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ABSTRACT
Background  Auriculocondylar syndrome (ARCND) is a 
rare genetic disease that affects structures derived from 
the first and second pharyngeal arches, mainly resulting 
in micrognathia and auricular malformations. To date, 
pathogenic variants have been identified in three genes 
involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 
and EDN1) and some cases remain unsolved. Here we 
studied a large unsolved four-generation family.
Methods  We performed linkage analysis, resequencing 
and Capture-C to investigate the causative variant of this 
family. To test the pathogenicity of the CNV found, we 
modelled the disease in patient craniofacial progenitor 
cells, including induced pluripotent cell (iPSC)-derived 
neural crest and mesenchymal cells.
Results  This study highlights a fourth locus causative 
of ARCND, represented by a tandem duplication of 
430 kb in a candidate region on chromosome 7 defined 
by linkage analysis. This duplication segregates with the 
disease in the family (LOD score=2.88) and includes 
HDAC9, which is located over 200 kb telomeric to the 
top candidate gene TWIST1. Notably, Capture-C analysis 
revealed multiple cis interactions between the TWIST1 
promoter and possible regulatory elements within the 
duplicated region. Modelling of the disease revealed an 
increased expression of HDAC9 and its neighbouring 
gene, TWIST1, in neural crest cells. We also identified 
decreased migration of iPSC-derived neural crest cells 
together with dysregulation of osteogenic differentiation 
in iPSC-affected mesenchymal stem cells.
Conclusion  Our findings support the hypothesis 
that the 430 kb duplication is causative of the ARCND 
phenotype in this family and that deregulation of 
TWIST1 expression during craniofacial development can 
contribute to the phenotype.

INTRODUCTION
Auriculocondylar syndrome (ARCND) (OMIM 
#602483, #614669 and #615706), also referred 
to as ‘question mark ear syndrome’, is a rare 
Mendelian disorder with a prevalence of under 1 
in 1 000 000 (Orphanet; http://www.orpha.net/​
consor/cgi-bin/index.php). ARCND is characterised 
by micrognathia, question mark ears, mandibular 
condyle hypoplasia, and other less common features 
such as microstomia, glossoptosis, postauricular 

tags and prominent cheeks.1 2 There is wide clinical 
variability, including cases with isolated ear anoma-
lies. Treatment is mainly corrective through surgical 
intervention for mandibular ramus lengthening 
using distraction osteogenesis and accompanied 
by orthodontic treatments and speech therapy.3 
Understanding the aetiology of this disorder and 
elucidating genetic causes improve counselling and 
may lead to the development of preventive or ther-
apeutic strategies, besides deepening our knowl-
edge of craniofacial development.

The main structures affected in ARCND are 
derived from the first and second pharyngeal arches 
that are colonised by neural crest cells (NCCs), 
originating from the neural plate border by epithe-
lial mesenchymal transition, and mesenchymal stem 
cells. NCCs are multipotent cells with high migra-
tory ability that can differentiate into several deriv-
atives such as cartilage, bone, peripheral neurons, 
melanocytes and glia, and they have a central role 
in craniofacial development.4 Disruption in these 
migratory, patterning or differentiation processes 
may result in congenital craniofacial malforma-
tions.5 So far, pathogenic variants in patients with 
ARCND have been found in genes of the EDN1-
endothelin-1 receptor type A (EDNRA) pathway, 
which are expressed by the neural crest-derived 
ectomesenchymal cells of pharyngeal arches and 
are responsible for the patterning of the mandibular 
domain in the first arch.6–8 The most commonly 
mutated gene in individuals with ARCND is 
PLCB4 (MIM 600810; 58% of patients), followed 
by GNAI3 (MIM 139370; 19% of cases) and 
EDN1 (MIM 131240 and MIM 139370; 15% of 
cases).9–12 Approximately 8% of ARCND cases 
remain unsolved.9 13

Most of the knowledge concerning ARCND 
pathogenesis comes from functional studies using 
animal models of craniofacial development, such as 
mouse and zebrafish.14 15 However, animal models 
may not completely reflect what happens in human 
development,16 and human stem cells or induced 
pluripotent cells (iPSCs) represent a complementary 
model system to study development in a human-
specific context.17–19 iPSCs, which can differentiate 
into cell types such as NCCs and NCC-derived 
mesenchymal-like stem cells, can provide insight 
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into human craniofacial development where facial structures 
derived from the first pharyngeal arch are compromised, as 
successfully exemplified in the case of Richieri-Costa-Pereira 
syndrome (RCPS17). RCPS, caused by biallelic, hypomorphic 
alleles at the DEAD-box helicase EIF4A3,20 shares overlapping 
clinical features with ARCND particularly in mandible underde-
velopment.17 20 In this work, we studied a previously reported 
ARCND family13 and performed genetic and functional inves-
tigations using patient iPSCs that had been differentiated into 
NCC (iPSC-derived NCCs) and mesenchymal-like stem cells 
(nMSC) derivatives. Our findings suggest that duplication of 
sequences at the HDAC9 locus can lead to the development 
of ARCND, possibly by disruption of regulatory elements that 
control expression of the neighbouring TWIST1 gene.

MATERIALS AND METHODS
Patients and DNA samples
The Brazilian family (referred to as F1; online supplemental 
table 1) is a non-consanguineous family with 11 members 
showing the typical characteristics of ARCND. Of those docu-
mented, the majority presented with question mark ears (8 of 
10), microstomia (8 of 10) and micrognathia (6 of 10), with 
considerable intrafamilial variability observed.13 Genomic DNA 
was extracted from peripheral blood lymphocytes according to 
Miller et al.21

Sanger sequencing
Primers and conditions used in PCR amplification prior to Sanger 
sequencing were as described in Romanelli Tavares et al.22 The 
data were analysed using Sequencher V.5.1 software (http://​
genecodes.com/). Variants present in the 1000 Genomes Data-
base, dbSNP150 (through University of California, Santa Cruz 
Genome Browser, UCSC; https://genome.ucsc.edu/), Genome 
Aggregation Database (https://gnomad.broadinstitute.org/) or in 
the Online Archive of Brazilian Mutations (http://abraom.ib.usp.​
br/) were considered unlikely to be pathogenic.

Linkage analysis
Nine affected individuals (II-4, II-6, II-8, III-5, III-10, III-13, III-
14, IV-3 and IV-6) and three unaffected individuals (III-6, III-11 
and IV-4) were genotyped using the GeneChip Human Mapping 
50K Array Xba 240 (Affymetrix), according to the manufactur-
er’s protocol. The genotype data were analysed using Affymetrix 
Genotyping Console. The overall quality of the samples was esti-
mated through quality control (QC) algorithm (dynamic model 
algorithm with QC call rate) using a threshold of 90%.

Linkage analysis was performed with the easyLINKAGE-Plus 
V.5.08 package.23 Mendelian inconsistencies were removed using 
PedCheck V.1.024 and the non-Mendelian inconsistencies with 
Merlin V.1.0.1 software.25 The logarithmic odds (LOD) score 
was obtained using the parametric multipoint test with GeneHu-
nter V.2.1r5.23 26 Analysis parameters were defined as autosomal 
dominant, estimated penetrance K=0.9, disease allele frequency 
estimated at 0.0001 and marker spacing at 0.0010 cM, and map 
distances were acquired from AFFY 100K deCODE Human 
GRCh37/hg19, and SNPs with a call rate less than 90% were 
removed.

The candidate region was confirmed by amplification of 
microsatellite markers from the ABI PRISM Linkage Mapping 
Set V.2.0 (Perkin-Elmer, Applied Biosystems, Foster City, Cali-
fornia), read in a MegaBACE 1000 automatic sequencer (Amer-
sham, GE Healthcare, Little Chalfont, UK) according to the 

manufacturer’s protocol and analysed with MegaBACE Genetic 
Profiler software (Amersham, GE Healthcare).

Endeavour gene prioritisation was applied to the candidate 
Chr7 region (https://endeavour.esat.kuleuven.be/)27 to generate 
a candidate gene list. Training gene lists (reference genes) were 
compiled according to the following criteria: (a) genes with a 
central role in the formation of the structures affected in patients 
with ARCND (eg, ears, mandible and mandibular condyle); or 
(b) genes related to the embryonic developmental processes 
involved in the formation of some of the structures affected in 
patients with ARCND (eg, neural crest and formation of the first 
and second pharyngeal arches) (online supplemental table 2).

Whole exome sequencing
Whole exome libraries were generated using either the Agilent 
SureSelect Human All Exon 50 Mb Kit (patients IV-3 and IV-6; 
performed at the Center for Human and Clinical Genetics, 
Leiden University Medical Center, The Netherlands) or the Illu-
mina TruSeq Kit (patients III-10 and III-13; performed at Luiz 
de Queiroz College of Agriculture, São Paulo, Piracicaba, Brazil). 
Whole exome sequencing (WES) was carried out on Illumina 
HiSeq 2000 (2 x 100 bp paired-end run). Sequences were aligned 
to the human reference GRCh37 (hg19) using the Burrows-
Wheeler Aligner (BWA).28 Processing and variant calling were 
performed along with batch samples using the Unified Geno-
typer tool (Genome Analysis Toolkit, GATK) (http://www.broa-
dinstitute.org/gatk/),29 using default parameters, with exception 
to the following changes: minIndelCnt 3; minIndelFrac 0.020; 
contamination 0.02; metrics snps.metrics; stand_call_conf 30.0; 
stand_emit_conf 10.0; min_base_quality_score 12; dcov 300; 
baq CALCULATE_AS_NECESSARY. Annotation was done with 
Annovar (http://annovar.openbioinformatics.org/).30 Variants 
were selected if they had been approved by the filter quality 
(PASS), frequency  ≤0.01 in 1000 Genomes Database (https://
www.internationalgenome.org/) and Exome Variant Server 
(ESP6500; https://evs.gs.washington.edu/EVS/), heterozygous 
genotype in all four affected individuals sequenced, and with 
allele count ≤4 in the local sequenced cohort of patients without 
ARCND (total allele number=132).

Targeted sequencing
Targeted sequencing at the HDAC9/TWIST1 locus was performed 
using a resequencing capture panel designed to the TWIST1 gene 
and flanking regions (2.4 Mb with boundaries selected according 
to human to mouse synteny; chr7:17,346,143–19,695,462, 
GRCh38).31 Genomic DNA from family members (three 
affected and one unaffected family members: IV-3, IV-6, III-5, 
II-7) was fragmented by sonication, ligated to indexed Illumina 
sequencing adapters and amplified. Purified libraries were mixed 
with the biotinylated probe mixture (SeqCap EZ Choice Library 
System, Roche Nimblegen) and enriched DNA for the targeted 
regions sequenced on an Illumina HiSeq 2500. Sequencing 
adapter sequences and low-quality bases were removed using 
Trimmomatic (V.0.32; parameter SLIDINGWINDOW: 4:2032) 
and the trimmed read pairs were then aligned to human reference 
genome hg19 using BWA (V.0.7.12) with default parameters.28 
The aligned reads were analysed using amplimap (V.0.2.9)33 
and coverage calculated using BEDtools V.0.25.0.34 Variants 
were called separately in each sample using Platypus (V.0.8.1)35 
and then concatenated, merged and normalised using BCFtools 
(V.1.5; https://github.com/samtools/bcftools) and annotated 
with Annovar.30
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For the breakpoint isolation, we examined the resequencing 
data at the duplication junctions and designed the following 
primers to amplify the breakpoint: F-5′-​CCCA​TGCC​TCAT​
TCTT​TCTTTG-3′ and R-5′-​TGGCAGGCTTTAGTGTTCTT-3′.

Capture-C
To identify the chromatin regions that the TWIST1 promoter 
interacts with, we used a Capture-C approach.36 For the chro-
matin template we prepared human mesenchymal cells from 
human embryonic calvaria (three different samples at 12–14 
postconception weeks, provided by the Human Developmental 
Biology Resource, UK). We removed the skin and dura mater and 
then dissected a bony strip (approximately 0.5 mm wide) that 
included the frontal bone, coronal suture and parietal bone and 
placed this in a gelatinised culture dish containing the following 
selective medium: BHK-21 Glasgow MEM (Gibco 21710-
025)—to this 500 mL we added glutamine (Gibco 25030-024), 
2 mM sodium pyruvate (Gibco 11360-039), 100 U/mL peni-
cillin/streptomycin, non-essential amino acids (Gibco 11140-
035), 10% Fetal Bovine Serum (FBS) (Gibco 10270), 0.1 mM 
β-mercaptoethanol and Lif (inhouse prepared Lif-containing 
medium from modified Chinese Hamster Ovary (CHO) cells). 
Cells were allowed to grow out of the bone for 3–5 days and then 
collected (discarding the bony strips) and cultured again using 
the same media. Cells were passaged at least twice more before 
collection for 3C library preparation. Cells (10–15 million) 
were fixed in formaldehyde and then lysed prior to digestion of 
the cross-linked DNA template with DpnII and DNA ligation. 
Following DNA purification, the 3C library was sonicated and 
used to prepare a sequencing library which was then mixed with 
biotinylated oligonucleotides to enrich for fragments containing 
the TWIST1 promoter. Two successive rounds of capture were 
performed. Biotinylated oligonucleotides were designed using 
an online tool (http://apps.molbiol.ox.ac.uk/CaptureC/cgibin/​
CapSequm.cgi) to each side of a DpnII fragment that over-
lapped with the TWIST1 promoter: TWIST1pro1: ​ATCC​AGTG​
GACA​ATTA​GGCT​TCGT​GAGC​CCCA​ATTC​CAAA​TGCT​
TGGA​TACG​CTAA​CATT​TTAA​GCAT​TTCT​GTCT​GTAA​GTTA​
AAAC​GAAG​AGCC​CCAA​AGAG​GGTG​TTAA​TGTAGATC and 
TWIST1pro2: ​GATC​TTCC​GCAG​CGCG​GCGA​ACGC​CTCG​
TTCA​GCGA​CTGG​GTGC​GCTG​GCGC​TCCC​GCAC​GTTG​
GCCA​TGAC​CCGC​TGCG​TCTG​CAGC​TCCT​CGTA​AGAC​
TGCG​GACT​CCCG​CCGCCGCT. Captured fragments were 
sequenced on an Illumina MiSeq (2 x 150 bp paired-end run; 
MRC Weatherall Institute of Molecular Medicine (WIMM), 
Oxford).

Generation of iPSC, NCC and MSC
Three ARCND samples and three control samples were used for 
generation of iPSCs. One of the control iPSCs used in this study 
(F7405-1) had been generated with retroviral transduction and was 
described and characterised elsewhere.37 The other cells were estab-
lished from erythroblast cultures derived from peripheral blood 
collection (from three affected individuals: II-4, II-8 and III-5; 
and two non-related controls: F8799 and F9048), reprogrammed 
as described in Okita et al38 in an Amaxa Nucleofector II (T-016 
program for erythroblasts) with either NHDF (Normal Human 
Dermal Fibroblasts) or CD34+ (erythroblasts) nucleofector kits 
(Lonza), according to the manufacturer’s recommendations. After 
nucleoporation, iPSCs were obtained exactly as described in Miller 
et al.17 Derivation of NCC from iPSC and Mesenchymal Stem Cells 
(MSC) differentiation from NCC were also performed as previously 
published.39 Characterisation of iPSC, NCC and MSC is described 

in the online supplemental material along with the antibodies used 
(online supplemental table 3). To assess EDN1/EDNRA pathway-
related gene expression, NCCs were treated with EDN1 100 nM 
for 24 hours.

MSC osteogenic differentiation
Cells were seeded in 12-well plates (Corning) (104 cells/cm2) in 
triplicate. After 3 days, the medium was replaced with an osteo-
genic induction medium (StemPro Osteogenesis Kit, Life Tech-
nologies); in parallel, negative controls were cultivated in MSC 
medium. Differentiation and the MSC media were changed 
every 2–3 days. After 9 days, alkaline phosphatase (ALP) activity 
was quantified through incubation with phosphatase substrate 
(Sigma-Aldrich), and the resulting p-nitrophenol was quanti-
fied colourimetrically using Multiskan EX ELISA Plate Reader 
(Thermo Scientific) at 405 nm. Absorbance data were normalised 
by subtracting from undifferentiated, negative controls.

Wound healing assay
NCCs were seeded at 5×105 cells/cm2 into non-coated 
24-well plates (Corning) in NCC medium. When cells reached 
90%–100% confluence, the monolayer was scratched in a 
straight line with a p200 pipette tip. The culture medium was 
then replaced and cell migration images were acquired at 0 hour 
and 24 hours. All samples were assessed simultaneously in two 
independent experiments. The percentage of the wound covered 
by migrating cells after 24 hours was quantified in ARCND and 
control NCCs using ImageJ.

Cell cycle assay
To determine the percentage of cells in G0/G1, S and G2/M phases 
based on DNA content, a cell cycle assay was performed using 
the Guava Cell Cycle Reagent (Millipore). Cells were seeded at a 
density of 0.2×105 cells/cm2. When the cell culture reached 50% 
confluence, cells were cultured in NCC medium without basic-
fibroblast growth factor (bFGF) for 24 hours. Complete NCC 
medium was added afterwards and the next day cells were detached 
using Accutase to obtain a single-cell suspension and neutralised 
with Dulbecco's Modified Eagle Medium (DMEM). Suspended 
cells were collected in a tube and centrifuged at 450 g for 5 min. 
The supernatant was removed and ice-cold 70% ethanol was added 
gently to the cell pellet and stored in −20°C for at least 3 hours. 
Fixed cells were washed in phosphate-buffered saline (PBS), resus-
pended with Guava Cell Cycle Reagent and incubated for 30 min 
in the dark. Cells were analysed with the Guava EasyCyte Flow 
Cytometer (Millipore) according to the manufacturer’s instructions.

Real-time QPCR
Total RNA was extracted from cells with the NucleoSpin RNA 
II Extraction Kit (Macherey-Nagel) following the manufactur-
er’s recommendations. Total RNA was converted into cDNA 
using SuperScript IV (Life Technologies) and oligo-dT primers. 
Real-time QPCR reactions were performed with 2X Fast SYBR 
Green PCR Master Mix (Life Technologies) and 50–400 nM of 
each primer. Fluorescence was detected using the QuantStudio 
5 System (Life Technologies) under a standard temperature 
protocol. Primer pairs were either designed with Primer-BLAST 
or retrieved from PrimerBank and supplied by Exxtend (online 
supplemental table 4). geNorm (https://genorm.cmgg.be/) was 
used to determine the normalisation factor (using gene expres-
sion of TATA-box binding protein (TBP), hydroxymethylbilane 
synthase (HMBS) or glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH)) and calculate normalisation factors (E−ΔC) for 
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each sample. The final relative expression values were deter-
mined based on the Pfaffl40 method.

Statistical analysis
All experiments were performed in triplicate, unless stated other-
wise. Statistical comparisons were performed using GraphPad 
Prism V.5 software. Unpaired Student’s t-test and two-way anal-
ysis of variance (ANOVA) values were represented as mean±SE. 
The level of statistical significance was set at p<0.05.

RESULTS
Evidence of a fourth locus for ARCND
Sanger sequencing of PLCB4, GNAI3 and EDN1 did not 
reveal any pathogenic variants in the coding regions, 5′ 
UTRs (untranslated regions) or splice sites of these genes, 
suggesting that a different locus might underlie the ARCND 
in the family. Next, we carried out a linkage analysis that 
revealed three regions with positive LOD scores on chro-
mosomes 7, 14 and 18 (online supplemental figure 1). The 
highest LOD score (2.88), which is close to the threshold 
value of  ≥3.0 for significance41 and the maximum theo-
retical LOD score for this family (2.93), was observed in a 
region of about 17.6 Mb on chromosome 7 (chr7:14395902–
32017194 (hg38); table  1). Genotyping of microsatellite 
markers narrowed the chromosome 7 linkage region to 
chr7:14395902–28158440 (hg38) (online supplemental 
figure 2).

We performed WES on four affected individuals. After 
filtering (as described in the methods), only one variant 
from the candidate regions on chromosomes 7, 14 and 
18 remained, a synonymous change located in TRIL 
(NM_014817.3:c.345G>A; p.(=)), classified as a variant of 
uncertain significance (BP4, PM2 and PP4 according to the 
American College of Medical Genetics and Genomics guide-
lines42). Sanger sequencing of additional family members 
(nine affected and five non-affected individuals) showed 
that the variant did not segregate with the disease and 
therefore it was not considered further. Variants in candi-
date genes within the endothelin pathway (EDN1, EDNRA, 
DLX5, DLX6, FURIN and ECE1) were also investigated 
with WES in the same manner, but no obvious pathogenic 
variants were detected. We then took a gene prioritisation 
approach, and TWIST1 was the top-ranked gene in this anal-
ysis using two training lists, with a p value equal to 0.00053 
and 0.00027 (using training lists ‘a’ and ‘b’, respectively; 
online supplemental table 5). TWIST1, a basic transcription 
factor of the helix-loop-helix (bHLH) family, is expressed 
in cranial mesoderm and neural crest-derived mesenchyme, 
which are tissues involved in craniofacial development.43 44 
Its role in mandibular condyle and mandible formation has 
also been demonstrated.45 46 These observations led us to 
further investigate the genomic region surrounding TWIST1.

Targeted resequencing of a 2.4 Mb region around 
TWIST131 revealed no potential pathogenic variants in 
TWIST1, but did detect a tandem duplication within 
HDAC9 that was only present within the three affected 
family members tested (figure 1A and online supplemental 
figure 3). We designed primers to the sequences either side 
of the duplication and characterised the duplication break-
point (figure  1B,C). The duplication spanned 430 302 bp 
(NC_000007.14:g.18437239_18867540dup) telomeric to 
TWIST1, covering most of the HDAC9 gene. Multiple tran-
script isoforms of HDAC9 are duplicated in their entirety 
(including transcript isoforms 3, 8, 9, 10 and 11); however, 
full-length catalytically active transcript isoforms47 (tran-
script isoforms 1, 5, 6 and 7) extend beyond the breakpoint 
and therefore are likely to be disrupted by this duplication. 
Breakpoint amplification and Sanger sequencing within the 
family demonstrated segregation of the duplication with 
the phenotype (figure 1B). All unaffected individuals were 
negative, suggesting full penetrance in this family (online 
supplemental figure 4).

Analysis of CNVs in DECIPHER (https://decipher.sanger.​
ac.uk/)48 revealed 19 patients with copy-number gains in 
the region. With the exception of a single small duplication 
(patient identification 276644), all the CNVs that overlap 
the one described here are much larger and encompass 
multiple genes. Nevertheless, 7 out of 19 have descriptions 
that include ear malformation among other features (patient 
identification: 393911, 393942, 395511, 396512, 280316, 
396373 and 394346) include enhancer eTW6 (Hs2307) that 
regulates the expression of Twist149 and other two regula-
tory elements (eTW7 (Hs2306) and (eTW5) Hs644; VISTA 
Enhancer Browser). Similarly, 7 out of 19 DECIPHER patients 
presented with micrognathia (patient identification: 393911, 
393942, 395511, 280316, 2363, 396373 and 394346); these 
duplications also include eTW6, except for individual 2363. 
Interestingly, one of the DECIPHER duplications (276644; 
179 kb) is enclosed entirely within the ARCND duplicated 
region; however, this patient does not have ARCND clinical 
features (2021, Olivier Faivre, L., personal communication). 
We note that the non-overlapping sequence between patient 
276644 and the ARCND duplication includes the aforemen-
tioned regulatory TWIST1 elements (online supplemental 
figure 5 and table 6).

To explore how the duplication identified above, which is 
over 200 kb telomeric to the candidate gene TWIST1, could 
be pathogenic, we carried out a Capture-C analysis50 using 
the TWIST1 promoter as the viewpoint. This demonstrated 
that there were multiple contacts between TWIST1 and 
regions to either side. The highest frequency of interactions 
was telomeric of TWIST1, particularly within the HDAC9 
gene and the region spanned by the duplication (figure 1A). 
This implies that this region contains regulatory elements 

Table 1  Regions with positive logarithmic odds (LOD) scores obtained by linkage analysis

Positive LOD score regions

Chromosome
Maximum 
LOD score

From To Region size 
(Mb)

Number of genes (NCBI 
RefSeq curated)rsID Physical position hg38 (bp) rsID Physical position hg38 (bp)

Chr7 2.88 rs1036140 14 395 902 rs28190 32 017 194 17.6 146

Chr14 2.41 rs10484206 49 103 955 rs10498419 49 978 179 0.87 14

Chr18 1.67 rs1398193 48 460 768 rs768360 50 237 703 1.8 20

The maximum theoretical LOD score for this family was equal to 2.93.
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involved in the control of TWIST1 expression, providing a 
possible pathogenic mechanism for the duplication.

Analysis of the duplication in iPSC and craniofacial progenitor 
cells
To further investigate the pathogenicity of the duplication, we 
used an in vitro approach to model the disease, generating iPSC 
from affected and unaffected individuals in the family. The 
experimental design was based on recapitulating different stages 
of early embryonic development that are relevant to the ARCND 
phenotype, most particularly iNCC (iPSC-derived NCCs) and 
nMSC (iNCC-derived mesenchymal-cell like). All cell types 
were fully characterised and showed cellular specific expression 
of relevant markers and typical cell morphology (online supple-
mental figures 6–8).

Expression analysis of HDAC9, TWIST1 and ARCND-related 
markers
Previous analysis of HDAC9 has shown that it contains regula-
tory elements important for TWIST1 expression.49 51 Together 
with our prioritisation and Capture-C analysis, this prompted 
us to investigate the expression of both of these genes in iPSC 
and derived cell types. TWIST1 and HDAC9 mRNA in iPSC did 
not show any difference between patients and controls (data not 
shown). However, an increase in HDAC9 (3.15-fold, unpaired 
t-test p=0.009) and TWIST1 (2.03-fold, unpaired t-test p=0.03) 
mRNA was observed in the ARCND-iNCC (figure  2A,B) 
compared with controls (unpaired t-test).

In order to evaluate if there is deregulation of the EDN1 
pathway in the ARCND cells, we investigated the expression of 

the key downstream target of this pathway, DLX5,15 52 as well 
as other genes shown to be activated, BARX1, NKX3.2, GSC, 
DLX3 and HAND2.53 54 Expression of BARX1, NKX3.2 and GSC 
was not significantly different between controls and ARCND 
iNCCs (two-way ANOVA, p>0.05; online supplemental figure 
9), while HAND2, DLX3 and DLX5 mRNA levels were too low 
to be measured (data not shown).

Analysis of ARCND iNCC and nMSC function
To screen for cellular phenotypes, we assessed cell cycle and 
migration of ARCND iNCC compared with controls, as alter-
ations in these cellular functions are considered to be underlying 
mechanisms in several NCC-related diseases.17 55 56 Although 
no significant difference in cell cycle distribution was detected 
between patient and control cells, a significant decrease in 
migratory capacity of ARCND iNCCs was observed compared 
with controls (4.3-fold decrease, Student’s t-test, p=0.0009) 
(figure 2C–E).

Marked mandibular hypoplasia is often seen in patients with 
ARCND, which could be caused by dysregulation of osteo-
genic differentiation. Therefore, we investigated this process in 
nMSCs. Our data showed that during osteogenic differentiation, 
ALP enzymatic activity was significantly diminished in ARCND-
nMSCs after 9 days of osteoinduction (decrease of 20.3-fold, 
paired t-test p=0.029; figure  3A,B). In addition, alizarin red 
staining revealed a subtle decrease in matrix mineralisation in 
ARCND-nMSCs in comparison with controls (t-test p<0.05; 
figure 3C). Next, we assessed the expression of key osteogen-
esis genes (figure  3D–I). ALP showed a statistically significant 

Figure 1  The ARCND 430 kb duplication. (A) Top: ideogram of the chromosome 7 linkage region (red square) indicating the duplicated region (green 
square). Middle: the HDAC9/TWIST1 locus and duplicated region (chr7:18 437 238–18 867 540, hg38; blue bar), with Capture-C data above showing cis 
interactions (the green peaks indicating the frequency of contacts) between the TWIST1 promoter and possible regulatory elements. The overall domain of 
interactions is indicated by the black arrowheads; the highest frequency of contacts is within HDAC9. The positions of Twist1 enhancers eTw5-751 are shown 
in relation to the duplication. Bottom: University of California, Santa Cruz (UCSC) Genome Browser tracks for enrichment levels of the H3K27Ac histone 
mark across the selected region and conservation (https://genome.ucsc.edu/index.html). (B) Left: pedigree of the ARCND family with the proband indicated. 
Right: schematic figure of the duplication (NC_000007.14:g.18437239_18867540dup) and breakpoint PCR. The arrow indicates the duplication breakpoint 
product; affected individuals are marked with an asterisk. (C) Electropherogram of representative Sanger sequencing from an individual with ARCND 
showing the breakpoint nucleotide sequence. All figures are according to GRCh38 coordinates. ARCND, auriculocondylar syndrome.
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downregulation (p=0.035), whereas MSX2 expression was 
higher in ARCND-nMSC compared with the controls, although 
not reaching statistical significance. No significant difference 
was seen in the expression of RUNX2, TWIST1, BGLAP and 
COL1A1. Together, these results indicate a delay or impairment 
of osteogenic differentiation.

DISCUSSION
In this work, we used linkage and resequencing analysis to reveal 
a new ARCND locus on chromosome 7. We identified a novel 

430 kb CNV that duplicated sequences beginning ~280 kb telo-
meric of TWIST1, the gene prioritised as the best candidate for 
the phenotype in the linkage region. The CNV, which segregated 
with the disease in a four-generation large Brazilian family, dupli-
cated possible regulatory element sequences within HDAC9, 
which we demonstrated, through a chromosome conformation 
capture assay, make contact with the TWIST1 promoter. This 
aligns with previous studies of this region that show that mouse 
Twist1 regulatory regions can be found within both introns and 
exons of the Hdac9 gene.49 51 57 Notably, a 23 kb deletion that 

Figure 2  RT-QPCR assessment of (A) HDAC9 and (B) Twist1 showing upregulated expression in ARCND-derived NCC. Both genes showed statistically 
significant differences among controls and ARCND. **Two-tailed p=0.0094; *one-tailed p=0.0250, unpaired Student’s t-test. (C–E) Evaluation of cell cycle 
and cell migration in ARCND NCC. (C) Cell cycle assay, not statistically significant. (D) Bar graph depicting the rate of cell migration (cell-covered area, 
%) after 24 hours; data shown are representative of two independent assays and three independent measurements in each. ***Two-tailed, p=0.0009, 
Student’s t-test. (E) Representative phase-contrast micrographs acquired immediately after wounding at 0 and 24 hours. All values represent mean±SEM. 
ARCND, auriculocondylar syndrome; AU, arbitrary unit; NCC, neural crest cells.
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included three of these regulatory element sequences, which may 
also be bound by craniofacial transcription factors Lmx1b and 
Tfap2, was associated with a reduction in Twist1 expression.51 
Furthermore, rearrangements that leave the gene intact but 
remove regions telomeric of TWIST1 lead to Saethre-Chotzen 
syndrome (SCS),58–61 which is caused by TWIST1 haploinsuffi-
ciency. SCS is characterised by craniosynostosis of the coronal 
sutures, which is not found in ARCND. Overall, these findings 
underline the importance of this region for TWIST1 regula-
tion and suggest that duplication of these and other regulatory 
elements could be associated with altered TWIST1 expression 
during development. Importantly, transgenic enhancer assays 
have demonstrated in both mouse and zebrafish that some of 

these regulatory elements can drive Twist1 pharyngeal expres-
sion. For example, the enhancer known as eTw651 or Hs2307 
(Vista Enhancer Browser62) that overlaps with Hdac9 exon 19 
drives the expression of Twist1 in mouse E11.5 pharyngeal 
arches,49 51 providing a mechanism whereby rearrangements at 
this genomic locus could lead to the pharyngeal arch-related 
developmental abnormalities found in ARCND. Further support 
for a link between increased TWIST1 expression and the devel-
opmental anomalies found in our ARCND family comes from 
overlap with the clinical features described in cases with three 
copies of the 7p chromosomal region. For example, micrognathia 
or small mandibles have been found in patients with partial 
trisomy 7p.63–66 We note, however, that our patients did not 

Figure 3  Evaluation of osteogenic potential in ARCND-mesenchymal stem cells (MSC). (A) Quantification of ALP enzymatic activity after 9 days and (B) 
alizarin red staining after 21 days of osteoinduction in ARCND-MSC in comparison with controls. Measurements from differentiated cells were normalised to 
paired, undifferentiated negative staining controls. (A and B) Student’s t-test, ALP activity two-sided and alizarin red one-sided (*p<0.05). (C) Representative 
alizarin red staining micrographs showing matrix mineralisation (in dark brown) of ARCND-MSC samples versus one representative control (osteogenic 
differentiation for 9 days); micrographs are shown paired to respective negative controls (undifferentiated cells). (D–I) Transcriptional profiles of TWIST1 and 
osteogenic differentiation markers during the initial 6 days of osteoinduction. ALP was statistically significant (*p<0.05). MSX2, RUNX2, COL1A1 and BGLAP 
did not show statistically significant differences (ns). All values represent mean±SEM. (D–I) Two-way ANOVA with Bonferroni post-tests. (C) Scale bars: 
1000 µm. ALP, alkaline phosphatase; ANOVA, analysis of variance; ARCND, auriculocondylar syndrome; AU, arbitrary units; MSC, mesenchymal stem cells 
(undifferentiated cells); OST, osteogenic differentiation.
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have large, open fontanelles, the hallmark feature of trisomy 7p 
which has been linked to triple dosage of TWIST1,67 which may 
reflect having three copies of regulatory elements rather than 
three copies of the gene itself. Similarly, a significant number of 
DECIPHER duplications (~40%) at this locus were also asso-
ciated with ARCND overlapping features, despite the variable 
phenotype and incomplete penetrance of ARCND.9 10 13 68 Inter-
estingly, one of the duplications (276644) was entirely contained 
within the ARCND duplication, but this CNV did not span the 
known Twist1 regulatory element51 and the case was not asso-
ciated with any features of ARCND. Altogether, these observa-
tions reinforce that the 430 kb HDAC9 duplication is pathogenic 
and that altered expression of TWIST1 might contribute to the 
ARCND phenotype.

To investigate the pathogenicity of the CNV, we used an iPSC-
based approach to screen for molecular and cellular alterations 
associated with ARCND in the family. As the affected craniofa-
cial structures in ARCND arise from the neural crest, we gener-
ated and analysed NCC derived from patient and control iPSCs 
and found upregulation of both HDAC9 and TWIST1. Only the 
shorter, catalytically inactive forms of HDAC947 could be tran-
scribed from within the duplication to account for the upreg-
ulation of this gene, while the larger transcripts (the catalytic 
domain is encoded by multiple exons at the 3′ end of the gene) 
are predicted to be disrupted. HDAC9, a class II histone deacety-
lase enzyme, usually associated with transcriptional repression,69 
has been linked to many types of cancer such as glioblastoma, 
breast cancer and oral squamous cell carcinoma, and chronic 
disorders such as diabetes and osteoporosis.70–72 There is no 
evidence of a role of HDAC9 in craniofacial development and 
it is not expressed in mouse E11.5 pharyngeal arch,49 although 
a role in bone development is possible as Hdac9 expression has 
been shown to increase osteoclastogenesis and regulate osteogen-
esis,73 74 and a contribution to the development of the ARCND 
phenotype cannot be excluded. In contrast, the relevance of 
TWIST1 in craniofacial development has been highlighted by the 
human conditions SCS75 76 and Sweeney-Cox syndrome,77 which 
are caused by pathogenic variants in this gene, as well as by 
studies of Twist1 mouse models.43 46 Moreover, Twist1 directly 
inhibits Runx2,78 79 the master regulator of osteogenic differenti-
ation, as well as downstream targets of Runx2 like bone sialopro-
tein.80 Its overexpression leads to reduced ossification78 81 and 
conditional inactivation of Twist1 has demonstrated an essential 
role in the survival of NCC in mandibular development, as well 
as in ossification of the mandible leading to mandibular hypo-
plasia, condylar process loss and altered middle ear.43 46 Of note, 
a comparable mandibular phenotype is also observed in a mouse 
model deleted for the enhancer that regulates pharyngeal arch 
expression of Hand2,82 a bHLH transcription factor that dime-
rises with Twist1 in mandible development.83 84 Together, this 
supports the contention that deregulation of TWIST1, as we have 
shown in iNCCs, could contribute to the ARCND phenotype.

As Twist1 knockout in different mutant animal models leads 
to defective NCC migration,85 86 we performed in vitro scratch 
assays on iNCC derived from affected family members and 
controls and found significant reduction in ARCND-iNCCs. 
Reduced migration in early NCC stages has been found in RCPS, 
a craniofacial disorder also characterised by underdevelopment 
of mandibles and shown to be related to altered neural crest 
functions.17 The reduced migration found in ARCND-iNCC is in 
contrast to previous data showing that reduced migration is asso-
ciated with loss of Twist1 in mice,85 86 as opposed to increased 
expression, as found here. An explanation for this might be that 
the iNCCs modelled in this study are in an earlier developmental 

stage and/or lack factors necessary to activate endothelin signal-
ling, which are secreted by tissues within the pharyngeal arches 
in vivo.87 This may account for the low DLX5/6 expression 
observed in our experiments. Although the iNCC derivation 
protocol used here is biased towards the cranial neural crest 
lineage,88 expression profiling assays will be necessary to further 
clarify the positional identity and developmental stage of iNCCs. 
Our observations suggest that upregulation or downregulation 
of TWIST1 levels can lead to reduced migration depending on 
the developmental stage. The migration defect could potentially 
explain ARCND features through a reduction in NCC reaching 
the first and second pharyngeal arches, resulting in malformed 
derivatives such as mandible and external ear, a mechanism that 
also seems to be involved in RCPS.17 In regard to HDAC9, even 
though its overexpression has been associated with increased 
proliferation and migration in cancer cells, to date this gene has 
not been associated with neural crest proliferation/migration or 
specification of craniofacial elements.

Furthermore, our osteogenesis analysis showed that ARCND-
nMCS have defects in their ability to form bone. We observed 
significantly decreased levels and activity of ALP in nMSC-
derived from affected family members resulting in a decrease in 
matrix mineralisation, which may suggest a delay in the process 
of mineralisation. Interestingly, this is in opposition to the find-
ings in nMSC of RCPS, which showed increased mineralisa-
tion.17 Even though reduced iNCC migration was observed in 
ARCND and RCPS, the underdeveloped mandible observed in 
patients with these disorders may depend on different molecular 
pathways. Notably, TWIST1 expression in ARCND-nMSC did 
not show significant differences during the osteogenic differen-
tiation as compared with control cells. Decreased ossification 
could potentially be related to the dynamics of TWIST1 dimeri-
sation at a previous stage of the cellular differentiation, as these 
cells were differentiated from iNCCs with higher TWIST1 levels 
in patients as compared with controls. Increased expression 
levels of TWIST1 in iNCCs would lead to an alteration in the 
ratios of TWIST1 homodimers and heterodimers (with E-pro-
teins such as TCF3, TCF4 and TCF12). Studies of cranial sutures 
suggest an antagonistic relationship with TWIST1 homodimers 
activating FGFR2 and osteogenic genes for ossification, while 
TWIST1 heterodimers, for example TWIST1-TCF3, promote 
mesenchymal expansion.80 89 We should also consider as an addi-
tional contributing factor to deregulated osteogenesis the role 
of TWIST1 in regulating osteogenesis by its direct interaction 
with RUNX2 in preosteoblasts.78 Interestingly, overexpression 
of Hand2, a partner of Twist1 in mandible differentiation and an 
inhibitor of Runx2, leads to delayed ossification, characterised 
by ALP low levels,90 which is comparable with our findings. We 
speculate that the reduced iNCC migration and the delayed ossi-
fication in nMSC differentiation could relate to altered expres-
sion of TWIST1 in early stages of NCC that would depend on 
the availability of the bHLH class partners or inhibitor of DNA-
binding (ID) proteins.91 Further studies are necessary to test 
these hypotheses.

In summary, our data suggest that a unique 430 kb tandem 
duplication at the HDAC9/TWIST1 locus is pathogenic, causing 
deregulation of TWIST1 expression, which leads to the devel-
opment of ARCND features through compromised neural crest 
migration and osteogenic differentiation, thus representing a 
novel mechanism to be investigated in the aetiology of ARCND.
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