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Abstract: New treatment strategies with erythropoietin (EPO) offer exciting opportunities 

to prevent the onset and progression of neurodegenerative disorders that currently lack 

effective therapy and can progress to devastating disability in patients. EPO and its 

receptor are present in multiple systems of the body and can impact disease progression in 

the nervous, vascular, and immune systems that ultimately affect disorders such as 

Alzheimer’s disease, Parkinson’s disease, retinal injury, stroke, and demyelinating disease. 

EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the 

pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian 

target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the 

apoptotic cascade to control -catenin, glycogen synthase kinase-3, mitochondrial 

permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these 

downstream pathways require precise biological modulation to avert complications 

associated with the vascular system, tumorigenesis, and progression of nervous system 

disorders. Further understanding of the intimate and complex relationship of EPO and the 

signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical 

translation of these cell pathways into robust treatments for neurodegenerative disorders. 
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1. Introduction 

The concept of biological agents functioning as hormones may have had its early origins with 

Ernest Starling when he introduced the term to the Royal College of Surgeons in 1905 [1]. Starling 

was discussing the potential existence of agents in the blood that could stimulate organs in the body 

and chose the term “hormone” that was derived from the Greek term meaning to “excite” or “arouse” [2]. 

During this period, Carnot and Deflandre were investigating the agent “hemopoietine” [3]. They 

removed plasma following a bleeding stimulus in rabbits and demonstrated that injecting this plasma 

into untreated animals would promote the development of immature red blood cells. Other work 

confirmed the findings of Carnot and Deflandre to show that plasma obtained by bleeding animals 

acted as a stimulus to produce new red blood cells in untreated animals [4–6]. As “hemopoietine” 

became known as erythropoietin (EPO), studies later demonstrated that loss of oxygen tension in one 

parabiotic rat would lead to reticulocytosis in the normoxic partner [7]. With the subsequent 

purification of human EPO, the EPO gene was cloned and approval was obtained for the clinical use of 

recombinant EPO [8,9]. 

2. EPO Structure and Expression 

2.1. Molecular Structure of EPO 

The EPO gene is a single copy in a 5.4 kb region of the genomic DNA on chromosome 7 and leads 

to the initial encoding of a polypeptide chain containing 193 amino acids [10,11]. EPO is subsequently 

processed into a 166 amino acid peptide with the cleavage of a 27 amino acid hydrophobic secretory 

leader at the amino-terminal [12]. In position 166, a carboxy-terminal arginine is deleted in the mature 

human and recombinant human EPO (rhEPO) leading to a mature protein of 165 amino acids with a 

molecular weight of 30.4 kDa [13,14]. EPO has four glycosylated chains that include three N-linked 

and one O-linked acidic oligosaccharide side chains. The O-linked sugar chain is composed of  

Gal-GalNAc and sialic acids and O-linked glycosylation occurs at serine126. The three N-glycan chains 

consist of a tetra-antennary structure with or without N-acetyllactosamine repeating units and N-linked 

glycosylation occur at aspartate24, aspartate38, and aspartate83. The production, secretion, longevity, 

and function of EPO depend upon the N- and O-linked chains [15]. For example, replacement of 

asparagine38 and asparagine83 by glutamate or serine126 by glycine can impair the production and 

secretion of EPO [16]. The oligosaccharides in EPO may protect against oxygen radical activity [17] 

and the N-glycosylated chains are believed to contribute to the thermal stability of EPO [18]. 

Biological activity for EPO depends upon two disulfide bonds formed between cysteine7 and 

cysteine160 as well as between cysteine29 and cysteine33 [19]. Alkylation of the sulfhydryl groups 

results in irreversible loss of the biological activity of EPO. 

2.2. Tissue Expression of EPO 

At the cellular level, EPO expression is regulated by oxygen tension rather than through the 

concentration of red blood cells [2,15]. Hypoxia-dependent expression of EPO and the EPO receptor 

(EPOR) are modulated through hypoxia-inducible factor 1 (HIF-1) [10,11,20,21] that also may have 
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independent pathways of cytoprotection [22–24]. Gene transcription of EPO and EPOR directly results 

from the activation of HIF-1 and is controlled through the transcription enhancer region in the  

3'-flanking region of the EPO gene that binds to HIF-1 [10,11]. However, other stimuli that do not 

involve hypoxia also can affect the expression of EPO and its receptor. During free radical exposure, 

EPO and the EPOR are present in cerebral endothelial cells (ECs) and remain biologically active to 

offer cellular protection against apoptotic cell death [25]. Free radical exposure in neurons also leads to 

increased HIF-1 expression and subsequent increase in EPO expression [20]. EPO and the EPOR are 

expressed in experimental models of Alzheimer’s disease during aging [26] and in renal tubular cells 

during high glucose-induced oxidative stress [27]. Serum EPO levels are significantly increased during 

systemic infections such as malaria [28,29]. Loss of endogenous anti-oxidants such as selenium also 

can promote and increase EPO expression [30]. Anemic stress, insulin release, and several cytokines, 

including insulin-like growth factor, tumor necrosis factor-α (TNF-α) [31], interleukin-1 (IL-1), and 

interleukin-6 (IL-6) also can result in increased expression of EPO and the EPOR [11,32,33]. Other 

cellular changes, such as hypoglycemia, cadmium exposure, raised intracellular calcium, or strong 

neuronal depolarizations also can alter the expression of EPO [15,34,35]. 

Although EPO is produced and secreted in several organs throughout the body that include the 

brain, liver, and uterus [33,34,36–38] and is detected in the breath of individuals [39], the kidney 

peritubular interstitial cells are the principle site for the production and secretion of EPO [38,40]. EPO 

also can provide protection for renal cells during toxic insults [41,42]. In the liver, EPO has been 

shown to protect against ischemic-reperfusion injury [43], but excessive over-expression of EPO can 

lessen the beneficial effects of EPO [44]. EPO also has been shown to have increased expression in 

amniotic fluid during fetal hypoxia, preeclampsia, and during diabetic pregnancies [45]. This 

intrauterine increase in EPO may be neuroprotective since EPO application can lessen retinal injury 

during intrauterine inflammation [46]. 

Current work has demonstrated that EPO is expressed throughout the body and may affect multiple 

biological functions even though EPO is presently approved by the Food and Drug administration  

for the purpose of treating anemia. For example, in the nervous system, EPO can be produced  

and secreted in neurons of the hippocampus, cortex, internal capsule, midbrain, and nervous  

system tumors [13,14,47]. EPO also is present in myoblasts, peripheral ECs, cardiomyocytes, and 

insulin-producing cells [2,10,48,49]. Yet, it is important to note that the expression of EPO and the 

EPOR may lead to variable biological outcomes that can be beneficial for nervous system disorders, 

but also may promote detrimental outcomes such as aggressive tumor growth and decreased overall 

survival [50]. For these reasons, knowledge of the underling cellular pathways governed by EPO is 

crucial for future translation of safe and effective therapeutic strategies for neurodegenerative disorders. 

3. EPO and Cytoprotection in the Nervous System 

3.1. EPO in the Central and Peripheral Nervous Systems 

EPO plays a significant role in both the developing nervous system and the mature nervous system. 

In murine models, EPO gene expression is present by embryonic day ten in the brain at comparable 

levels found in the bone marrow and spleen [51]. The EPOR also is expressed in the human peripheral 
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nervous system on myelin sheaths of radicular nerves [52]. EPO production in the brain is elevated 

during gestation, but is reduced following maturation to be controlled by the need to maintain oxygen 

homeostasis for tissues [2,53]. Decreased oxygen tension increases EPO production in both peripheral 

organs and the brain [34,54].  

3.2. EPO and Neuronal, Vascular, and Related Cardiac Protection 

The presence of EPO and its receptor in the neurovascular system has generated an immense 

amount of interest to target EPO and its downstream pathways for novel therapeutic strategies against 

neurodegenerative disorders. EPO can protect neurons from oxidative stress [55–59], spinal cord 

ischemia [60], retinal disease [36,46,61,62], stroke [49,63], and demyelinating disease [64]. EPO also 

can promote bone formation in spinal fusion models [65], modulate vascular dilatation [66], may 

reduce cerebral aneurysm formation [67] and prevent endothelial cell injury [25–76], protect  

non-neuronal cells [37,77–80], block disability during infection [28,29,46,81], limit -amyloid (A) 

degeneration [26,79,82,83], and may foster memory function [26]. In related systems that directly 

affect central nervous system function such as the cardiac system, EPO can prevent cardiac injury 

during chemotherapy [84], improve cardiac contractile function [85], limit cardiac failure through the 

reduction of inflammation, fibrosis, and oxidative stress [86], and reduce nitrosative stress [87]. These 

benefits of EPO in the cardiovascular system should correlate with improved cerebral perfusion during 

cardiac injury. It should be noted that not in all cases EPO may be beneficial, since some studies 

suggest no improvement for cardiac protection following cardiac ischemia and sometimes the potential 

for adverse effects [88]. 

3.3. EPO and Neurodegenerative Disorders 

During chronic neurodegenerative disorders such as cognitive loss and Alzheimer’s  

disease, EPO may prevent cell toxicity, reduce -amyloid burden, and lead to improvements in 

memory [26,79,82,83,89,90]. In models of Parkinson’s disease, EPO represses expression of the  

pro-apoptotic protein p53 up-regulated modulator of apoptosis (PUMA) [91] and prevents  

L-3,4-dihydroxyphenylalanine (L-DOPA) toxicity through reductions in caspase 3 activity [57]. In 

experimental autoimmune encephalomyelitis (EAE), EPO can suppress EAE that is associated with an 

increase in the number of astrocytes expressing tissue inhibitor of metalloproteases [64] and prevent 

demyelination in combination with methotrexate administration [92]. In some models of amyotrophic 

lateral sclerosis, EPO may preserve motor neurons, reduce inflammation [93,94], and prevent 

aggregation of mutant copper/zinc-binding superoxide dismutase [95], but EPO in amyotrophic lateral 

sclerosis models may not prolong life span [96]. EPO also may be associated with the treatment of 

depression and has been shown in animal models to have increased expression during 

electroconvulsive therapy and reduce depressive behavior [97]. In studies with seizures, EPO reduced 

seizure duration, protected against hippocampal cell loss, and decreased hippocampal neuronal cell 

apoptosis [98]. 
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4. EPO, Oxidative Stress, and Apoptosis 

4.1. EPO and Oxidative Stress 

Oxidative stress impacts every system of the body and can lead to cell death in the vasculature 

system [73,99–103], the immune system [104–106], the cardiac system [84,107–110], and the  

brain [111–119]. Oxidative stress also may be a contributing factor to the complications of diabetes 

mellitus [109,120–125] and cerebral cognitive loss [126,127]. Oxidative stress is the result of the 

generation of reactive oxygen species (ROS) that are formed through superoxide free radicals, 

hydrogen peroxide, singlet oxygen, nitric oxide (NO), and peroxynitrite [128–130]. ROS are usually 

maintained at non-toxic levels by endogenous antioxidant systems that include superoxide dismutase, 

catalase, glutathione peroxidase, and vitamins C, D, E, and K [131–133]. ROS if not controlled by 

antioxidant systems can affect mitochondrial function, DNA integrity, and protein folding that result in 

cell death [121,123,129,134–138]. Studies have associated oxygen free radical production with DNA 

damage in diabetic patients [139,140], mitochondrial injury and aging mechanisms [137,141,142], and 

nutritional impairment [143]. 

EPO has been demonstrated to directly limit cell injury and ROS generation during oxidative stress. 

EPO can block the generation of ROS [27], may prevent oxidative stress at high altitudes [144], and is 

cytoprotective against oxidative stress that is stimulated by tumor necrosis factor-α (TNF-α) [73]. EPO 

also can limit oxidative stress injury during cisplatinum administration [42,145] and in models of 

Parkinson’s disease [57]. EPO can preserve cellular integrity in neurons [35,55,82,146,147], vascular 

cells [25,68–73,76,148], and inflammatory cells of the nervous system [37,77–79,149] during oxidant 

stress mediated injury. 

4.2. EPO and Apoptotic Injury 

Oxidative stress can lead to cell injury through pathways of programmed cell death that involve 

apoptosis. Apoptosis consists of the cleavage of genomic DNA that usually is not a reversible  

process [68,91,150]. Enzymes responsible for DNA degradation include the acidic, cation independent 

endonuclease (DNase II), cyclophilins, and the 97 kDa magnesium-dependent endonuclease [151–154]. 

Three separate endonuclease activities also exist in the nervous system, including a constitutive acidic 

cation-independent endonuclease, a constitutive calcium/magnesium-dependent endonuclease, and an 

inducible magnesium dependent endonuclease [2,155]. Apoptosis also has an early phase that involves 

the exposure of membrane phosphatidylserine (PS) residues [123]. The early phase can label injured 

cells with membrane PS residues and alert inflammatory cells to engulf and remove these injured  

cells [156,157]. For this to occur such as during periods of oxidative stress, inflammatory cells 

increase their expression of the phosphatidylserine receptor (PSR) on the membrane surface [77,158]. 

As a possible therapeutic strategy, membrane PS externalization can be reversed and blockade of the 

PSR receptor can limit activation and proliferation of inflammatory cells during apoptosis [55,159] to 

prevent the engulfment of functional cells that may consequently be labeled with membrane PS 

exposure [160,161]. 

Activation of caspases occurs during apoptosis [89,162,163]. In the extrinsic pathway, the 

intracellular death domain of death receptors, such as the tumor necrosis family (TNF) superfamily, 
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Fas/CD95/Apo-1, can bind to extracellular ligands and lead to an intracellular death-inducing signaling 

complex following recruitment of adaptor molecules, such as the Fas associated death domain 

(FADD). FADD recruits caspase 8 and 10 through its DED domain to result in the activation of 

caspase 8 and 10. Caspase 8 can result in caspase 3 activation. Caspase 8 also can cleave BH3-only 

protein Bid, a pro-apoptotic member of the Bcl-2 family and result in truncated Bid (tBid) that 

promotes cytochrome c release through Bax resulting in the subsequent activation of executioner 

caspases. For intrinsic caspase pathway, mitochondrial membrane depolarization releases cytochrome c 

and activates caspase 9 and caspase 3. This is regulated by the Bcl-2 subfamily BH3-only proteins 

including Bid, Bad, Bim, Bmf, Puma, and Noxa, which are normally located in cellular compartments 

other than mitochondria. The translocation of these proteins to mitochondria associate with Bax, a 

multiple Bcl-2 homology domain containing protein, to promote permeabilization of the outer 

mitochondrial membrane and the release of cytochrome c. Cytochrome c binds to apoptotic protease 

activating factor-1 (Apaf-1) that consists of three different domains that include CARD, repeats of 

tryptophan and aspartate residues (WD-40 repeats), and a nucleotide-binding domain CED-4. Binding 

of cytochrome c to Apaf-1 results in the removal of the WD-40 domain, masking the CED-4 and 

CARDs, and leads to the oligomerization of Apaf-1. The oligomerization of Apaf-1 promotes the 

allosteric activation of caspase 9 by forming the Apaf-1 apoptosome. Caspase 9 can subsequently 

activate caspase 3 as well as caspase 1 through the intermediary caspase 8. Caspase 1 and caspase 3 

activation result in DNA fragmentation and membrane PS exposure [164–166]. 

EPO can modulate a number of components in the apoptotic cascade to avert cell death. EPO has 

been shown to prevent mitochondrial depolarization and the subsequent release of  

cytochrome c [56,68,69,167,168]. EPO can control mitochondrial signaling through Bad, Bax,  

Puma [27,55,58,76,79,84,91]. EPO also blocks Apaf-1 activation [25,78] and prevents  

the early activation of several caspases such as caspase 1, caspase 3, and  

caspase 9 [25,27,44,55,57,59,72,79,87,169,170]. 

5. EPO and Novel Neuroprotective Pathways 

5.1. EPO and Wingless 

Wnt proteins are cysteine-rich glycosylated proteins derived from the Drosophila Wingless (Wg) 

and the mouse Int-1 genes that oversee multiple biological functions such as stem cell development, 

vascular growth, maturation of the nervous system, neurodegeneration, and cognition [171–174]. Wnt 

signaling has been linked to frontotemporal dementia [175], the transcriptional regulation of 

neurodegenerative pathways [176], and late onset Alzheimer’s disease [177]. Some studies suggest 

that activation of the Wnt pathway may provide a therapeutic target for Alzheimer’s disease [178]. The 

wingless family member Wnt1 can have increased expression during injury to the neurovascular 

system. Wnt1 expression is increased during cortical injury [179], upon endothelial cell [68,71] 

exposure to elevated glucose [68,71], during spinal cord injury [172], in reactive central nervous 

system astrocytes [180], and during vascular cell aging [181]. Wnt1 has been shown to reduce cerebral 

infarct size and improve neurological function following the onset of cerebral ischemia in rats [179]. 

Wnt1 also prevents protects against cell loss in dopaminergic neurons in models of Parkinson’s  
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disease [182,183], limits vascular injury during experimental diabetes [68,71], maintains microglial cell 

survival during A exposure [79,106,184]. Loss of Wnt1 signaling can result in apoptosis [79,185–187]. 

EPO uses Wnt1 and its signaling pathways such as -catenin to prevent apoptotic cell injury. In 

models of experimental diabetes, EPO preserves brain EC integrity that is necessary for protection of 

the neurovascular unit through Wnt1, since administration of anti-Wnt1 neutralizing antibodies or gene 

silencing of Wnt1 block EPO protection (Figure 1) [68,71]. EPO also uses Wnt1 to maintain and 

translocate -catenin to the cell nucleus to initiate “anti-apoptotic” pathways and also prevent 

activation of the “pro-apoptotic” pathways of glycogen synthase kinase-3 (GSK-3) [68]. EPO also 

has been shown to improve Wnt family signaling in mesenchymal stem cells and increase their 

resistance against a neurotoxic environment [188]. Wnt1 can modulate Apaf-1 and X-linked inhibitor 

of apoptosis protein (XIAP) through EPO to maintain microglial cell survival during oxygen-glucose 

deprivation (OGD) [78]. In addition, the potential protective capacity of EPO and Wnt1 during 

Alzheimer’s disease may be linked to the ability of EPO and Wnt1 to govern Bad, Bcl-xL, and caspase 

activity and increase microglial cell survival during A toxicity [79]. 

5.2. EPO, PI 3-K, and Akt 

Although outside of the traditional wingless canonical and non-canonical signaling, Wnt pathways 

have recently been shown to rely upon pathways such as phosphoinositide 3-kinase (PI 3-K) and 

protein kinase B (Akt) [68,178,179,184,189–194]. PI 3-K, and Akt can prevent cell injury and the 

onset of apoptosis in multiple systems of the body. PI 3-K and Akt can promote cellular proliferation 

and block apoptotic injury either alone or through pathways that involve EPO. In regards  

to the nervous system, activation of PI 3-K and Akt can promote endothelial  

survival [66,68,69,72,100,101,195,196], prevent cell injury in inflammatory cells [77,105,165,197–200], 

and block neuronal injury [58,157,179,201–205]. Akt also can limit apoptosis through the 

phosphorylation of FoxO proteins [206–210]. For example, Akt phosphorylates the residue of serine253 

of FoxO3a resulting in its export from the nucleus to the cytoplasm and blocking FoxO3a from 

activating apoptotic genes. One caveat for the PI 3-K and Akt pathways are their ability to promote 

cell growth that sometimes may lead to tumorigenesis if not kept in check. Under these conditions, 

removing PI 3-K and Akt activity can increase radiosensitivity of tumors [211] and limit the growth of 

tumors in the nervous system such as medulloblastomas [189]. 

PI 3-K phosphorylates membrane lipids and mediates the transition of Akt from the cytosol to the 

plasma membrane. Subsequently, Akt is phosphorylated on the residues of serine473 and threonine308 

by phosphoinositide dependent kinase (PDK) PDK1 and PDK2. EPO employs these pathways to 

phosphorylate Akt at serine473 and lead to its activation (Figure 1). As an example, EPO requires Akt 

for the mobilization of multipotent stromal cells [212]. EPO also can protect dorsal root ganglion 

neurons in animal models of diabetes mellitus with streptozotocin through pathways that activate  

Akt [213]. EPO relies upon Akt activation in pathways that require sirtuins to maintain cerebral 

vascular cell survival during oxidative stress [72]. EPO utilizes Akt for the post-translational 

phosphorylation of FoxO proteins to maintain FoxO transcription factors in the cytoplasm by 

association with 14-3-3 proteins and prevent the transcription of “pro-apoptotic” genes [70]. In retinal 

cells, EPO is cytoprotective against the stress of glyoxal-advanced glycation end products (AGEs) 
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through activation of Akt [58] and EPO may rely upon Akt during retinal detachment [214]. During 

several toxic cellular environments, Akt appears to be necessary for EPO to foster protection such as 

during A exposure [78,79,83,90], hypoxia [69,215], and oxidative stress [55,216,217]. 

Figure 1. Erythropoietin (EPO) employs novel signaling pathways to prevent apoptotic 

cell death. EPO can stimulate the phosphoinositide-3-kinase (PI 3-K) and subsequently 

lead to the activation of Akt. Akt can phosphorylate the forkhead transcription factor 

FoxO3a to prevent its nuclear translocation and transcription of “pro-apoptotic” genes. 

EPO through Wnt1 phosphorylates Akt and glycogen synthase kinase-3 (GSK-3) to 

prevent -catenin phosphorylation by GSK-3 and promote the nuclear translocation of  

-catenin to increase transcription of “anti-apoptotic genes”. Phosphorylated FoxO3a and 

-catenin are recruited and bound by cytoplasmic docking protein 14-3-3. In addition, EPO 

also integrates Wnt1 to regulate the expression of X-linked inhibitor of apoptosis protein 

(XIAP), anti-apoptotic protein Bcl-xL, and apoptotic protease activating factor-1 (Apaf-1). 

These processes prevent caspase activation and the induction of apoptosis. Mammalian 

target of rapamycin (mTOR) is another target for EPO to prevent apoptosis. Following 

activation of mTOR, p70 ribosomal S6 kinase (p70S6K) is phosphorylated and activated. 

The activated p70S6K increases the expression of Bcl-2/Bcl-xL, phosphorylates Bad, and 

results in the dissociation of Bad with Bcl-2/Bcl-xL. This leads to an increase in the binding 

of Bad to the protein 14-3-3 and more available Bcl-2/Bcl-xL to prevent apoptosis. 

 

5.3. EPO and mTOR 

Both PI 3-K and Akt have significant roles in modulating the activity of the mammalian target of 

rapamycin (mTOR) to control cell growth and proliferation [99,107]. mTOR is a 289-kDa 
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serine/threonine protein kinase that is involved in cytoskeleton organization, cell growth, and cell 

survival [113,218]. mTOR along with Akt can be necessary to prevent injury in inflammatory  

cells [79,219] and prevent apoptotic death in dopaminergic neurons during oxidative stress [220]. 

mTOR also requires Akt to protect endothelial cells against apoptosis [221] and to prevent the 

activation of “pro-apoptotic” forkhead transcription factors [68,221]. mTOR controls apoptotic cell 

death through its downstream signaling pathways such as p70 ribosomal S6 kinase (p70S6K) and Bad. 

Phosphorylation of Bad leads to its dissociation from Bcl-2/Bcl-xL and increases Bad binding to the 

cytoplasmic docking protein 14-3-3. Activation of p70S6K also can result in the phosphorylation of 

Bad, such as in astrocytes, to limit apoptotic cell injury [222]. Activation of mTOR and p70S6K may 

also decrease apoptosis through pathways that can increase “anti-apoptotic” Bcl-2/Bcl-xL expression [222]. 

However, under some circumstances such as chronic neurodegenerative disorders, inhibition of mTOR 

may be more effective than activation of this pathway to prevent cell injury. In Alzheimer’s disease, 

studies have shown that post-mitotic neurons that attempt to enter the cell cycle cannot replicate and 

succumb to apoptosis [223,224]. In some experimental models of Alzheimer’s disease, neurons can be 

prevented from entering the cell cycle during the inhibition of mTOR and thus are protected from 

apoptosis [111,225,226]. In addition, inhibition of mTOR in murine models of Alzheimer’s disease can 

improve memory and reduce A levels [227]. In contrast, some studies indicate that some level of 

mTOR activation may be required for neuroprotection. Blockade of mTOR signaling can impair  

long-term potentiation and synaptic plasticity in models of Alzheimer’s disease [228]. In addition, 

activation of mTOR and p70S6K has been shown to prevent cell death during A exposure in 

microglia [79]. Microglia are necessary for A sequestration to prevent toxicity of A exposure. Other 

work also suggests that mTOR activity is necessary for neurite growth. Reduced mTOR activity leads 

to inhibition of neuronal growth, neuronal atrophy, and neuronal apoptosis [229]. Activation of mTOR 

in conjunction with Akt also can increase recovery from cervical spinal cord injury in rats [230]. 

EPO has recently been demonstrated to require mTOR activity for a variety of biological functions 

(Figure 1). EPO relies upon mTOR signaling for the neuronal differentiation of post-mortem neural 

precursors [231]. Retinal progenitor cells have been shown to be resistant to hypoxia when exposed to 

EPO that leads to mTOR and p70S6K activation [232]. EPO controlled bone homeostasis with 

osteoblastogenesis and osteoclastogenesis is dependent upon mTOR activation [233]. EPO through 

wingless signaling can activate mTOR to block apoptotic cell death in inflammatory cells [78]. In cell 

models of Alzheimer’s disease, A degeneration of microglia is limited by EPO through combined 

activation of PI 3-K and mTOR pathways [79]. 

6. Conclusions and Future Perspectives 

Treatments with EPO offer a number of exciting avenues to develop novel therapeutic strategies for 

several neurodegenerative disorders that presently lack effective treatments to either prevent or curb 

the devastating degree of disability that can ensue with diseases of the nervous system. In some 

scenarios, EPO may also function as a biomarker for disease onset and progression. For example, 

increased levels of EPO in the fetal plasma and amniotic fluid during gestation may serve as a 

biomarker of intrauterine hypoxia [45]. In addition, raised EPO serum levels appear to correlate with 

increased mortality in renal transplant recipients [234], suggesting that the production of EPO may be 
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an attempt to offset toxic cellular events. EPO is present in the nervous, vascular, and immune systems 

that can each impact the course of neurodegenerative disorders. EPO offers robust neuroprotection in 

these systems against oxidative stress and apoptotic cell death. 

Although EPO can affect multiple cellular pathways, new work has identified pathways that are 

vital for the cytoprotective capacity of EPO during oxidative stress and can impact disorders such as 

Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, retinal injury, stroke, and 

inflammation in the nervous system. EPO relies upon wingless signaling with Wnt1 and the closely 

integrated downstream pathways of PI 3-K, Akt and mTOR. These pathways can tightly regulate the 

apoptotic cascade to control -catenin, GSK-3, mitochondrial permeability, cytochrome c release, 

and caspase activation. 

Yet, use of EPO is not without concerns. The FDA has issued a public health advisory for 

erythropoiesis-stimulating agents (ESAs) that includes EPO, notifying physicians and patients of 

complications with ESAs that include increased rate of tumor growth and death in patients with cancer 

as well as blood clots, strokes, heart failure, and heart attacks in patients with chronic kidney failure 

when ESAs are administered to maintain hemoglobin levels greater than 12 g/dL. EPO, as a known 

growth factor, has been associated with tumorigenesis that may complicate administration of EPO in 

cancer patients suffering from anemia [235–237]. EPO treatment also may require careful modulation 

and in some cases, more is not better. For example, excessive over-expression of EPO may abolish any 

protective effects [44] and may lead to thrombotic injury [88,238]. In some clinical conditions, EPO 

may be contraindicated such as during severe hypertension since EPO may raise mean arterial blood 

pressure [11,239,240]. In an effort to limit some of these disadvantages of EPO, analogues of EPO are 

also under consideration. For example, asialoerythropoietin is absent of erythrogenic properties and 

can reduce myocardial fibrosis, inflammation, and oxidative stress in murine models of heart failure 

without affecting red blood cell production [86,241]. Carbamylated EPO, also without erythrogenic 

effects, has been shown to be neuroprotective in animal models of spinal cord injury [242]. In addition, 

functional agonists of the EPOR are under development for neurodegeneration and neuroprotection. 

However, in some cases, analogues of EPO may not offer cytoprotection [243] or neuroprotection [244], a 

result that may reflect low affinity binding to the EPOR. Recent studies have been carried out to 

improve signaling at the EPOR utilizing peptides that can specifically bind to the EPOR and have been 

shown to promote the survival of hippocampal and cerebellar neurons following injury with kainate or 

potassium chloride [147]. 

Given the concerns regarding EPO, identification of novel cellular pathways governed by EPO may 

be essential for the development of safe and effective therapeutic strategies for neurodegenerative 

disorders. However, understanding the complexities of these pathways will be equally important. 

Although activation of Wnt signaling pathways through EPO have been demonstrated to be 

cytoprotective and block neurodegeneration, activation of Wnt signaling in conjunction with Akt may 

contribute to nervous system tumors [189,245,246]. As a result, other targets for consideration that 

may involve the EPO-wingless pathway may be necessary for future consideration to foster neuronal 

protection. For example, recent studies show that Wnt1 inducible signaling pathway protein 1 (WISP1), a 

downstream target of Wnt signaling, also is neuroprotective and may represent a new approach for 

neurodegenerative disorders. WISP1 may modulate aging of vascular cells [181] and is protective in 

primary neuronal cells [193,194]. WISP1 can block GSK-3 activity in cells [193,247]. During the 
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inhibition of GSK-3, -catenin is not phosphorylated, ubiquinated, or degraded and can translocate to 

the nucleus to prevent cellular apoptosis [77,186]. WISP1 through a PI 3-K mediated pathway 

promotes the translocation of -catenin from the cytoplasm of neurons to the nucleus that can allow for 

the transcription and eventual translation of pathways that can limit apoptotic cell death [194]. Other 

studies have suggested that activation and phosphorylation of Akt and mTOR may be associated with 

the progression of Alzheimer’s disease [248]. Inhibition rather than activation of mTOR may be 

required for the treatment of epilepsy [249]. In addition, excessive mTOR activity may contribute to 

dyskinesias in Parkinson’s disease patients [250]. Future studies that can elucidate the intricate 

biological function and relationship of EPO and the pathways of Wnt, PI 3-K, Akt, and mTOR should 

open new directions for EPO and its signaling pathways as clinically effective strategies for the 

nervous system. 
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