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Abstract: Ageing processes of vehicle catalytic converters inevitably lead to the release of Pt and Pd
into the environment, road dust being the main sink. Though Pt and Pd are contained in catalytic con-
verters in nanoparticulate metallic form, under environmental conditions, they can be transformed
into toxic dissolved species. In the present work, the distribution of Pt and Pd between dissolved,
nanoparticulate, and microparticulate fractions of Moscow road dust is assessed. The total concen-
trations of Pt and Pd in dust vary in the ranges 9–142 ng (mean 35) and 155–456 (mean 235) ng g−1,
respectively. The nanoparticulate and dissolved species of Pt and Pd in dust were studied using
single particle inductively coupled plasma mass spectrometry. The median sizes of nanoparticulate
Pt and Pd were 7 and 13 nm, respectively. The nanoparticulate fraction of Pt and Pd in Moscow dust
is only about 1.6–1.8%. The average contents of dissolved fraction of Pt and Pd are 10.4% and 4.1%,
respectively. The major fractions of Pt and Pd (88–94%) in road dust are associated with microparticles.
Although the microparticulate fractions of Pt and Pd are relatively stable, they may become dissolved
under changing environmental conditions and, hence, transformed into toxic species.

Keywords: platinum; palladium; distribution; dissolved species; nanoparticles; microparticles;
fractions; road dust; single particle ICP-MS

1. Introduction

Platinum group elements (PGEs), such as Pt, Pd, and Rh, are the main active com-
ponents of the vehicle catalytic converters applied to reduce the emissions of harmful
substances (carbon monoxide, nitrogen oxides, hydrocarbons, etc.) from the exhaust sys-
tem [1–3]. During ageing processes, thermal, chemical, and mechanical abrasion of the
converters leads to the release of PGEs into the environment [4–9]. It is considered that
PGEs are released from the converters as particulate forms [2,10]. Though PGEs are used
in the catalytic converters as nanoparticulate species (<10 nm) [3], the emitted particles
containing PGEs are mainly of micron size range [11]. It is reported that, on average, 66% of
emitted PGE-containing particles are greater than 10 µm, 21% of particles are in the range
3–10 µm, and 13% of particles are smaller than 3 µm [11]. PGEs can be major components
of the emitted particles and their minor components, for example, if PGEs are present
in Al/Si-containing debris of washcoat [12]. The emitted PGE-containing particles are
distributed and accumulated in urban environmental compartments. The elevated concen-
trations of PGE are found in airborne particles [13,14], road dust [13], roadside soil [6,15,16],
and aquatic systems [17,18]. The concentrations of Pt and Pd in road dust of different cities
are presented in Table 1. As seen from the table, the concentrations of Pt and Pd in urban
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dust vary significantly from about 1 ng g−1 in Stellenbosch (South Africa) to hundreds
of ng g−1 in Moscow (Russia), London (UK), Perth (Australia), Toronto (Canada), and
Chinese cities, such as Hong Kong, Shenzhen, Guangzhou, Beijing. Probably, the difference
in concentrations is due to the number of cars and traffic intensity. It should be noted that
the ratio of Pt and Pd in dust is also different. For example, in dust of Gothenburg [13],
Białystok [19], and Beijing [20], the concentration of Pt is higher than Pd, and vice versa
in Rome [13], Moscow [21], Hong Kong, Shenzhen, Guangzhou [22], Beijing [23], and
Toronto [24]. This may be due to the different compositions of catalytic converters used in
cars in different countries because vehicle emissions are the main source of Pt and Pd in
road dust.

Table 1. The abundance of Pt and Pd in road dust.

Concentration, ng g−1

Location Reference
Pt Pd

317 - Madrid, Spain [25]

326
58
74
34

173

71
-
-

203
-

Gothenburg, Sweden
Sheffield, UK
London, UK
Rome, Italy

Munich, Germany

[13]

0.16–1.28 0.64–1.76 Stellenbosch, South Africa [26]

5–79 - Ghent, Belgium
Gothenburg, Sweden [10]

28 58 Beijing, China [23]

12–357
(mean 71)

8–225
(mean 158) Moscow, Russia [21]

3.8–444
(mean 115) - Seoul, Korea [27]

34–111 33–42 Białystok, Poland [19]

1.5–43 1.2–58 Hyderabad, India [28]

12–187
14–178

5–48

12–287
34–514
13–554

Hong Kong, China
Shenzhen, China

Guangzhou, China
[22]

35–131 10–88 Houston, USA [29]

4–356
(mean 97)

0.1–125
(mean 20) Beijing, China [20]

102–764 - London, UK [30]

54–419 58–440 Perth, Australia [31]

<5–151 10–516 Toronto, Canada [24]

The emitted PGEs can present not only as particulate species but also as dissolved
ones [2]. In the environment, nanoparticulate species of PGEs can interact with several
different ligands and can be transformed into dissolved ones [32], and the latter are more
bioavailable [33]. Physiologically based extraction tests show that the bioavailable fraction
of PGEs in road dust can reach 68% of their total content, possibly due to the presence of
mobile PGE species formed in the roadside environment [34]. It is generally accepted that
particulate (metallic) PGEs are nontoxic, while their dissolved species (e.g., chlorinated
forms) are toxic and allergenic [35,36]. The toxicity of several PGE-chlorinated salts and
evidence of DNA damage have been observed both in vitro and in vivo [35–37]. A study
on the bioavailability of PGEs in the human digestive tract showed that Pt and Pd did not
undergo precipitation reaction when passing from the acid environment of the stomach to
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the neutral environment of the small intestine [34]. It has also been shown that Pd is more
bioavailable than Pt, probably due to the differences in their mobilities and tendencies
to form soluble complexes [34]. Besides, the solubilization of PGEs and the formation of
chloride complexes are also possible in the human digestive tract, which raises health-
hazard issues [34].

It is reported that dissolved Pt is emitted in very small quantities (≤1%) [11]. Other
studies show that the dissolved fraction of Pt emitted from fresh gasoline and diesel cat-
alysts is less than 10% [2,38]. The lack of these studies is that “water-soluble” fraction
is defined as <0.45 µm, so it comprises both nanoparticulate and ionic fractions. In gen-
eral, the speciation of PGEs in the environment remains poorly understood [10]. At the
same time, the speciation of elements governs their mobility, bioavailability, toxicity, and
bioaccumulation. Nanoparticulate metals can be found in solutions as nanoparticles, dis-
solved ions, and surface-adsorbed ions [39]. Therefore, identifying and/or measuring the
quantities of “nanoparticulate elements” in a sample is related to the speciation analysis.
The determination and speciation of environmental nanoparticles is an urgent problem of
analytical chemistry. The special term “nanospeciation analysis” has already been intro-
duced in studies on the fate of nanoparticles under different conditions [40]. In general, the
speciation of elements associated with nanoparticles (nanospeciation) should include two
main steps: (1) detection of nanoparticulate elements and (2) determination of chemical
species of nanoparticulate elements [41].

The detection of nanoparticulate elements (i.e., the first step of nanospeciation analysis)
is possible by using the single particle inductively coupled plasma mass spectrometry
(spICP-MS) proposed for the characterization and analysis of colloidal suspensions [42–46].
spICP-MS implies recording time-resolved signals at high acquisition frequencies (104–105

Hz, or dwell time of 10–100 µs). Due to the use of such a fast data acquisition system,
detailed information about the transient signal produced by each nanoparticle can be
obtained [47]. The basic assumption behind spICP-MS is that each recorded pulse represents
a single nanoparticle, while a “steady” signal between the pulses is related to the dissolved
species of an element. In turn, the frequency of the pulses is directly related to the number
concentration of nanoparticles. The intensity of each pulse is proportional to the mass of
the element in each detected nanoparticle [48]. Therefore, spICP-MS can provide important
information on environmental nanoparticles, such as size distribution, particle number,
particle mass concentration, and concentration of ionic species. Moreover, spICP-MS allows
one to determine nanoparticles at the ultratrace level (ng L−1), which is very important for
the analysis of environment samples.

The aim of the present work is to evaluate the concentration of nanoparticulate and
dissolved Pt and Pd in road dust by using spICP-MS. The study is performed taking as
example the samples of road dust collected from the Moscow downtown.

2. Results and Discussion
2.1. Concentration of Pt and Pd in Bulk Road Dust Samples

Pt and/or Pd were found in 22 of 78 road dust samples: in 12 of 28 samples from
major highways and in 10 of 42 samples from secondary roads/residential areas. Probably,
this is due to the uneven distribution of Pt and Pd in dust samples along the roads. Since
preconcentration methods were not used prior to analysis, Pt and Pd were determined only
in the samples with concentrations above the limit of detection (LOD). Pt and Pd were not
found in dust samples from parks due to the minor effect of traffic emissions. The minimum,
maximum, and mean concentrations of Pt and Pd in road dust samples are given in Table 2.
It was found that the mean concentrations of Pt and Pd in road dust samples under study
were 35 and 235 ng g−1, respectively. The determined concentrations are comparable with
the concentrations of Pt and Pd in other cities (see Table 1). The concentrations of Pt and
Pd in dust found in the present study are more close to the ones found in Hong Kong,
Shenzhen, and Guangzhou (China) [22]. Obviously, the concentrations of Pt and Pd in dust
are dependent on the intensity of road traffic. For example, in Stellenbosch (South Africa),
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where traffic intensity is low, the concentrations of Pt and Pd are only about 1 ng g−1. As
for the ratio of Pt and Pd, the concentration of Pt in Moscow road dust is lower than Pd like
in other big cities, such as Rome [13], Hong Kong, Shenzhen, Guangzhou [22], Beijing [23],
and Toronto [24].

Table 2. Concentrations of Pt and Pd in road dust as obtained by ICP-MS.

Element
Concentration, ng g−1

LOD Mean Minimum Maximum

Pt 7 35 9 142

Pd 50 235 155 456

2.2. Particle Size Distribution of Separated Clay Fractions of Road Dust

The clay fractions (<2 µm) of dust samples were separated from the dust samples.
The characteristic particle size distribution of dust clay fractions is given in Figure 1. As
seen from the figure, the particle size distribution ranges from 50 to 2 µm and has three
maxima, 130 nm, 580 nm, and 1.1 µm. It should be noted that a nanosized population
(50–300 nm) predominates in a separated clay fraction of dust, which is about 87%. Other
two populations in the size ranges 0.4–0.9 µm and 0.9–2 µm account for only about 8% and
5%, respectively. The high content of the nanosized population of particles proves that the
separated clay fraction is representative for the determination of nanoparticulate Pt and Pd
in road dust by spICP-MS.
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Figure 1. Particle size distribution of a separated clay fraction of road dust.

2.3. Concentration of Nanoparticulate Pt and Pd in Road Dust Samples

For the assessment of the transport efficiency of nanoparticulate matter in spICP-MS
measurements, the reference sample of Au nanoparticles was analyzed. The results are
presented in Table 3. It has been shown that the determined experimental values of size,
number concentration, and mass concentration of Au nanoparticles are in good agreement
with the certified values. A slight deviation of experimental results from the specification
can be attributed to inevitable inaccuracies of multiple dilutions.



Molecules 2022, 27, 6107 5 of 12

Table 3. Particle size, particle number, and mass concentration for the reference sample of Au
nanoparticles (n = 3).

Size (nm) Number Concentration
(Particles L−1)

Mass Concentration
(ng L−1)

Certified values 29.4 ± 1.3 2.1 × 108 53

Experimental results 29.2 ± 0.1 (2.0 ± 0.3) ×108 54 ± 8

The results of the spICP-MS analysis of clay fractions of road dust samples are pre-
sented in Table 4. It is shown that road dust contains nanoparticles of Pt and Pd with
sizes in the ranges 6–11 nm and 10–21 nm, respectively. Typical examples of particle size
distributions of nanoparticulate Pt and Pd are given in Figure 2. It should be noted that
Pt nanoparticles with a comparable size (8–21 nm) were earlier identified in road dust of
Ghent and Gothenburg [10]. The mean concentration of nanoparticulate Pt and Pd in the
separated clay fractions of dust are 1.6 and 21 ng L−1, respectively. spICP-MS analysis also
enables ionic concentrations of elements to be determined. It has been found that the mean
concentrations of dissolved species of Pt and Pd in the separated clay fractions of road dust
are 12 and 90 ng L−1, respectively. It is revealed that the concentrations of dissolved species
of Pt and Pd are about 4–10 times higher than the concentrations of their nanoparticulate
species. This can be explained by the gradual dissolution of metallic Pt and Pd in the urban
environment. The dissolution of particulate Pt and Pd in the urban environment can occur,
for example, as a result of rains and/or watering (washing) the roads. It should be noted
that the latter is a common procedure in Moscow in the summer period.

Table 4. Concentrations of nanoparticulate and dissolved species of Pt and Pd in clay fractions of
road dust as obtained by spICP-MS.

Particle Concentration
(Particles L−1)

Mass Concentration
(ng L−1)

Ionic Concentration
(ng L−1)

Median Size
(nm)

Size Detection
Limit (nm)

Pt

Mean 2.8 × 108 1.6 12 7 3.5

Minimum 1.2 × 106 0.03 1 6 2.8

Maximum 3.4 × 109 18.2 34 11 5.1

Pd

Mean 1.1 × 109 21 90 13 6.7

Minimum 5.7 × 107 3 13 10 4.4

Maximum 3.0 × 109 104 708 21 13.9

The concentrations obtained by spICP-MS were recalculated into the concentrations of
nanoparticulate and dissolved species of Pt and Pd in bulk dust samples. The concentrations
of nanoparticulate species of Pt and Pd in Moscow road dust varied in the ranges <LOD–2.7
(mean 0.3) ng g−1 and 0.4–15.6 (mean 3.1) ng g−1, respectively. The concentrations of
dissolved species of Pt and Pd were 0.2–5.1 (mean 1.7) ng g−1 and 2–106 (mean 14) ng g−1,
respectively.
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2.4. Association of Pt and Pd with Nanoparticulate, Microparticulate, and Dissolved Fractions of
Road Dust

Based on the results of the analysis of bulk (<100 µm) road dust samples and spICP-MS
analysis, the ratio of nanoparticulate, microparticulate, and dissolved fractions of Pt and Pd
in road dust was evaluated (Figure 3). According to the IUPAC definitions, microparticles
have sizes from 0.1 to 100 µm, while nanoparticles have sizes from 1 to 100 nm [49]. It has
been revealed that the nanoparticulate fraction of Pt and Pd in Moscow road dust is only
about 1.6–1.8%. The content of a dissolved fraction of Pt and Pd varies in the range 4–10%.
Earlier [10], it was found that, on average, 3.3% of Pt in road dust is in nanoparticulate form;
this is comparable with the concentrations determined in the present study. In contrast,
no dissolved Pt was found in the abovementioned work [10]. It is found that the average
content of dissolved fraction is higher for Pt than for Pd. The representative and well-
studied species of Pt and Pd in natural waters are neutral or slightly negatively charged
hydroxy- or hydroxochloride complexes [50]. Platinum (IV) hydroxide (Pt(OH)4·mH2O)
has higher solubility as compared with Pd species (aquated and hydrolyzed chloride
complexes) [50]. The solubility of the hydroxocomplexes of PGEs varies in the following
order: Pt > Rh > Pd [50]. This can be the reason for the higher content of dissolved fraction
of Pt as compared with Pd.



Molecules 2022, 27, 6107 7 of 12

Molecules 2022, 27, x FOR PEER REVIEW 7 of 12 
 

 

fraction of dust does not have such mobility in the environment as nanoparticles, it can 
contribute to dissolved fractions of Pt and Pd by gradual dissolution. On the other hand, 
due to aggregation, nanoparticles of Pt and Pd can also be immobilized on the surface of 
dust microparticles. As a result, the recovery of nanoparticulate Pt and Pd may be under-
estimated. 

 
Figure 3. Distribution of Pt and Pd between nanoparticulate, microparticulate, and dissolved frac-
tions of road dust. 

3. Materials and Methods 
3.1. Road Dust Sampling 

The sampling of dust was carried out in the Moscow downtown (city center) on the 
territory bounded by a major highway, the Third Transport Ring. Dust samples were col-
lected from major roads (28 samples), secondary roads (11 samples), parks (7 samples), 
and residential areas (32 samples); a total of 78 dust samples were collected (Figure 4). It 
should be noted that residential areas are surrounded by the secondary road, so the dif-
ference between these sampling areas is debatable. The sampling was carried out on 10–
14 July 2021 under dry weather conditions. For 2 weeks prior to the start of the sampling, 
no precipitation was observed, the air temperature was extremely high and reached a rec-
ord of 34 °C, atmospheric pressure averaged at 750 mm Hg, atmospheric air humidity 
varied from 40% to 75%, and the wind was predominantly south, southwest with an av-
erage speed of 1 m s−1 [51]. The dust samples were carefully collected with a polypropylene 
brush to avoid a resuspension of fine dust particles in the air as much as possible. As a 
rule, dust nanoparticles are attached to the surface of larger (micron-sized) particles of 
dust, so we assume that the loss of nanoparticles during dust sampling is minimum. Then, 
the samples were weighed and sieved through 100 μm to remove coarse particles and 
debris. The average weight of each collected dust sample was 124 ± 44 g, whereas after 
sieving, it was 18 ± 9 g, which was, on average, 14% of the initial weight of the samples 
collected. 

1.6%

88.0%

10.4%

Pt
1.8%

94.1%

4.1%

Pd

Nanoparticles

Microparticles

Dissolved

Figure 3. Distribution of Pt and Pd between nanoparticulate, microparticulate, and dissolved fractions
of road dust.

It is known that nanoparticles are metastable and can dissolve in aqueous systems;
besides, sonication can also intensify the process of dissolution. Therefore, the sample
preparation process (10 min of sonication) may contribute to the dissolved fraction of Pt
and Pd found in the present study.

The largest amounts of Pt and Pd in Moscow road dust are associated with the
fraction of microparticles (88–94%). Probably, this can be explained by the presence in dust
micron-sized washcoat debris containing PGE nanocoating. Though the microparticulate
fraction of dust does not have such mobility in the environment as nanoparticles, it can
contribute to dissolved fractions of Pt and Pd by gradual dissolution. On the other hand,
due to aggregation, nanoparticles of Pt and Pd can also be immobilized on the surface
of dust microparticles. As a result, the recovery of nanoparticulate Pt and Pd may be
underestimated.

3. Materials and Methods
3.1. Road Dust Sampling

The sampling of dust was carried out in the Moscow downtown (city center) on the
territory bounded by a major highway, the Third Transport Ring. Dust samples were
collected from major roads (28 samples), secondary roads (11 samples), parks (7 samples),
and residential areas (32 samples); a total of 78 dust samples were collected (Figure 4).
It should be noted that residential areas are surrounded by the secondary road, so the
difference between these sampling areas is debatable. The sampling was carried out
on 10–14 July 2021 under dry weather conditions. For 2 weeks prior to the start of the
sampling, no precipitation was observed, the air temperature was extremely high and
reached a record of 34 ◦C, atmospheric pressure averaged at 750 mm Hg, atmospheric air
humidity varied from 40% to 75%, and the wind was predominantly south, southwest
with an average speed of 1 m s−1 [51]. The dust samples were carefully collected with a
polypropylene brush to avoid a resuspension of fine dust particles in the air as much as
possible. As a rule, dust nanoparticles are attached to the surface of larger (micron-sized)
particles of dust, so we assume that the loss of nanoparticles during dust sampling is
minimum. Then, the samples were weighed and sieved through 100 µm to remove coarse
particles and debris. The average weight of each collected dust sample was 124 ± 44 g,
whereas after sieving, it was 18 ± 9 g, which was, on average, 14% of the initial weight of
the samples collected.
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3.2. Determination of Platinum and Palladium in Road Dust Samples

The determination of Pt and Pd in dust samples was performed using ICP-MS after
acid digestion. The dust samples (100 mg) were digested in an open beaker by using four
acids (HF, HNO3, HClO4, and HCl). The procedure of total digestion is described in detail
earlier [52].

For the determination of Pt and Pd, an XSeries mass spectrometer (Thermo Scientific,
Waltham, MA, USA) was used with standard settings: generator output power of 1250
W, concentric PolyCon nebulizer, quartz cooled spray chamber (3 ◦C), plasma argon flow
rate of 13 L min−1, flow rate of the auxiliary argon flow of 0.9 L min−1, flow rate of argon
in the nebulizer of 0.89 L min−1, flow rate of the analyzed sample of 0.8 mL min−1, and
resolution 0.8 M. The limit of detection was calculated as LOD = 3 s, where s is the standard
deviation in the analysis of control samples.

To control the correctness of the analysis of dust samples, the reference samples
were AMIS0192 (certified reference material, platinum (PGM), Merensky ore, Bushveld
Complex, South Africa), AMIS0395 (certified reference material, platinum (PGM), Platreef
ore, Bushveld Complex, South Africa), and DGPM-1 (US Geological Survey, Pinson Mine
disseminated gold).

3.3. Separation of Clay Fractions of Road Dust Samples

Before spICP-MS analysis, the clay fractions (<2 µm) of dust samples were separated by
centrifugation. For that, 15 mL of suspensions containing 100 mg of dust in deionized water
were prepared. Then, for the mobilization of nanoparticles, the suspensions were treated
in the ultrasound bath (Bandelin Sonorex) for 10 min. After that, the suspensions were
centrifuged for 1 min at 3500 rpm. The centrifugation parameters (time and rotation speed)
were calculated for the sedimentation of particles >2 µm. The particle size distributions of
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separated clay fractions were controlled by laser diffraction (Shimadzu SALD-7500nano).
The supernatants (clay fractions) were decanted and divided into two portions. One portion
was filtered through 20 kD to remove particles from the solutions and to obtain a dissolved
fraction. The dissolved fractions were used as control samples for spICP-MS analysis. Both
control samples and clay fractions were analyzed by spICP-MS.

3.4. SpICP-MS Determination of Pt and Pd in the Clay Fraction of Road Dust

The set of clay fractions of dust and control samples (filtrates of clay fractions) was
analyzed using Agilent 7900 ICP-MS in the single particle analysis mode. The separated
clay fractions and control samples were not diluted before the analysis. The following
parameters of ICP-MS were used: a RF generator power of 1550 W, a Peltier-cooled Scott
spray chamber (2 ◦C), a MicroMist nebulizer, a plasma-forming Ar flow rate of 15 L min−1,
an Ar flow rate into the nebulizer of 0.90 L min−1, an analyzed sample flow rate of
1.0 mL min−1, an auxiliary gas flow rate of 1 L min−1, and a dwell time of 0.1 ms. A quartz
torch with a 1.5 mm injector was used in single particle detection mode. The standard
solutions (high-purity standards) were used for calibration. The analysis was performed
in multielement SP mode without settling time. Elements were determined sequentially
for 20 s each. The following m/z values were monitored: 195Pt and 105Pd. The transport
efficiency was determined using the particle size method by using reference nanoparticles
of known size [53], namely, the sample of 30 nm ultrauniform gold nanospheres in 2 mM
sodium citrate solution (0.053 mg mL−1, 2.1 × 1011 particles mL−1 nanoComposix). For
the determination of the transport efficiency, the suspension of Au nanoparticles with a
concentration of 53 ng L−1 in 2 mM sodium citrate solution was prepared and analyzed
by spICP-MS. The results of the analysis were processed by an Agilent 7900 software
(MassHunter 4.4). Peak integration mode was used for processing the results. The control
samples were used for the determination of baseline and threshold values.

The control samples (filtrates of clay fractions) were used for the correct determination
of particle baseline and particle detection threshold. The signal of nanoparticles leads to
the overestimation of the determined particle baseline and particle detection threshold
and, hence, to the underestimation of nanoparticle concentration. Therefore, the values
of the particle baseline and particle detection threshold (calculated as 6s, with s-standard
deviation) obtained for the control samples were used for processing the results for the
suspensions (clay fractions).

4. Conclusions

Single particle inductively coupled mass spectrometry has been proven to be a pow-
erful tool for the determination and characterization of nanoparticulate Pt and Pd in
environmental samples. For road dust of Moscow, it has been found that nanoparticu-
late and dissolved fractions of the studied elements are only about 1.6–1.8% and 4–10%,
respectively. The major portion of Pt and Pd (88–94% of the total content) is associated
with the microparticulate fraction of Moscow road dust. Despite the low mobility, the
microparticulate fractions of Pt and Pd can release potentially toxic dissolved species as a
result of gradual dissolution. Therefore, the processes of dissolution and the environmental
conditions, under which the dissolution occurs, require further investigation.
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