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Abstract Proprioception, the sense of body position, movement, and associated forces, remains

poorly understood, despite its critical role in movement. Most studies of area 2, a proprioceptive

area of somatosensory cortex, have simply compared neurons’ activities to the movement of the

hand through space. Using motion tracking, we sought to elaborate this relationship by

characterizing how area 2 activity relates to whole arm movements. We found that a whole-arm

model, unlike classic models, successfully predicted how features of neural activity changed as

monkeys reached to targets in two workspaces. However, when we then evaluated this whole-arm

model across active and passive movements, we found that many neurons did not consistently

represent the whole arm over both conditions. These results suggest that 1) neural activity in area

2 includes representation of the whole arm during reaching and 2) many of these neurons

represented limb state differently during active and passive movements.

Introduction
Moving in an uncontrolled environment is a remarkably complex feat. In addition to the necessary

computations on the efferent side to generate movement, an important aspect of sensorimotor con-

trol is processing the afferent information we receive from our limbs, essential both for movement

planning and for the feedback it provides during movement. Of the relevant sensory modalities, pro-

prioception, or the sense of body position, movement and associated forces, is arguably the most

critical for making coordinated movements (Ghez and Sainburg, 1995; Gordon et al., 1995;

Sainburg et al., 1995; Sainburg et al., 1993; Sanes et al., 1984). However, despite its importance,

few studies have explicitly addressed how proprioception is represented in the brain during natural

movement; touch, vision, and the motor areas of the brain have received far more attention.

One brain area likely important for mediating reach-related proprioception is the proximal arm

representation within area 2 of primary somatosensory cortex (S1) (Jennings et al., 1983;

Kaas et al., 1979; London and Miller, 2013). Though this area receives a combination of muscle

and cutaneous inputs (Hyvärinen and Poranen, 1978; Padberg et al., 2019; Pons et al., 1985), the

few studies examining it during reaching have found that a model involving simply the translation of

the hand approximates neural activity quite well (London and Miller, 2013; London et al., 2011;

Prud’homme and Kalaska, 1994; Weber et al., 2011). Interestingly, this finding fits with psycho-

physical data showing that humans are better at estimating the location of the hand than joint angles

(Fuentes and Bastian, 2010), as well as our conscious experience of reaching to objects, which typi-

cally focuses on the hand. However, recent computational studies have shown that while neural
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activity may appear to be tuned to the state of a limb’s endpoint, features of this tuning might be a

direct consequence of the biomechanics of the limb (Chowdhury et al., 2017; Lillicrap and Scott,

2013). Consistent with those results, we have recently observed, using artificial neural networks,

that muscle lengths were better predictors of area 2 activity than were hand kinematics (Lucas et al.,

2019).

As in the classic reaching studies of M1 (Caminiti et al., 1991; Georgopoulos et al., 1982;

Georgopoulos et al., 1986), the appeal of the hand-based model of area 2 neural activity is its rea-

sonable accuracy despite its simplicity. However, the recent emphasis on studying less constrained,

more natural movements (Mazurek et al., 2018) is pushing the limits of such simple models

(Berger and Gail, 2018; Hasson et al., 2012; Sharon and Nisky, 2017). As in the motor system, it

is increasingly important to characterize proprioceptive regions’ responses to reaching more fully.

Here, we used two experiments that altered the relationship between hand and whole-arm kinemat-

ics. In the first experiment, we found that neurons in area 2 have a consistent relationship with

whole-arm kinematics during active reaching within two disjoint workspaces. Whole-arm kinematics

predicted neural activity significantly better than did the hand-only model, and were able to effec-

tively explain neural activity changes across workspaces. In the second experiment, we compared

area 2 responses to active reaching and passive perturbations of the hand. While some neurons

were predicted well with only kinematic inputs, others were not, adding to the evidence that area 2

may receive efferent information from motor areas of the brain (London and Miller, 2013;

Nelson, 1987).

Results
For the experiments detailed in this paper, we recorded neural signals from three Rhesus macaques

(Monkeys C, H, and L) using Utah multi-electrode arrays (Blackrock Microsystems) implanted in the

arm representation of Brodmann’s area 2 of S1 (Figure 1). After implantation, we mapped sensory

receptive fields of each neuron, to examine how the multi-unit activity on each electrode responded

to sensory stimulation, noting the modality (deep or cutaneous) and location of each field. We classi-

fied an electrode as ‘cutaneous’ if we could find a receptive field on the arm or torso in which brush-

ing the skin caused an increase in activity. ‘Deep’ electrodes were those that responded to joint

movement or muscle palpation and did not appear to have a cutaneous receptive field. With these

criteria, it is likely that some of the electrodes we marked cutaneous actually responded to both

deep and cutaneous stimuli. However, as we were most interested in the distribution of receptive

field types over the array, we did not test for such mixed modality neurons.

Figure 1 shows the resulting sensory maps from the mapping session for each monkey in which

we were able to test the most electrodes. We found both deep and cutaneous receptive fields

across each array, largely matching the description of area 2 from previous studies (Hyvärinen and

Poranen, 1978; Pons et al., 1985; Seelke et al., 2012). Of the two bordering regions, area 1 tends

to have a higher fraction of cutaneous responses, and area 5 tends to have a higher fraction of deep

responses (Seelke et al., 2012), suggesting that our arrays were implanted largely in area 2. For

Monkeys C and H, we found a rough proximal to distal arm gradient, running from anterior to poste-

rior across the array (Figure 1, black arrows), consistent with the somatotopy found by Pons et al.

(1985). There were too few well-mapped neurons from Monkey L to determine a meaningful

gradient.

We trained each of these monkeys to grasp a two-link planar manipulandum and make reaching

movements to targets presented on a screen in front of them (Figure 2). During these sessions, we

collected interface force from a six degree of freedom load cell attached to the manipulandum han-

dle. We also tracked the locations of markers on the monkey’s arm using a custom motion tracking

system based on a Microsoft Kinect. Our experiments included two components: one comparing

reaching movements in two different workspaces and one comparing active and passive

movements.

Somatosensory area 2 represents the movement of the whole arm
during reaching
Previous literature has characterized area 2 primarily in terms of the hand’s trajectory through space

(London and Miller, 2013; Prud’homme and Kalaska, 1994; Weber et al., 2011), likely in part due
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to the difficulty of tracking the motion of the full arm, and the then recent finding that motor cortex

could be well explained simply by the direction of hand movement (Caminiti et al., 1991;

Georgopoulos et al., 1982). Given advances in motion tracking capability and subsequent observa-

tions of the dependence of M1 on arm posture (Morrow et al., 2007; Scott and Kalaska, 1995), we

set out to characterize more fully, how neural activity in area 2 corresponds to reaching movements.

In particular, we aimed to characterize how much could be gained by using models incorporating

the movement of the whole arm, as opposed to just the hand. A challenge in comparing these mod-

els is that for the typical, center-out reaching task in a small workspace, the behavioral signals used

in our models are highly correlated. Because a high correlation means that a linear transform can

accurately convert one set of signals into another, all models would make very similar predictions of

neural activity.

To deal with this problem, we trained the monkeys to reach to randomly-generated targets pre-

sented in two different workspaces (Figure 3). This had two important effects. First, the random

locations of the targets lessened the stereotopy of the movements, allowing for the collection of

more varied movement data than from a center-out paradigm. Second, the average postures in the
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Figure 1. Array locations and receptive field maps from one mapping session for each monkey. (A) Locations of

Utah arrays implanted in area 2 of Monkeys C, H, and L. IPS, intraparietal sulcus; CS central sulcus. (B) Map of the

receptive field modality (deep or cutaneous) for each electrode. (C) Map of receptive field location (see legend on

bottom right). Open circles indicate both untested electrodes and tested electrodes with no receptive field found.

Black arrows on maps in C show significant gradient across array of proximal to distal receptive fields (see

Materials and methods).
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two workspaces were quite different, such that while the signals of different models were still corre-

lated within a given workspace, this correlation (and the mapping between sets of behavioral signals)

changed significantly between workspaces. This forced the models to make different predictions of

neural activity across the two workspaces. By comparing modeled and observed changes in neural

activity, we could more reliably discriminate between models.

This idea is exemplified in Figure 3D. When tested in the two workspaces, this example neuron

changed both its tuning curve and the direction in which it fired maximally (its preferred direction, or

PD), as did many neurons we recorded. The corresponding predictions of the hand-only and whole-

arm models differed, which allowed us to compare the accuracy of the two models. We recorded

three of these two-workspace sessions with each of Monkeys C and H and two sessions with Monkey

L.

Model overview
We tested several kinematic models of area 2 activity that could be divided into hand-only and

whole-arm models (see Materials and methods for a full description of all the models). We’ve chosen

to represent the two sets with two of the models, which we termed, for simplicity, the ‘hand-only’

and ‘whole-arm’ models. The hand-only model stems from classic, endpoint models of limb move-

ment-related neural activity (Bosco et al., 2000; Georgopoulos et al., 1982; Prud’homme and

Kalaska, 1994). It assumes neurons relate only to the Cartesian coordinates of hand position and

velocity. The whole-arm model builds on the hand-only model by adding the Cartesian kinematics

(position and velocity) of the elbow, in order to account more fully for movement of the whole arm.

Surprisingly, the performance of this representation of the whole arm was similar to, or even better

Figure 2. Behavioral task. Monkey controls a cursor on screen (yellow) with a two link manipulandum to reach to

visually presented targets (red). We track the locations of different colored markers (see Materials and methods)

on the monkey’s arm (here shown green) during the task, using a Microsoft Kinect.
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than more complicated biomechanical models based on the seven degree-of-freedom joint kinemat-

ics or musculotendon lengths (see Appendix 1). We aimed to test how well the hand-only and

whole-arm models predicted features of neural activity during reaching, in order to determine the

importance of whole-arm kinematics for explaining neural activity.

For us to consider the whole-arm model to be an effective one for area 2, it should satisfy three

main criteria. First and most direct, it should explain the variance of neural firing rates across the two

workspaces better than the hand-only model, as is the case in the example in Figure 3C. Second,
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Figure 3. Example neural activity for two-workspace task. (A) Two-workspace behavior. On each trial, monkey

reaches with manipulandum (black) to randomly placed targets in one of two workspaces: one close to the body

and contralateral to the reaching hand (pink) and the other distant and ipsilateral (green). Trials in the two

workspaces were interleaved randomly. (B) Example neural raster plot from one session for two randomly drawn

trials in each workspace. Dots in each row represent activity for one of the simultaneously recorded neurons. Black

dashed lines indicate starts and ends of trials, and colored lines and boxes indicate times of target presentation,

with color indicating the workspace for the trial. (C) Firing rate plot for an example neuron during four randomly

drawn trials from the distal (green) workspace. Black trace represents neural firing rate, smoothed with a 50 ms

Gaussian kernel. Colored traces represent unsmoothed firing rates predicted by hand-only (orange), and whole-

arm (red) models. (D) Actual and predicted tuning curves and preferred directions (PDs) computed in the two

workspaces for an example neuron. Each trace represents the tuning curve or PD calculated for one cross-

validation fold (see Materials and methods). Leftmost plot shows actual tuning curves and PDs, while other plots

show curves and PDs for activity predicted by each of the models. Each panel shows mean movement-related

firing rate plotted against direction of hand movement for both workspaces. Darker vertical bars indicate preferred

directions.

Chowdhury et al. eLife 2020;9:e48198. DOI: https://doi.org/10.7554/eLife.48198 5 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.48198


the mapping between neural activity and whole-arm kinematics should not change between the indi-

vidual workspaces, meaning that the accuracy of a model trained over both workspaces should be

similar to that trained in a single workspace. Last, the model should be able to capture features of

neural activity that it was not explicitly trained on, for example, the changes in directional tuning

shown in Figure 3D.

Whole-arm model explains more variance of area 2 neural activity than
hand-only model
To assess how well our models fit area 2 neural activity, we used repeated k-fold cross-validation

(see Materials and methods for more details). Goodness-of-fit metrics like R2 or variance-accounted-

for (VAF) are ill-suited to the Poisson-like statistics of neural activity; instead, we used the likelihood-

based pseudo-R2 (Cameron and Windmeijer, 1997; Cameron and Windmeijer, 1996; McFad-

den, 1977). Like VAF, pseudo-R2 has a maximum value of 1, but it can be negative for models that

fail even to predict the mean firing rate during cross-validation. In general, the values corresponding

to a good fit are lower for pR2 than for either R2 or VAF, with a value of 0.2 usually considered a

’good’ fit (McFadden, 1977). We found that for this measure, the whole-arm model out-performed

the hand-only model (Figure 4). Of the 288 neurons recorded across the 8 sessions, 238 were signifi-

cantly better predicted by the whole-arm model than the hand-only model, and for the other 50,

there was no significant difference (using p < 0.05; see Materials and methods for more details).

Whole-arm model captures a consistent relationship between area 2 and
arm kinematics
A reasonable benchmark of how well the whole-arm model fits the two-workspace data is its ability

to match the accuracy of models trained in the individual workspaces. It is possible to imagine a sce-

nario in which a model might achieve a good fit by capturing a global relation across the two work-

spaces without capturing much information local to either workspace. This situation is akin to fitting

a line to data distributed along an exponential curve. In this analogy, we would expect a piecewise

linear fit to each half of the data to achieve significantly better goodness-of-fit.

We tested this scenario by training whole-arm models on the individual workspaces, and compar-

ing the resulting pR2 with that calculated from the model fit to data from both workspaces. The sym-

bols lying very close to the unity line in each panel of Figure 5 indicate that the full model explained

just as much neural variance as did the individual models. This suggests that the whole-arm model

describes a consistent, generalizable relationship between neural activity and arm kinematics across

the two workspaces.

Monkey C Monkey H Monkey L
0.6

0.6

Whole-arm

pR²

Hand-only

pR²

Session 1

Session 2

Session 3

Figure 4. Goodness-of-fit comparison analysis. Scatter plots compare the pseudo-R2 (pR2) of the whole-arm

model to that of the hand-only model for each monkey. Each point in the scatter plot represents the pR2 values of

one neuron, with whole-arm pR2 on the vertical axis and hand-only pR2 on the horizontal. Different colors

represent neurons recorded during different sessions. Filled circles represent neurons for which one model’s pR2

was significantly higher than that of the other model. In this comparison, all filled circles lie above the dashed unity

line, indicating that the whole-arm model performed better than the hand-only model for every neuron in which

there was a significant difference.
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Whole-arm model captures changes in area 2 directional tuning between
workspaces
From previous studies of area 2, we know that at least within a single workspace, neural activity is

tuned approximately sinusoidally to the direction of hand movement (London and Miller, 2013;

Prud’homme and Kalaska, 1994; Weber et al., 2011). Figure 3D shows the directional tuning

curves for an example neuron, along with the tuning curves predicted by both models. Because we

trained each model on data from both workspaces, they needed to capture a single relationship

between movement and neural activity. As shown in the example in Figure 3D, the hand-only model

predicted essentially the same tuning curve for both workspaces, with the exception of a baseline
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Figure 5. Dependence of whole-arm model accuracy on workspace location of training data. Each panel

compares a model trained and tested in the same workspace (either near or far) to a model trained on data from

both workspaces. Each dot corresponds to a single neuron, where color indicates the recording session. Dashed

line is the unity line.

1
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Figure 6. Tuning curve shape correlation analysis. Scatter plot compares tuning curve shape correlation between

whole-arm and hand-only models. Filled circles indicate neurons significantly above or below the dashed unity

line. As for pR2, most filled circles lie above the dashed line of unity, indicating that the whole-arm model was

better at predicting tuning curve shape than the hand-only model.
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shift due to the position component. In contrast, the whole-arm model predicted altered tuning

curves, which matched the actual ones well.

To quantify this model accuracy over all neurons, we calculated the correlation between the

model-predicted and actual tuning curves in the two workspaces. With this measure, the whole-arm

model once again won most of the pairwise comparisons (Figure 6). Only two out of 288 neurons

were significantly better predicted by the hand-only model (using p < 0.05), while 138 of 288 neu-

rons were significantly better predicted by the whole-arm model.

Of the 288 recorded neurons, 260 were significantly tuned to movement direction in both work-

spaces. Thus, in addition to the tuning curve correlation analysis, we also examined the PD in the

two workspaces. For many neurons, the PD changed significantly between workspaces, as in the left-

most panel of Figure 3D. Figure 7A shows the actual PD shifts for all neurons plotted against the

PD shifts predicted by each model. The large changes in PD, shown on the horizontal axes of the

scatter plots, are a clue that the hand-only model does not fully account for area 2 neural activity; if

it had, the PD changes should have been insignificant (in principle, zero), as shown by the generally

small hand-only model-predicted changes (first row of Figure 7A). Additionally, and perhaps

Modeled PD Shift

Modeled PD Shift

Hand-only

Whole-arm

A

B

Monkey C
Actual PD Shift

Monkey H
Actual PD Shift

Monkey L
Actual PD Shift

0

1

PD Shift

Circular VAF

-180

180

-180 180

Figure 7. Model predictions of PD shift. (A) Scatter plots of model-predicted PD shifts plotted against actual PD

shifts. Each dot represents the actual and modeled PD shifts of a single neuron, where different colors correspond

to neurons recorded during different sessions. Dashed diagonal line shows perfect prediction. Horizontal

histograms indicate distributions of actual PD shifts for each monkey. Vertical histograms indicate distributions of

modeled shifts. Note that both horizontal and vertical axes are circular, meaning that opposing edges of the plots

(top/bottom, left/right) are the same. Horizontal histograms show that the distribution of actual PD shifts included

both clockwise and counter-clockwise shifts. Clustering of scatter plot points on the diagonal line for the whole-

arm model indicates that it was more predictive of PD shift. (B) Plot showing circular VAF (cVAF) of scatter plots in

A, an indicator of how well clustered points are around the diagonal line (see Materials and methods for details).

Each point corresponds to the average cVAF for a model in a given session (indicated by color), and the horizontal

dashed lines indicate the cVAF for perfect prediction. Error bars show 95% confidence intervals (derived from

cross-validation – see Materials and methods). Pairwise comparisons between model cVAFs showed that the

whole-arm model out-performed the hand-only model in all but one session, in which the two models were not

significantly different.
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counterintuitively, the actual changes included both clockwise and counter-clockwise rotations. How-

ever, we found that the whole-arm model predicted both types of PD changes quite well, indicated

by a clustering of the scatter plot points in Figure 7A along the dashed diagonal line. Based on the

circular VAF (cVAF; see Materials and methods for details) of the predicted PD changes, Figure 7B

shows that the whole-arm model once again out-performed the hand-only model, with an average

cVAF over all neurons of 0.75 compared to 0.57. We made pairwise comparisons between models

for each session. In every session but one, the whole-arm model out-performed the hand-only

model. In the remaining session, the difference between the two models was not significant

(p > 0.05). These results lead to the same conclusion as the pR2 and tuning curve correlation analy-

ses: the kinematics of the whole-arm are important predictors of area 2 activity, and can explain dif-

ferences between activity in the two workspaces that classic models cannot.

Area 2 represents passive movements differently from active reaches
Given our success at modeling neural activity across workspaces with the whole-arm model, we set

out to examine its effectiveness in a task that compared area 2 activity during active reaches and

passive limb perturbations.

For this experiment, the monkey performed a center-out reaching task to four targets. On half of

these trials, the monkey’s hand was bumped by the manipulandum during the center-hold period in

one of the four target directions (Figure 8A; see Materials and methods section for task details).

This experiment included two sessions with each of Monkeys C and H. As in the earlier study per-

formed by our group (London and Miller, 2013), we analyzed behavior and neural activity only dur-

ing the 120 ms after movement onset for which the kinematics of the hand were similar in active and

passive trials (Figure 8B and C). This is also the time period in which we can reasonably expect there

not to be a voluntary reaction to the bumps in the passive trials.

Despite the similar hand kinematics in the active and passive movements, we found that whole-

arm kinematics were quite different between the two conditions. Averaged over the sessions, a lin-

ear discriminant analysis (LDA) classifier could predict the movement type 89% of the time, using

only the whole-arm kinematics in the analysis window, meaning that these whole-arm kinematics

were highly separable based on movement condition. Considering our results from the two-work-

space experiment, we would thus expect that the activity of area 2 neurons would also be highly

separable.

As reported earlier, area 2 neurons had a wide range of sensitivities to active and passive hand

movements (London and Miller, 2013). Figure 8D shows this difference for the neurons recorded

during one session from Monkey C. As with our separability analysis for arm kinematics, we used

LDA to classify movement type based on individual neurons, calling this prediction rate the neuron’s

‘separability index’ (Figure 8E). We found that many neurons had an above chance separability

index, as we would expect from neurons representing whole-arm kinematics.

There is thus a clear analogy between this experiment and the two-workspace experiment—both

have two conditions which altered both the kinematics of the arm and the neural responses. Con-

tinuing the analogy, we asked how well our two models could predict neural activity across active/

passive conditions. As with the two-workspace experiment, we fit both the hand-only and whole-arm

models to neural activity during both active and passive movements, and found that the whole-arm

model again tended to out-perform the hand-only model (Filled circles above the dashed unity line

in Figure 9). However, there were many more neurons (open circles) for which the difference

between models was insignificant compared to the two-workspace experiment (Figure 4).

As in the two-workspace experiment, we compared models trained within an individual (active or

passive) condition, to those trained in both conditions (Figure 10). A number of neurons had consis-

tent relationships with arm kinematics, indicated by the dots with positive pR2 values lying close to

the unity line. Surprisingly however, unlike our results from the two-workspace experiment (see Fig-

ure 5), many neurons in the active/passive task did not have this consistent relationship, indicated by

the many neurons with negative pR2 values for the model trained over both conditions.

The initial question of this experiment remains, however: does the neural separability index stem

simply from arm kinematics? If this were true, then neurons with high separability index should have

a consistent relationship to arm kinematics. To test this, we compared each neuron’s pR2 value when

trained on both conditions (our proxy for model consistency) against its separability index (Fig-

ure 11). Interestingly, we found the opposite result—model consistency actually correlated
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Figure 8. Active vs.passive behavior. (A) Schematic of task. On active trials (black), monkey reaches from center target to a target presented in one of

four directions, indicated by the black circles. On passive trials, manipulandum bumps monkey’s hand in one of the four target directions (red circles).

(B) Speed of hand during active (black) and passive (red) trials, plotted against time, for one session. Starting around 120 ms after movement onset, a

bimodal distribution in passive movement speed emerges. This bimodality reflects differences in the impedance of the arm for different directions of

movement. Perturbations towards and away from the body tended to result in a shorter overall movement than those to the left or right. However,

average movement speed was similar between active and passive trials in this 120 ms window, which we used for data analysis. (C) Neural raster plots

for example active and passive trials for rightward movements. In each plot, rows indicate spikes recorded from different neurons, plotted against time.

Vertical dashed lines delimit the analysis window. (D) Histograms of firing rates during active (black) and passive (red) movements for 20 example

neurons from one session with Monkey H. (E) Separability index for each neuron during the session, found by testing how well linear discriminant

analysis (LDA) could predict movement type from the neuron’s average firing rate on a given trial. Black dashed line indicates chance level separability.

Error bars indicate 95% confidence interval of separability index.
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negatively with the separability index. Essentially, this means that neurons responding to active and

passive movements differently are likely not drawing this distinction based on arm kinematics, as

those are the neurons for which we could not find a consistent whole-arm model. Instead, this sug-

gests that neurons in area 2 distinguish active and passive movements by some other means, per-

haps an efference copy signal from motor areas of the brain (Bell, 1981; London and Miller, 2013;

Nelson, 1987).

Monkey C Monkey H
0.6

-0.4

0.6-0.4

Whole-arm

pR²

Hand-only

pR²

Session 1

Session 2

Figure 9. Goodness-of-fit comparison analysis for active/passive experiment (same format as Figure 4). Each dot

represents a single neuron, with color indicating the recording session. Filled circles indicate neurons that are

significantly far away from the dashed unity line.
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Figure 10. Dependence of whole-arm model accuracy on active and passive training data (same format as

Figure 5). Plots in the upper row contain colored arrows at the edges indicating neurons with pR2 value beyond

the axis range, which we omitted for clarity.
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Discussion

Summary
In this study, we explored, in two separate experiments, how somatosensory area 2 represents arm

movements. In the first experiment, a monkey reached to targets in two separate workspaces. We

found that a model incorporating whole-arm kinematics explained area 2 neural activity well, espe-

cially when compared to the hand-only model typically used to explain these neurons’ responses.

Our results from the experiment thus suggest that area 2 represents the state of the whole arm dur-

ing reaching. In the second experiment, we tested the whole-arm model’s ability to explain area 2

neural activity both during reaching, and when the hand was unexpectedly displaced passively. As in

the first experiment, these two conditions differed both kinematically and in the neural responses to

movement. However, we found that while some neurons maintained a consistent relationship with

arm kinematics across the two conditions, many others did not. Furthermore, those neurons most

sensitive to movement type were also those most poorly modeled across conditions. The results

from this second experiment suggest that for some neurons, area 2 relates to arm kinematics differ-

ently for active and passive movements.

Model complexity
A significant difference between the hand and whole-arm models is their number of parameters,

which make the whole-arm models more complex and expressible. There are two concerns with

Monkey C Monkey H

Whole-arm model pR²

trained over both conditions

(proxy for model consistency)

Session 1

Session 2Evaluated

in active

Evaluated

in passive

Separability index Separability index

0.5 10.5 1

0.7

-0.7

Correlation between

model consistency

and separability index

-1

0

A

B

Figure 11. Neural separability index predicts whole-arm model inconsistency. (A) Scatter plots comparing the

consistency of the whole-arm model against the separability index. Conventions are the same as in Figure 10. (B)

Correlation between model consistency and separability index. Each dot represents the correlation between

model consistency and separability index for a given session, with error bars representing the 95% confidence

intervals.

Chowdhury et al. eLife 2020;9:e48198. DOI: https://doi.org/10.7554/eLife.48198 12 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.48198


testing models of differing complexity, the first dealing with model training and evaluation, and the

second with interpretation of the results.

In training and evaluating our models, we had to make sure that the complex models did not

overfit the data, resulting in artificially high performance on the training dataset but low generaliz-

ability to new data. However, because we found through cross-validation that the more complex

models generalized to test data better than the simpler models, they were not overfitting. Conse-

quently, the hand-based models are clearly impoverished compared to the whole-arm models.

The second concern is in interpreting what it means when the more complex models perform bet-

ter. One interpretation is that this is an obvious result; if the added degrees of freedom have any-

thing at all to do with area 2 neural activity, then the more complex models should perform better.

In fact, our main goal was primarily to improve our understanding of this area of S1 by exploring

how incorporating measurements of whole-arm kinematics could help explain its function. As a

result, we found that the whole-arm model not only out-performed the hand-only model, but it also

predicted changes in PD across the two workspaces well in its own right. Furthermore, as demon-

strated by the findings from our second experiment, the more complex model does not necessarily

lead to a satisfactory fit. Despite its increased complexity and its success in the two-workspace task,

the whole-arm model could not find a consistent fit for many neurons over both active and passive

movements. As such, the active/passive experiment serves as a useful control for the two-workspace

findings.

Coordinate frame vs. informational content
Because of their differing dimensionality, the signals from the hand-only model and those from

whole-arm model do not have a one-to-one relationship: there are many different arm configurations

that result in a given hand position. Thus, a comparison between the hand-only and whole-arm mod-

els is mainly a question of information content (do area 2 neurons have information about more than

just the hand?). In contrast, signals predicted by the various whole-arm models (see Appendix 1) do

have a one-to-one (albeit nonlinear) relationship to each other. Knowledge of the hand and elbow

position should completely determine estimated joint angles and musculotendon lengths, indicating

that these models should have the same informational content. As such, a comparison between

these models (as in the Appendix 1) is purely one of coordinate frame. While the interpretation for a

comparison of information content is straightforward, interpreting the results of a comparison

between coordinate frames is not. One major issue is that these comparisons only make sense when

using linear models to relate neural activity to behavior. Once nonlinear models are considered, as in

our study with artificial neural networks (Lucas et al., 2019), coordinate frames with one-to-one cor-

respondence become nearly equivalent, and much more difficult to compare meaningfully.

Clear parallels exist between this and earlier studies seeking to find a unique representation of

movement in motor areas. Over the last few decades, a controversy involving the exact nature of the

neural representation of movement has played itself out in the literature surrounding motor cortex,

with some advocating a hand-based representation of motor control (Georgopoulos et al., 1982;

Georgopoulos et al., 1986; Moran and Schwartz, 1999) and others a muscle-based representation

(Evarts, 1968; Fetz et al., 1989; Morrow et al., 2007; Oby et al., 2013). Recently, the motor con-

trol field started turning away from questions of coordinate frame and towards questions of neural

population dynamics and information processing (Churchland et al., 2010; Elsayed et al., 2016;

Gallego et al., 2017; Kaufman et al., 2014; Perich et al., 2018; Russo et al., 2018; Sussillo et al.,

2015). Part of the motivation for this pivot in viewpoint is that it became increasingly clear that a

‘pure’ coordinate frame of movement representation is unlikely to exist (Fetz, 1992; Kakei et al.,

1999). Further, studies tended to use correlation between neural activity and behavioral variables as

evidence that the neurons represent movements in a particular coordinate frame. However, as noted

above, these correlations could often be explained by multiple coordinate frames, casting doubt on

the conclusiveness of the exact coordinate frame of representation (Mussa-Ivaldi, 1988). Conse-

quently, in our study, we put aside the question of the coordinate frame of area 2, focusing instead

on what we can gain by modeling area 2 in terms of whole-arm kinematics.

A major question this study leaves open is that of how information about reaching is processed

by different areas of the proprioceptive neuraxis. While we might expect a muscle spindle-like repre-

sentation at the level of the dorsal root ganglia (DRG) or the cuneate nucleus, downstream from the

receptors by only one and two synapses, respectively, this representation likely changes as the
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signals propagate through thalamus and into S1. Different areas of S1 may also have different repre-

sentations. Area 3a, which receives input mostly from muscle afferents (Heath et al., 1976;

Kaas et al., 1979; Phillips et al., 1971; Yamada et al., 2016), seems more likely to retain a muscle-

like representation than is area 2, which integrates muscle afferent input with that from cutaneous

receptors (Hyvärinen and Poranen, 1978; Padberg et al., 2019; Pons et al., 1985). Likewise, area

5 may have an even higher-level representation, as it receives input from both somatosensory

(Mountcastle et al., 1975) and motor cortices (Padberg et al., 2019), and appears to depend on

attention (Chapman et al., 1984; Omrani et al., 2016). As it becomes increasingly feasible to record

from several of these areas simultaneously (Richardson et al., 2016; Suresh et al., 2017;

Weber et al., 2006), future experiments could examine how these areas project information to each

other, as has been explored in motor and premotor cortices (Churchland et al., 2010;

Elsayed et al., 2016; Kaufman et al., 2014; Perich et al., 2018), without modeling the more com-

plex cortical areas explicitly in terms of particular behavioral variables ‘encoded’ by single neurons.

Possible evidence of efference copy in area 2
Our inability to find a consistent model across conditions suggests a difference between neural activ-

ity during active and passive movements that can’t be captured by either model. One possible

explanation for this is that area 2 may represent arm kinematics nonlinearly. Because we modeled

area 2 activity with a generalized linear model (GLM; see Materials and methods), we implicitly dis-

counted this possibility. The fact that the whole-arm kinematics for the two conditions are highly dis-

criminable (89% separable on average) means that the different conditions correspond to different

zones of kinematic space. Following the analogy of fitting a line to data distributed on an exponen-

tial curve, it is possible that the neurons with inconsistent linear relationships to arm kinematics may

simply reflect a single nonlinear relationship, requiring different linear approximations in the two

zones. Indeed, several of these neurons had high pR2 for models trained within condition (top left

quadrants of Figure 10).

Another possible explanation for this finding is that voluntary movements may change the affer-

ent activity from the moving limb. This could be caused by altered descending gamma drive to mus-

cle spindles that changes their sensitivity (Loeb et al., 1985; Prochazka and Wand, 1981;

Prochazka et al., 1976). Another possibility is that of an efference copy signal sent to the brainstem

or S1 from motor areas during active movements (Bell, 1981; London and Miller, 2013; Nel-

son, 1987). Many studies suggest that we use internal forward models of our bodies and

the environment to coordinate our movements and predict their sensory consequences

(Shadmehr and Mussa-Ivaldi, 1994; Wolpert et al., 1995). A key piece of this framework is compar-

ing the actual feedback received following movement with the feedback predicted by the internal

model, which generates a sensory prediction error. Recent studies suggest that S1 is important for

updating the internal model using a sensory prediction error (Mathis et al., 2017; Nasir et al.,

2013). Thus, one potential avenue to study the effect of efference copy in S1 would be to examine

how motor areas communicate with area 2 during active and passive movements.

Relevance for BCI
One motivation for this work is its potential to augment brain-computer interfaces (BCI) for restoring

movement to persons with spinal cord injury or limb amputation. As BCI for motor control gets

more advanced (Collinger et al., 2013; Ethier et al., 2012; Kao et al., 2015; Young et al., 2019), it

will become more necessary to develop a method to provide feedback about movements to the

brain, potentially using intracortical microstimulation (ICMS) to activate somatosensory areas. While

the use of ICMS in S1 has led to some success in providing feedback about touch (Flesher et al.,

2016; Romo et al., 1998; Armenta Salas et al., 2018; Tabot et al., 2013), the path towards provid-

ing proprioceptive feedback remains relatively unexplored. At least one study did use electrical stim-

ulation in S1 for feedback during movement, using the stimulation to specify target direction with

respect to the evolving hand position (Dadarlat et al., 2015). However, this target-error information

is very different from the information normally encoded by S1, and the monkeys required several

months to learn to use it. To our knowledge, no study has yet shown a way to use ICMS to provide

more biomimetic proprioceptive feedback during reaching.
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Previously, our lab attempted to address this gap by stimulating electrodes in area 2 with known

neural PDs. In one monkey, ICMS delivered simultaneously with a mechanical bump to the arm

biased the monkey’s perception of the bump direction toward the electrodes’ PD (Tomlinson and

Miller, 2016). Unfortunately, the result could not be replicated in other monkeys; while the ICMS

often biased their reports, the direction of the bias could not be explained by the PDs of the stimu-

lated electrodes. One potential reason may be that the stimulation paradigm in those experiments

was derived from the classic, hand-based model and the assumption that area 2 represents active

and passive movements similarly. As this paper has shown, both of these assumptions have impor-

tant caveats. It is possible that a stimulation paradigm based on a whole-arm model may be more

successful.

Another important consideration is the difference between sensation for perception versus

action, which which is thought to arise from processing in two distinct pathways (Dijkerman and de

Haan, 2007; Mishkin and Ungerleider, 1982; Sedda and Scarpina, 2012). Most studies using ICMS

have tended to engage the perceptual rather than the action stream of proprioception, either by

using perceptual reporting of the effects of ICMS (Armenta Salas et al., 2018; Tomlinson and

Miller, 2016; Zaaimi et al., 2013), or by using ICMS as a conscious sensory substitute for proriocep-

tive feedback (Dadarlat et al., 2015). However, as we better characterize how S1 represents move-

ments, we hope to forge a way towards a stimulation paradigm in which we can engage both

streams, to enable users of a BCI both to perceive their limb, and to respond rapidly to movement

perturbations.

Conclusion
Our goal in conducting this study was to improve our understanding of how area 2 neural activity

represents arm movements. We began by asking what we would learn about area 2 when we

tracked the movement of the whole arm, rather than just the hand. The results of our first experi-

ment showed that a model built on these whole-arm kinematics was highly predictive of area 2 neu-

ral activity, suggesting that it indeed represents the kinematic state of the whole arm during

reaching. In our second experiment, we sought to extend these findings to similar movements when

the limb is passively displaced. There, we found that while some neurons consistently represented

arm kinematics, others did not, suggesting that the area may process active and passive movements

differently, possibly with the addition of efference copy inputs.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Software,
algorithm

MATLAB MathWorks RRID:
SCR_001622

All code developed
for this
paper available
on GitHub
(See relevant
sections of
Materials and methods)

All surgical and experimental procedures were fully consistent with the guide for the care and use of

laboratory animals and approved by the institutional animal care and use committee of Northwest-

ern University under protocol #IS00000367.

Behavior
We recorded data from a monkey while it used a manipulandum to reach for targets presented on a

screen within a 20 cm x 20 cm workspace. After each successful reaching trial, the monkey received

a pulse of juice or water as a reward. We recorded the position of the handle using encoders on the

manipulandum joints. We also recorded the interaction forces between the monkey’s hand and the

handle using a six-axis load cell mounted underneath the handle.
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For the two-workspace experiment, we partitioned the full workspace into four 10 cm x 10 cm

quadrants. Of these four quadrants, we chose the far ipsilateral one and the near contralateral one

in which to compare neural representations of movement. Before each trial, we chose one of the

two workspaces randomly, within which the monkey reached to a short sequence of targets ran-

domly positioned in the workspace. For this experiment, we only analyzed the portion of data from

the end of the center-hold period to the end of the trial.

For the active vs. passive experiment, we had the monkey perform a classic center-out (CO)

reaching task, as described in London and Miller (2013). Briefly, the monkey held in a target at the

center of the full workspace for a random amount of time, after which one of four outer targets was

presented. The trial ended in success once the monkey reached to the outer target. On 50% of the

trials (deemed ‘passive’ trials), during the center hold period, we used motors on the manipulandum

to deliver a 2 N perturbation to the monkey’s hand in one of the four target directions. After the

bump, the monkey returned to the center target, after which the trial proceeded like an active trial.

From only the successful passive and active trials, we analyzed the first 120 ms after movement

onset. Movement onset was determined by looking for the peak in handle acceleration either after

the motor pulse (in the passive condition) or after 200 ms post-go cue (in the active condition) and

sweeping backwards in time until the acceleration was less than 10% of the peak.

Motion tracking
Before each reaching experiment, we painted 10 markers of four different colors on the outside of

the monkey’s arm, marking bony landmarks and a few points in between, a la (Chan and Moran,

2006). Using a custom motion tracking system built from a Microsoft Kinect, we recorded the 3D

locations of these markers with respect to the camera, synced in time to the other behavioral

and neural data. We then aligned the Kinect-measured marker locations to the spatial lab frame by

aligning location of the Kinect hand marker to the location of the handle in the manipulandum coor-

dinate frame. Code for motion tracking can be found at https://github.com/limblab/KinectTracking.

git (Chowdhury, 2020a; copy archived at https://github.com/elifesciences-publications/

KinectTracking).

Neural recordings
We implanted 100-electrode arrays (Blackrock Microsystems) into the arm representation of area 2

of S1 in these monkeys. For more details on surgical techniques, see Weber et al. (2011). In surgery,

we roughly mapped the postcentral gyrus by recording from the cortical surface while manipulating

the arm and hand to localize their representations. To record neural data for our experiments, we

used a Cerebus recording system (Blackrock). This recording system sampled signals from each of

the 96 electrodes at 30 kHz. To conserve data storage space, the system detected spikes online

using a threshold set at �5x signal RMS, and only wrote to disk a time stamp and the 1.6 ms snippet

of signal surrounding the threshold crossing. After data collection, we used Plexon Offline Sorter to

manually sort these snippets into putative single units, using features like waveform shape and inter-

spike interval.

Sensory mappings
In addition to recording sessions, we also occasionally performed sensory mapping sessions to iden-

tify the neural receptive fields. For each electrode we tested, we routed the corresponding record-

ing channel to a speaker and listened to multi-unit neural activity while manipulating the monkey’s

arm. We noted both the modality (deep or cutaneous) and the location of the receptive field (torso,

shoulder, humerus, elbow, forearm, wrist, hand, or arm in general). We classified an electrode as

cutaneous if we found an area of the skin, which when brushed or stretched, resulted in an increase

in multi-unit activity. We classified an electrode as deep if we found activity to be responsive to joint

movements and/or muscle palpation but could not find a cutaneous field. As neurons on the same

electrode tend to have similar properties (Weber et al., 2011), we usually did not separate neurons

on individual electrodes during mapping. However, when we did, we usually found them to have

similar receptive field modality and location.

In Monkeys C and H, we found a gradient of receptive field location across the array, correspond-

ing to a somatotopy from proximal to distal. To quantify this gradient, we assigned each receptive
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field location a score from 1 to 7 (with 1 being the torso and 7 being the hand), and we fit a simple

linear model relating this location on the limb to the x and y coordinates of electrodes on the array.

We show the calculated gradients for Monkeys C and H as black arrows in Figure 1 (both significant

linear fits with p < 0.05). Monkey L’s array had too few neurons to calculate a significant linear

model.

Neural analysis
Code for the following neural analyses can be found at https://github.com/raeedcho/s1-kinematics.

git (Chowdhury, 2020b; copy archived at https://github.com/elifesciences-publications/s1-

kinematics).

Preferred directions
We used a simple bootstrapping procedure to calculate PDs for each neuron. On each bootstrap

iteration, we randomly drew timepoints from the reaching data, making sure that the distribution of

movement directions was uniform to mitigate the effects of any potential bias. Then, as in

Georgopoulos et al. (1982), we fit a cosine tuning function to the neural activity with respect to the

movement direction, using Equation 1a, b.

fi tð Þ ¼ b0 þ b1 � sin �m tð Þð Þþ b2 � cos �m tð Þð Þ (1a)

¼ b0 þ ri � cos �m tð Þ�PDið Þ (1b)

where

PDi ¼ atan2 b1;b2ð Þand ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1
þ b2

2

q

Here, fi tð Þ is the average firing rate of neuron i for a given time point t, and �m tð Þ is the corre-

sponding movement direction, which for the active/passive task was the target or bump direction,

and for the two-workspace experiment was the average movement direction over a time bin. We

took the circular mean of PDi and mean of ri over all bootstrap iterations to determine the preferred

direction and the modulation depth respectively, for each neuron.

As the PD analysis is meaningless for neurons that don’t have a preferred direction of movement,

we only analyzed the PDs of neurons that were significantly tuned. We assessed tuning through a

separate bootstrapping procedure, described in Dekleva et al. (2018). Briefly, we randomly sam-

pled the timepoints from reaching data, again ensuring a uniform distribution of movement direc-

tions, but this time also randomly shuffled the corresponding neural activity. We calculated the ri for

this shuffled data on each bootstrap iteration, thereby creating a null distribution of modulation

depths. We considered a neuron to be tuned if the true ri was greater than the 95th percentile of

the null distribution.

Models of neural activity
For the two-workspace analyses, both behavioral variables and neural firing rate were averaged over

50 ms bins. For the active/passive analyses, we averaged behavioral variables and neural firing rates

over the 120 ms period following movement onset in each trial. We modeled neural activity with

respect to the behavior using Poisson generalized linear models (outline in Truccolo et al.,

2005) shown in Equation 2a, below.

f ~Poisson lð Þ; l¼ exp Xbð Þ (2a)

In this equation, f is a T (number of time points) x N (number of neurons) matrix of average firing

rates, X is a T x P (number of behavioral covariates, explained below) matrix of behavioral correlates,

and b is a P x N matrix of model parameters. We fit these GLMs by finding maximum likelihood esti-

mation of the parameters, b̂. With these fitted models, we predicted firing rates (f̂ ) on data not used

for training, shown in Equation 2b, below.

f̂ ¼ exp Xb̂
� �

(2b)
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We tested six firing rate encoding models, detailed below. Of these six models, the first two

(hand-only and whole-arm) were the ones shown in the main text, with results from the other models

detailed in Appendix 1. Note that each model also includes an offset term, increasing the number of

parameters, P, by one.

. Hand-only: behavioral covariates were position and velocity of the hand, estimated by using
the location of one of the hand markers, in three-dimensional Cartesian space, with origin at
the shoulder (P ¼ 7).

. Whole-arm: behavior covariates were position and velocity of both the hand and elbow
markers in three-dimensional Cartesian space, with origin at the shoulder. This is the simplest
extension of the extrinsic model that incorporates information about the configuration of the
whole arm (P ¼ 13).

. Hand kinematics+force: behavioral covariates were position and velocity of the hand, as well
as forces and torques on the manipulandum handle, in three-dimensional Cartesian space (P
= 13).

. Egocentric: behavior covariates were position and velocity of the hand marker in spherical
coordinates (�, f, and �), with origin at the shoulder (P ¼ 7).

. Joint kinematics: behavioral covariates were the 7 joint angles (shoulder flexion/abduction/
rotation, elbow flexion, wrist flexion/deviation/pronation) and corresponding joint angular
velocities (P = 15).

. Muscle kinematics: behavioral covariates were derived from the length of the 39 modeled
muscles (Chan and Moran, 2006) and their time derivatives. However, because this would
result in almost 78 (highly correlated) covariates, we used PCA to extract 5-dimensional
orthogonal basis sets for both the lengths and their derivatives. On average, five components
explained 99 and 96 percent of the total variance of lengths and length derivatives, respec-
tively. Behavioral covariates of this model were the projections of the muscle variables into
these spaces during behavior (P ¼ 11).

We used repeated 5-fold cross-validation to evaluate our models of neural activity, given that the

models had different numbers of parameters, P. On each repeat, we randomly split trials into five

groups (folds) and trained the models on four of them. We used these trained models to predict

neural firing rates (fi) in the fifth fold. We then compared the predicted firing rates from each model

to the actual firing rates in that test fold, using analyses described in the following sections. This pro-

cess (including random splitting) was repeated 20 times, resulting in n=100 sample size for each

analysis result. Thus, if a more expressive model with more parameters performs better than a sim-

pler model, it would suggest that the extra parameters do provide relevant information about the

neural activity not accounted for by the simpler models.

Statistical tests and confidence intervals
To perform statistical tests on the output of repeated 5-fold cross-validation, we used a corrected

resampled t-test, outlined in Ernst (2017) and Nadeau and Bengio (2003). Here, sample mean and

variance are calculated as in a normal t-test, but a correction factor needs to be applied to the stan-

dard error, depending on the nature of the cross-validation. Equation 3a-c shows a general case of

this correction for R repeats of K-fold cross-validation of some analysis result dkr.

�̂d ¼
1

K�R

X

K

k¼1

X

R

r¼1

dkr (3a)

ŝ2

d ¼
1

K�Rð Þ� 1

X

K

k¼1

X

R

r¼1

dkr � �̂dð Þ2 (3b)

tstat ¼
�̂d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K�R
þ 1=K

1�1=K

� �

ŝ2

d

r (3c)

We then compare the t-statistic here (tstat) to a t-distribution with K�R� 1 degrees of freedom.

The correction applied is an extra term (i.e., 1=K
1�1=K) under the square root, compared to the typical
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standard error calculation. Note that we performed all statistical tests within individual sessions or

for individual neurons, never across sessions or monkeys.

Bonferroni corrections
At the beginning of this project, we set out to compare three of these six models: hand-only, ego-

centric, and muscle kinematics. In making pairwise comparisons between these models, we used

a ¼ 0:05 and a Bonferroni correction of 3, for the three original comparisons. In this analysis, we

found that the muscle model performed best. As we developed this project, however, we tried the

three other models to see if they could outperform the muscle kinematics model, eventually finding

that the whole-arm model, built on Cartesian kinematics of the hand and elbow outperformed it. As

this appeared to be primarily due to modeling and measurement error in the muscle model (see

Appendix 1), we decided to focus on the hand-only and whole-arm model. Despite only making one

pairwise comparison in the main text, we chose to use a Bonferroni correction factor of 6: three for

the original three pairwise comparisons and one more for each additional model we tested, which

were compared against the best model at the time, and could have changed the end result of this

project.

Goodness-of-fit (pseudo-R2)
We evaluated goodness-of-fit of these models for each neuron by using a pseudo-R2 (pR2) metric.

We used a formulation of pseudo-R2 based on a comparison between the deviance of the full model

and the deviance of a ’null’ model, that is, a model that only predicts the overall mean firing rate

(Cameron and Windmeijer, 1997; Cameron and Windmeijer, 1996; Heinzl and Mittlböck, 2003;

Perich et al., 2018).

pR2 ¼ 1�
D fi; f̂l
� �

D fi; �fið Þ
(4a)

¼ 1�
logL fið Þ� logL f̂l

� �

logL fið Þ� logL �fið Þ
(4b)

When computing the likelihood of a Poisson statistic, this is:

¼ 1�

P

T

t¼1

fi tð Þ log fi tð Þ

f̂l tð Þ

� �

� fi tð Þ� f̂l tð Þ
� �

P

T

t¼1

fi tð Þ log fi tð Þ
�fi

� �

� fi tð Þ� �fið Þ

(4c)

This pR2 metric ranges from �¥ to 1, with a value of 1 corresponding to a perfectly fit model and

a value of 0 corresponding to a model that only fits as well as the ’null’ model. In contrast with the

general intuition for regular R2, a pR2 of ~0.2 is considered a ’good’ fit (McFadden, 1977).

Tuning curves
We binned the trajectory into 16 bins, each 22.5 degrees wide, based on the mean direction across

50 ms of hand motion. For each directional bin, we calculated the sample mean and 95% confidence

interval of the mean. In figures, we plotted this mean firing rate against the center-point of the bin.

Preferred direction shift
We calculated PDs for each neuron in each workspace and found the predicted change in PD from

the contralateral workspace to the ipsilateral workspace, given each model. We compared these

changes to those observed for each neuron. The values of these PD shifts are shown in Figure 7 for

all neurons tuned to movements in both workspaces, averaged over all 100 test folds.

We computed a variance-accounted-for (VAF) metric, here called the ’circular VAF’ (cVAF) for

each neuron (i) in each fold as:

cVAFi ¼ cos D�PD;i�D�̂PD;i

� �

(5)
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As the cVAF metric is essentially the inner product of unit vectors with direction D�PD;i and D�̂PD;i,

it accounts for the circular domain of the PD shifts. Like regular VAF, the cVAF has a maximum value

of 1 when D�PD;i and D�̂PD;i are the same, and decreases in proportion to the squared difference

between D�PD;i and D�̂PD;i. We took the average cVAF over all neurons as the cVAF for the fold. In

total, given the 20 repeats of 5-fold cross-validation, this gave us 100-samples of the cVAF for each

model in a given session.

Separability index
In the active/passive experiment, we calculated the separability index for each neuron by fitting a lin-

ear discriminant analysis (LDA) classifier, predicting trial type (active or passive) from the neuron’s

average activity in the 120 ms after movement onset. As with the other neural analyses, we fit and

evaluated each LDA classifier using our repeated 5-fold cross-validation scheme, calling the average

test set classification percentage the neuron’s separability index.

Our procedure for calculating the separability of the whole-arm kinematics was similar, simply

substituting the whole-arm kinematics for the neural activity when training and testing the LDA

classifier.
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Appendix 1

Within class model comparisons
Over the course of this project, we analyzed several different models of area 2 activity. We

categorized these models into two classes based on whether they contained information

about the hand or the arm in different coordinate frames. Of these models, we picked the

hand-only and whole-arm models to represent the two model classes in the main paper, as we

found that the other within-class models offered little additional insight into area 2 activity. For

completeness, however, this section expands on the comparisons between within-class

models.

Hand model comparison
Two of our models used the kinematics of hand movement as behavioral covariates for area 2

neural activity: the hand-only model in the main paper and the egocentric model, which

represents hand kinematics in a spherical coordinate frame with origin at the shoulder. While

the egocentric model, or a model like it, has been proposed as a possible coordinate frame

for representation of the limb (Bosco et al., 1996; Caminiti et al., 1990), we found that it

performed rather poorly at explaining neural activity in area 2 from the two-workspace task.

Appendix 1—figure 1A and B show comparisons between the hand-only model and the

egocentric model in terms of pR2 and tuning curve correlation, as in the main paper. These

comparisons show that the hand-only model tended to out-perform the egocentric model.

Further, the egocentric model predicted large shifts in PD between the two workspaces

(Appendix 1—figure 1C) that did not match up at all to the actual PD shifts.
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Appendix 1—figure 1. Comparison between hand-only model and egocentric model. (A) pR2

comparison, as in Figure 4. (B) Tuning curve correlation comparison, as in Figure 6. (C)

Modeled PD shift compared to actual PD shift for egocentric model, as in Figure 7A.
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Arm model comparison
In addition to the whole-arm model detailed in the main paper, we tested two models of area

2 activity based on biomechanics: one based on joint kinematics and the other based on

musculotendon lengths. To find these behavioral covariates, we registered these marker

locations to a monkey arm musculoskeletal model in OpenSim (SimTK), based on a model of

the macaque arm published by Chan and Moran (2006), and which can be found at https://

github.com/limblab/monkeyArmModel.git (Chowdhury, 2020c; copy archived at https://

github.com/elifesciences-publications/monkeyArmModel). After scaling the limb segments of

the model to match those of each monkey, we used the inverse kinematics analysis tool

provided by OpenSim to estimate the joint angles (and corresponding muscle lengths)

required to match the model’s virtual marker positions to the positions of the actual recorded

markers. Previously, Chan and Moran used this model to analyze the joint and muscle

kinematics as a monkey performs a center out task (Chan and Moran, 2006). Here, we use the

musculoskeletal model to predict neural activity.

Appendix 1—figure 2A and B show comparisons of pR2 and tuning curve correlation

between the whole-arm model detailed in the paper and these two biomechanical models. We

found that the three models provided similar predictions, but surprisingly, the whole-arm

model generally outperformed the biomechanical models. Appendix 1—figure 2C shows the

predicted PD shifts from these models, as in Figure 7A. We found that neither biomechanical

model could predict PD shifts as well as the whole-arm model, though the muscle model in

particular appeared to perform well.
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Appendix 1—figure 2. Comparison between whole-arm model and biomechanical models (joint

kinematics and musculotendon length). Same arrangement as in Appendix 1—figure 1.

As a control for errors introduced into the muscle model by processing marker data with

OpenSim, we performed the cVAF analysis on a whole-arm model where hand and elbow

kinematics were derived from joint angles of the musculoskeletal model, rather than directly

from the marker locations captured by the motion tracking system. We re-ran the model

prediction analysis for only the muscle model, marker-derived whole-arm model, and
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OpenSim-based whole-arm model. Unsurprisingly, we found average cVAFs similar to those

from the main analysis for the marker-derived whole-arm model (0.75). However, the cVAF

ofthe OpenSim-based whole-arm model (0.67) dropped to that ofthe muscle model (0.67).

This suggests that the difference in predictive capability between the muscle and whole-arm

models stems at least in part from errors introduced in OpenSim modeling, rather than from

the whole-arm model necessarily being the better model for area 2 neural activity.

Discussion of arm model comparisons
As proprioceptive signals originate in the muscles, arising from muscle spindles and Golgi

tendon organs, we expected to find that the muscle model would outperform the other

models. However, there are several potential reasons why this was not so. The most important

ones can be divided into two categories loosely tied to 1) errors in estimating the

musclulotendon lengths, through motion tracking and musculoskeletal modeling, and 2) the

fidelity of the muscle model to the actual signals sent by the proprioceptors.

In the first category, the main issue is that of error propagation. The extra stages of analysis

required to compute musculotendon lengths (registering markers to a musculoskeletal model,

performing inverse kinematics to find joint angles, and using modeled moment arms to

estimate musculotendon lengths) introduce errors not present when simply using the positions

of markers on the arm. As a control, we ran the whole-arm model through two of these extra

steps by computing the hand and elbow positions from the joint angles of the scaled model,

estimated from inverse kinematics. The results of this analysis showed that the performance of

the whole-arm model with added noise dropped to that of the muscle model, indicating that

there are, in fact, errors introduced in even this portion of the processing chain.

The other potential source of error in this processing chain stems from the modeled

moment arms, which might not accurately reflect those of the actual muscles. In developing

their musculoskeletal model, Chan and Moran collected muscle origin and insertion point

measurements from both cadaveric studies and existing literature (Chan and Moran, 2006).

However, due to the complexity of some joints, along with ambiguity of how the muscle wraps

around bones and other surfaces, determining moment arms purely by bone and muscle

geometry is a difficult problem (An et al., 1984). Because moment arms are irrelevant for

determining hand and elbow kinematics, we could not subject the whole-arm model to the

error introduced by this step.

In addition to the questions of error propagation and musculoskeletal model accuracy is the

question of whether our muscle model was truly representative of the signals sensed by the

proprioceptors. The central complication is that spindles sense the state of the intrafusal fibers

in which they reside, and have a complex, nonlinear relation to the musculotendon length that

we used in our muscle model. Factors like load-dependent fiber pennation angle (Azizi et al.,

2008), or tendon elasticity (Rack and Westbury, 1984) can decouple muscle fiber length from

musculotendon length. Additionally, intrafusal fibers receive motor drive from gamma motor

neurons, which continuously alters muscle spindle sensitivity (Loeb et al., 1985;

Prochazka and Wand, 1981; Prochazka et al., 1976) and spindle activity also depends on the

history of strain on the fibers (Haftel et al., 2004; Proske and Stuart, 1985). Altogether, this

means that while the musculotendon lengths we computed provide a reasonably good

approximation of what the arm is doing, they may not be a good representation of the spindle

responses themselves. Spindle activity might be more accurately modeled when given enough

information about the musculotendon physiology. However, to model the effects of gamma

drive, we would either have to record directly from gamma motor neurons or make

assumptions of how gamma drive changes over the course of reaching. In developing models

of neural activity, one must carefully consider the tradeoff between increased model

complexity and the extra error introduced by propagating through the additional requisite

measurement and analysis steps. Given our data obtained by measuring the kinematics of the

arm with motion tracking, it seems that the coordinate frame with which to best explain area 2

neural activity is simply the one with the most information about the arm kinematics and the

fewest steps in processing. However, this does not rule out the idea that area 2 more nearly
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represents a different whole-arm model that may be less abstracted from physiology, like

musculotendon length or muscle spindle activity.

Still, this model comparison shows that even after proprioceptive signals reach area 2,

neural activity can still be predicted well by a convergence of muscle-like signals, even though

the signals have been processed by several sensory areas along the way. One potential

explanation for this is that at each stage of processing, neurons simply spatially integrate

information from many neurons of the previous stage, progressively creating more complex

response properties. This idea of hierarchical processing was first used to explain how features

like edge detection and orientation tuning might develop within the visual system from spatial

integration of the simpler photoreceptor responses (Felleman and Van Essen, 1991;

Hubel and Wiesel, 1959; Hubel and Wiesel, 1962). This inspired the design of deep

convolutional artificial neural networks, now the state of the art in machine learning for image

classification (Krizhevsky et al., 2012). Unlike previous image recognition methods, these

feedforward neural networks are not designed to extract specific, human-defined features of

images. Instead, intermediate layers learn to integrate spatially patterned information from

earlier layers to build a library of feature detectors. In the proprioceptive system, such

integration, without explicit transformation to some intermediate movement representation,

might allow neurons in area 2 to serve as a general-purpose library of limb-state features,

whose activity is read out in different ways for either perception or use in motor control.

Hand kinematic-force model
Overall, our main results showed that the whole-arm model better captures firing rates and

features of the neural activity than does the hand-only model. One consideration in

interpreting these results is the fact that the whole-arm model is almost twice as expressive as

the hand-only model, due to its greater number of parameters. While we took care to make

sure the models were not overfitting (see Methods for details on cross-validation), a concern

remains that any signal related to the behavior may improve the fits, simply because it

provides more information. To address this concern, we would ideally compare these results

with those from a model with the same number of parameters, but with behavioral signals

uncorrelated with elbow kinematics, for example, kinematics of the other hand. Unfortunately,

due to experimental constraints, we only collected tracking information from the reaching arm.

As a substitute, we also tested a model we titled ‘hand kinematic-force’, which builds on the

hand-only kinematic model by adding the forces and torques on the manipulandum handle.

This model is similar to one proposed by Prud’homme and Kalaska (1994) and has the same

number of parameters as the whole-arm model. While the handle forces and torques are likely

correlated with the elbow kinematics, this model serves as a reasonable control to explore the

particular importance of whole-arm kinematics to area 2.

Appendix 1—figure 3 shows comparisons between the whole-arm model and the hand

kinematic-force model on the three metrics we used. We found that the pR2 and the tuning

curve correlation values for both models were comparable, with some neurons better

described by the whole-arm model and others by the kinematic-force model. However, we

also found that the hand kinematic-force model often could not predict large changes in PD as

well as the whole-arm model could (Figure 7; Appendix 1—figure 3). In four out of eight

sessions, the whole-arm model had a significantly higher cVAF than the hand kinematic-force

model. In the other sessions, there was no significant difference. While the two models made

similar activity predictions, the better PD shift predictions suggest that the whole-arm model is

a better model for area 2 neural activity.
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Appendix 1—figure 3. Comparison between whole-arm model and hand kinematic-force model

(shortened as ‘Kin-Force’). Same format as Appendix 1—figures 1 and 2.
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