers to Colonized, and I

refers to symptomatic infected patients. FOI is the force of infection.

(PDF)

S13 Fig. Impact of additional LOS for infected patients on steady state prevalence using

Scenario 3 (5% continuous arrival of colonized patients). Transmission parameter β = 0.25
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was used in each department.

(PDF)

S14 Fig. Spearman’s rank correlation coefficients between departments prevalence and

network characteristics (degree and weighted degree). Different values for increase in the

LOS for infected patients were used to identify the impact of this parameter on the correlation

between steady state departments prevalence and network characteristics. Scenario 3 (5% con-

tinuous arrival of colonized patients) with transmission parameter β = 0.25 for every depart-

ment was used.

(PDF)

S15 Fig. Impact of additional LOS for infected patients on the overall hospital LOS distri-

butions in both risk groups (Low-risk and High-risk) and its comparison with the actual

HUVM data for both risk groups. Grey lines in the boxes show median of the data.

(PDF)

S1 Numerical Data. Numerical data of Fig 1C.

(XLSX)

S2 Numerical Data. Numerical data of Fig 2D.

(XLSX)

Acknowledgments

We would like to thank Dr. M.C.J. Bootsma and Thi Mui Pham for useful suggestions and

discussions.

Author Contributions

Conceptualization: Hannan Tahir, Luis Eduardo López-Cortés, Axel Kola, Dafna Yahav,
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