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Abstract 

Background and objectives:  Preoxygenation is crucial for providing sufficient oxygen reservoir to a patient before 
intubation and enables the extension of the period between breathing termination and critical desaturation (safe 
apnoea time). Conventionally, face mask ventilation is used for preoxygenation. Non-invasive ventilation is a new pre‑
oxygenation method. The study objective was to compare the outcomes of non-invasive ventilation and face mask 
ventilation for preoxygenation.

Method:  PubMed, Embase, Cochrane Library, and the ClinicalTrials.gov registry were searched for eligible studies 
published from database inception to September 2021. Individual effect sizes were standardized, and a meta-analysis 
was conducted using random effects models to calculate the pooled effect size. Inclusion criteria were randomised 
controlled trials of comparing the outcomes of non-invasive ventilation or face mask ventilation for preoxygenation 
in patients scheduled for surgeries. The primary outcome was safe apnea time, and the secondary outcomes were 
post-operative complications, number of patients who achieved the expired O2 fraction (FeO2) after 3 min of preoxy‑
genation, minimal SpO2 during tracheal intubation, partial pressure of oxygen in the arterial blood (PaO2) and partial 
pressure of carbon dioxide (PaCO2) after preoxygenation, and PaO2 and PaCO2 after tracheal intubation.

Results:  13 trials were eligible for inclusion in this study. Significant differences were observed in safe apnoea time, 
number of patients who achieved FeO2 90% after preoxygenation for 3 min, and PaO2 and PaCO2 after preoxygena‑
tion and tracheal intubation. Only in the non-obese subgroup, no significant difference was observed in safe apnoea 
time (mean difference: 125.38, 95% confidence interval: − 12.26 to 263.03).

Conclusion:  Non-invasive ventilation appeared to be more effective than conventional methods for preoxygenation. 
We recommend non-invasive ventilation based on our results.

Keywords:  Preoxygenation, Ventilation, Non-invasive positive pressure ventilation, Apnea, Desaturation, Meta-
analysis
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Background
An unexpected difficult airway during intubation can 
be challenging. Insufficient oxygenation causes hypox-
emia followed by failed tracheal intubation (TI); this 
is the main concern in general anesthesia induction. 
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SpO2 < 70% can cause hemodynamic instabilities, 
arrhythmias, hypoxic encephalopathy, and even death 
[1]. However, difficult TI incidence with Intubation Dif-
ficulty Scale scores of > 5, which is widely used as a cut-off 
value to determine moderate-to-major intubation diffi-
culty, range from 4.5 to 11.8% [2–5].

Various factors can lead to difficult TI, such as obesity, 
anatomical anomaly, odontogenic infections, trauma, 
and limited motion range of the cervical spine or tem-
poromandibular joints [6]. Predictable difficult TI can 
be managed with appropriate preparation of personnel, 
equipment, and the environment. However, difficult TI 
cannot always be predicted [7, 8]. Unanticipated diffi-
cult airway has been noted in 1.5–8.5% of anesthetized 
patients in clinical practice [9–11].

Preoxygenation with 100% oxygen supply may prevent 
hypoxemia during TI through lung denitrogenation and 
plasma oxygenation [12]. This enables the extension of 
“safe apnea time,” which increases the tolerance threshold 
of patients to apnea. This technique has been proven to 
effectively delay desaturation during apnea after anesthe-
sia induction [13, 14]. Positive pressure ventilation dur-
ing preoxygenation through continuous positive pressure 
ventilation (CPAP) may be beneficial in promoting gas 
exchange and reducing the desaturation rate [13, 15].

In the conventional method of preoxygenation, tidal 
volume ventilation is provided using a bag-valve mask 
(BVM) manually or a nonrebreathing face mask (NRM) 
for supplying 100% oxygen for 3  min [16, 17]. Effective 
preoxygenation with BVM requires one trained person-
nel to provide a good mask seal against the face and a 
one-way valve at the exhalation port, but standard BVM 
does not have a one-way valve built in, and this drasti-
cally decreases the oxygen fraction, making it similar to 
room air ventilation [17, 18].

NRM combines a face mask and a reservoir bag with a 
one-way valve that prevents exhaled air from re-entering 
the reservoir bag [19]. NRM may provide 65–80% FiO2 
[20]. If the NRM functions well and the mask is sealed 
properly, SpO2 may reach 90% in up to 8 min [21]. How-
ever, NRMs are usually of a free size; therefore, they do 
not provide a good mask seal. Mask ventilation can be 
difficult in people with obesity, facial anatomy anomaly, 
facial hair growth, lack of teeth, sunken cheeks, etc., as 
well as in elderly patients. Moreover, NRM malfunction 
may lead to carbon dioxide retention and suffocation.

Non-invasive ventilation (NIV) is a recently introduced 
alternative preoxygenation method. NIV settings include 
CPAP, bilevel positive airway pressure, and pressure 
support ventilation (PSV) with or without positive end-
expiratory pressure (PEEP). These ventilation types may 
improve gas exchange, decrease breathing efforts, and 
reduce the chances of atelectasis [22, 23]. The face masks 

used for NIV have a good mask seal and provide FiO2 
of 1.0; straps can be wrapped around the patient’s head; 
therefore, trained personnel is not required to secure the 
mask at bedside [24–28]. In critical patients with acute 
respiratory failure, NIV is beneficial for aiding oxygena-
tion by unloading the respiratory muscles, recruiting 
alveoli, and increasing the lung volume [29]. In a previous 
meta-analysis involving obese (BMI ≥ 35 kg/m2) patients 
scheduled for surgeries, NIV significantly improved gas 
exchange before TI and resulted in increased carbon 
dioxide clearance, improved pulmonary function, and 
decreased postoperative respiratory complications [30]. 
Nevertheless, tight-fitting NIV masks create pressure 
sores over the face and nose easily [31–33]. Furthermore, 
NIV increases the possibility of nasal and oral conges-
tion or dryness, eye irritation, gastric insufflation, and 
discomfort from positive pressure, making it undesirable 
from the patient’s perspective [34].

This study evaluated the benefit of using NIV for preox-
ygenation in both obese and nonobese patients scheduled 
for surgery through a systemic review and meta-analysis.

Methods
Selection criteria
Randomized controlled trials (RCTs) comparing the out-
comes of NIV and conventional preoxygenation methods 
in patients scheduled for surgeries were included in this 
review. Studies were selected only if the inclusion and 
exclusion criteria for patients, preoxygenation technique, 
and definitions of each recorded outcome were clearly 
reported. We excluded trials that met at least one of the 
following criteria: (1) pediatric patients, (2) critically ill 
patients with acute respiratory failure or ventilation dis-
tress that required emergency intubation, (3) trials that 
only recruited healthy volunteers, (4) overlap of authors, 
centers, or patient cohorts in two or more trials.

Search strategy and study selection
The PubMed, Embase, and Cochrane Library databases 
were searched for eligible studies published from data-
base inception to September 2021. The following Medi-
cal Subject Headings were used: ((positive pressure) OR 
(non-invasive)) AND ((preoxygenation) OR (ventila-
tion) OR (anesthesia)). The detailed search strategy is 
described in the supplementary files (Additional file  1: 
Appendix  1). The “related articles” option in PubMed 
was used to broaden the search, and all abstracts, trials, 
and citations retrieved were reviewed. In addition, we 
identified some relevant trials from the reference sec-
tions of relevant papers and through correspondence 
with subject experts. Finally, unpublished trials were col-
lected from the ClinicalTrials.gov registry (http://​clini​
caltr​ials.​gov/). No language restrictions were applied. The 

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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systematic review described herein is accepted by PROS-
PERO, an online international prospective register of 
systematic reviews curated by the National Institute for 
Health Research (CRD42020203173).

Data extraction
Baseline and outcome data were independently retrieved 
by two reviewers (TLC and KWT), and study designs, 
study population characteristics, inclusion and exclusion 
criteria, preoxygenation techniques, and collected data 
outcomes were extracted. Decisions recorded individu-
ally by the reviewers were compared, and disagreements 
were resolved by a third reviewer (JRO). The authors of 
the trials were contacted for additional information.

Appraisal of methodological quality
The reviewer independently assessed the methodologi-
cal quality of each trial by using the Risk of Bias Assess-
ment 2.0 recommended by the Cochrane Collaboration 
[35]. Several domains were assessed, including rand-
omization adequacy, allocation concealment, outcome 
assessor blinding to patient information, follow-up dura-
tion, information provided to participants regarding trial 
withdrawal, whether intention-to-treat analysis was per-
formed, and freedom from other biases. We also assess 
the quality of evidences by using Grading of Recom-
mendations Assessment, Development, and Evaluation 
(GRADE) system (Table 3).

Outcomes
The primary outcome was safe apnea time. The second-
ary outcomes included postoperative complications, 
number of patients who achieved the expired O2 fraction 
(FeO2) after 3 min of preoxygenation, minimal SpO2 dur-
ing TI, PaO2 and PaCO2 after preoxygenation, and PaO2 
and PaCO2 after TI.

Statistical analyses
Data were analysed using Review Manager, version 5.4 
(The Cochrane Collaboration, Oxford, England). This 
trial followed PRISMA guidelines [36]. Standard devia-
tions were estimated from the provided confidence inter-
val limits or standard error. For the trials that reported 
the median and IQR or confidence interval and standard 
error instead of mean and standard deviation, we con-
verted the results to mean and estimated standard devia-
tion by using published methods [37, 38]. Dichotomous 
outcomes were analyzed using risk ratios as the summary 
statistic. The effect sizes of continuous outcomes were 
reported as the weighted mean difference. The preci-
sion of the effect sizes was reported as 95% CIs. Pooled 
estimates of the risk ratio and weighted mean difference 

were computed using the DerSimonian and Laird ran-
dom effects models [39].

Statistical heterogeneity and the inconsistency of 
treatment effects across the trials were evaluated using 
Cochrane Q tests and I2 statistics, respectively. Statistical 
significance was set at p < 0.10 for Cochrane Q tests. Sta-
tistical heterogeneity across the trials was assessed using 
I2 statistics, which quantify the proportion of the total 
outcome variability across the trials. Moreover, subgroup 
analyses were performed through the pooling of available 
estimates for similar subsets of patients across the trials.

Results
Trial characteristics
Figure 1 presents a flowchart of trial screening and selec-
tion. The initial search yielded 24,273 citations, of which 
48 were ineligible based on the criteria used for screen-
ing titles and abstracts. Thus, the full texts of these tri-
als were retrieved. However, most of these trials were 
excluded from our final review because of the following 
reasons: 13 used different interventions; 10 were review 
articles, 6 did not meet our patient selection criteria, 5 
lacked control group and 1 provided no outcome of inter-
est. Thus, 13 trials were eligible for inclusion in this study 
[28, 40–51].

These selected 13 trials were published between 2001 
and 2021 and had sample sizes ranging from 18 to 146. 
Most trials recruited patients undergoing elective sur-
gery, including bariatric surgery and neurosurgery. One 
trial recruited patients undergoing ear, nose, and throat 
panendoscopy instead of elective surgery [40]. Ten tri-
als evaluated obese patients with BMI ≥ 30  kg/m2 [28, 
41–43]. The other three trials evaluated nonobese 
patients [44–46]. The patients of every control group in 
the included trials were administered 100% oxygen with 
spontaneous breathing. Although ventilator settings in 
the conventional technique groups varied in terms of the 
ventilation mode, airway pressure, PEEP pressure, ven-
tilation duration, and others across the trials, the NIV 
group received only NIV for preoxygenation. Of the 13 
included RCTs, 10 were balanced. In one trial, signifi-
cantly younger patients were included in the NIV group 
than in the conventional group [41]. In the two other tri-
als, the proportion of men was more in the control group 
than in the NIV group (Table 1) [40, 47].

The methodological quality of the included trials is 
summarized in Table  2. Table  3 showed the certainty 
assessment. Nine trials reported acceptable randomiza-
tion methods. Outcome assessors were blinded to patient 
information in six trials [43, 45, 47–50]. Outcome asses-
sors were not blinded to patient information in the other 
seven trials. Blinding of patients and anesthetists is diffi-
cult because the device appearance and discomfort from 
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positive pressure ventilation render the method used 
obvious. The number of patients lost to follow-up was 
acceptable (< 20%) in all trials. Other biases were non-
standardization of ventilator modes and setting variables 
across the trials.

Safe apnea time
Seven trials compared the safe apnea time of NIV 
and conventional preoxygenation methods [28, 40, 
41, 43–46]. Among these trials, Herriger et  al., Abou-
Arab et  al., Cressey et  al., and Gander et  al. defined 
safe apnea time or nonhypoxemic apnea duration as 
the time between apnea onset and 90% SpO2. Hanouz 

et  al. and Sreejit et  al. defined safe apnea time as the 
period from apnea onset to 93% SpO2 [44, 45]. Delay 
et al. defined safe apnea time as the period from apnea 
onset to 95% SpO2 [28]. The pooled results showed that 
the NIV group exhibited a significantly more favorable 
safe apnea time than the conventional preoxygenation 
group (mean difference: 92.54, 95% CI: 35.31–149.78; 
Fig. 2).

We extracted the data of three of the seven trials 
with the nonobese subgroup, and no significant differ-
ence was observed between the NIV and conventional 
preoxygenation groups (mean difference: 125.38, 95% 
CI: − 12.26 to 263.03; Fig. 2).

Fig. 1  Flowchart of study selection
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Table 1  Characteristics of included randomised controlled trials

Author (Year) Study design Inclusion criteria Number of 
patients (% 
male)a

Age, year, 
mean ± SD

BMI, kg/m−2, 
mean ± SD

Intervention

Cressey. (2001) [41] RCT​ Age > 18 years; 
BMI > 35; patient 
received elective 
surgery; ASA I–III

V: 10 (0)
C: 10 (0)

V: 34 ± 8
C: 47 ± 11

V: 45 ± 7.0
C: 44 ± 5.6

V: CPAP 7.5 cm 
H2O × 3 min
C: Spontaneous 
breathing with 
Mapleson A breathing 
system 8 L/min

Herriger (2004) [46] RCT​ Age 16–60 years; 
BMI < 25; patient 
received elective 
surgery; ASA I–II

V: 20 (60)
C: 20 (55)

V: 34 ± 13
C: 36 ± 8

V: 22 ± 2
C: 22 ± 2

V: CPAP 6 cm H2O 
with PEEP 6 cm 
H2O × 5 min
C: Spontaneous 
breathing without 
CPAP or PEEP

Coussa (2004) [42] RCT​ Age 20–65 years; 
BMI > 35; patient 
received elective 
bariatric surgery; 
ASA II–III

V: 9 (22.2)
C: 9 (0)

V: 41 ± 14
C: 37 ± 8

V: 42 ± 6
C: 44 ± 7

V: CPAP 10 cm 
H2O × 5 min
C: Spontaneous 
breathing

Gander (2005) [43] RCT​ Age 18–60 years; 
BMI > 35; patient 
received elective 
surgery; ASA II–III

V: 12 (25)
C: 15 (13.3)

V: 35 ± 8
C: 38 ± 12

V: 46 ± 7
C: 47 ± 6

V: CPAP 10 cm 
H2O × 5 min
C: Spontaneous 
breathing

Delay (2008) [28] RCT​ Age > 18 years; 
BMI > 40; patient 
received abdominal 
surgery

V: 14 (21.4)
C: 14 (14.3)

V: 36.6 ± 11.7
C: 42.9 ± 11.6

V: 47.1 ± 6.2
C: 52.3 ± 13.7

V: PSV 6 cm H2O with 
PEEP 4 cm H2O during 
the first 20 s, then PSV 
8–10 cm H2O with 
PEEP 6 cm H2O to 
achieve VTe of 8 mL/
kg × 5 min
C: Spontaneous 
breathing

Futier (2011) [48] RCT​ Age > 18 years; 
BMI > 40; patient 
received LSG or 
Roux-en-Y gastric 
bypass; ASA II–III

V: 22 (27.2)
VR: 22 (36.3)
C: 22 (22.7)

V: 42 ± 10
VR: 43 ± 11
C: 41 ± 9

V: 46 ± 2
VR: 45 ± 5
C: 46 ± 4

V: PSV < 18 cm H2O 
with PEEP 6–8 cm 
H2O × 5 min
VR: PSV < 18 cm H2O 
with PEEP 6–8 cm H2O 
with RM × 5 min
C: Spontaneous 
breathing

Georgescu (2012) 
[50]

Crossover RCT​ Age 18–75 years; 
BMI > 30; patient 
received elective 
surgery

V1 + V2: 30 (53.3) V1 + V2: 49.6 ± 14.0 V1 + V2: 36.5 ± 5.3 V1: NIPPV 4 cm H2O 
with PEEP 4 cm 
H2O × 3 min, and 
then spontaneous 
breathing
V2: Spontaneous 
breathing; then NIPPV 
4 cm H2O with PEEP 
4 cm H2O × 3 min

Harbut (2014) [51] RCT​ Age > 18 years; 
BMI > 35; patient 
received elective gas‑
tric bypass surgery; 
ASA II–III

V: 22 (N/P)
C: 22 (N/P)

V: 46.9 ± 12.9
C: 42.1 ± 12.4

V: 43 ± 6.3
C: 44.1 ± 6.0

V: CPAP 5 cm H2O/PSV 
5 cm H2O with PEEP 
7 cm H2O × 2 min
C: Spontaneous 
breathing

Hanouz (2015) [44] RCT​ Age > 18 years; 
patient received 
elective surgery; 
ASA I–II

V: 50 (60)
Vp: 47 (46.8)
C: 49 (55.1)

V: 45 ± 20
Vp: 40 ± 17
C: 45 ± 18

V: 25 ± 6
Vp: 23 ± 4
C: 25 ± 5

V: NIPPV 12 cm H2O 
with PEEP 6 cm H2O to 
obtain 90% FeO2
Vp: NIPPV 12 cm H2O 
without PEEP
C: Spontaneous 
breathing
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Table 1  (continued)

Author (Year) Study design Inclusion criteria Number of 
patients (% 
male)a

Age, year, 
mean ± SD

BMI, kg/m−2, 
mean ± SD

Intervention

Edmark (2015) [47] RCT​ Age 24–49 years; 
BMI 35–50; patient 
received elective 
LGBP; ASA I–II

V: 10 (10)
C: 20 (35)

V: 37 [34–45]
C: 43 [37–48]

V: 42.9 [44.1–44.6]
C: 38.1 [36.1–41.2]

V: CPAP 10 cm H2O 
with PEEP 10 cm 
H2O × 3 min
C: Spontaneous 
breathing

Baltieri (2015) [49] RCT​ Age 25–55 years; 
BMI 40–55; patient 
received Roux-en-Y 
gastric bypass bariat‑
ric surgery through 
laparotomy

V: 10 (20)
C: 20 (20)

V: 42 ± 11.2
C: 40.7 ± 10.6

V: 44.8 ± 2.8
C: 45.72 ± 4.08

V: BiPAP 12 cm H2O 
with PEEP 8 cm 
H2O × 1 h
C: Spontaneous 
breathing

Sreejit (2015) [45] RCT​ Age 18–70 years; 
BMI < 25; patient 
received elective 
surgery; ASA I–II

V: 20 (55)
C: 20 (55)

V: 42.75 ± 11.97
C: 45.65 ± 12.22

V: 20.97 ± 2.29
C: 21.01 ± 2.38

V: CPAP 5 cm H2O 
with a fixed PEEP 
device × 5 min
C: Spontaneous 
breathing with the 
same device

Abou-Arab (2016) 
[40]

RCT​ Age > 18 years; 
BMI > 35; patient 
received ENT pan-
endoscopy; ASA I–III

V: 25 (16)
C: 25 (48)

V: 58 ± 13
C: 58 ± 13

V: 23.3 ± 4.7
C: 25.1 ± 6.1

V: NIPPV 4 cm H2O 
with PEEP 4 cm H2O 
until EtO2 exceeded 
90%
C: Spontaneous 
breathing

a Mean (range)

CPAP Continuous positive airway pressure, PSV Pressure support ventilation, VTe Expiratory tidal volume, NIPPV Non-invasive positive inspiratory pressure ventilation, 
RM Recruitment manoeuvre, LSG Laparoscopic sleeve gastrectomy, LGBP Laparoscopic gastric bypass, BiPAP Bilevel positive airway pressure, FeO2 Expired O2 fraction, 
EtO2 End-tidal oxygen concentration, ENT Ear, nose, and throat, V non-invasive ventilation, VR Non-invasive ventilation with recruitment manoeuvre, Vp Non-invasive 
ventilation without positive end expiratory pressure, N/P Not provided, C Spontaneous breathing with tidal volume, RCT​ Randomised controlled trial, PEEP Positive 
end-expiratory pressure

Table 2  Methodological quality assessment of included trials

a D1: Bias arising from the randomization process
b D2: Bias due to deviations from intended interventions
c D3: Bias due to missing outcome data
d D4: Bias in measurement of the outcome
e D5: Bias in selection of the reported result
f SC Some concerns, gL Low risk, hH High risk

Study D1a D2b D3c D4d D5e Overall

2001 Cressey SCf Lg L L L L

2004 Herriger SC L L L L L

2004 Coussa SC SC SC L L SC

2005 Gander SC Hh SC L L H

2008 Delay L L L L L L

2011 Futier L L L L L L

2012 Georgescu SC SC SC L L SC

2014 Harbut L L L L L L

2015 Hanouz L L L L L L

2015 Edmark L L L L L L

2015 Baltieri L L L L L L

2015 Sreejit L L L L L L

2016 Abou-Arab L L L L L L
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Incidence of people who achieved 90% FeO2 after 3 min 
of preoxygenation
Two trials compared the number of patients who 
achieved 90% FeO2 through NIV and conventional pre-
oxygenation methods [44, 50]. The NIV group achieved 
the favorable oxygen fraction significantly earlier than the 
conventional preoxygenation group (odds ratio: 3.01, 95% 
CI: 1.52–5.96; Fig. 3).

Minimal SpO2 during TI
Only one trial reported the minimal SpO2 level during 
the TI course, and in this trial, the minimum SpO2 was 
significantly higher in the NIV group than in the control 
group (86.9 ± 5.0 vs 88.6 ± 2.9, mean difference − 1.70, 
95% CI: − 4.73 to 1.33) [28].

PaO2 after preoxygenation
Seven trials compared the PaO2 outcome achieved 
after preoxygenation by using NIV and conventional 

methods [44, 46, 48–52]. The NIV group exhibited a 
significantly more favorable PaO2 than the conventional 
preoxygenation group (mean difference: 6.48, 95% CI: 
2.81–10.15; Fig. 4).

After the data of both obese and nonobese groups were 
pooled, the results revealed a significant difference in PaO2 
after preoxygenation between nonobese individuals in the 
NIV group and conventional preoxygenation group (mean 
difference: 6.48, 95% CI: 2.81–10.15; Fig. 4). The study pop-
ulation was divided into obese and nonobese subgroups; 
the outcomes of obese and nonobese individuals in the 
NIV group were significantly more favorable than those of 
the individuals in the conventional preoxygenation group 
(obese: mean difference: 4.98, 95% CI: 0.63–9.34; non-
obese: mean difference: 8.42, 95% CI: 3.13–13.72; Fig. 4).

PaCO2 after preoxygenation
Five trials compared the PaCO2 outcome after preoxy-
genation between the NIV and conventional groups 

Fig. 2  Forest plot of a comparison of safe apnea time between NIV and control groups

Fig. 3  Forest plot of a comparison of number of patients who achieved FeO2 90% after preoxygenation for 3 min between NIV and control groups
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[28, 42, 46, 48, 51]. The NIV group exhibited a signifi-
cantly lower PaCO2 than the conventional preoxygena-
tion group (mean difference: − 0.41, 95% CI: − 0.58 
to − 0.23; Fig. 5).

PaO2 after TI
Three trials compared the PaO2 outcome after TI 
between the NIV and conventional groups [47, 48, 51]. 
The NIV group exhibited a significantly higher PaO2 than 
the conventional preoxygenation group (mean difference: 
4.42, 95% CI: 0.17–8.67; Fig. 6) after TI.

PaCO2 after TI
Two trials compared the PaCO2 outcome after TI 
between the NIV and conventional groups [48, 51]. 
Although the NIV group appeared to have a lower PaCO2 
than the conventional preoxygenation group after TI, 
the trend was not statistically significant (mean differ-
ence: − 0.28, 95% CI: − 0.59 to 0.03; Fig. 4).

Complications
Two trials reported complications [28, 50]. Delay et  al. 
reported that two patients (14%) in the NIV group 

Fig. 4  Forest plot of a comparison of PaO2 after preoxygenation between NIV and control groups

Fig. 5  Forest plot of a comparison of PaCO2 after preoxygenation and after ETI between NIV and control groups
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experienced air leakage from the face mask. Further-
more, gastric distention increased to a modest degree 
in the NIV group compared with the low degree in the 
spontaneous ventilation group (3.8 ± 5.6 vs 17.6 ± 13.5, 
p = 0.01; the surgeon blinded to the oxygen administra-
tion method rated the outcome using a scale ranging 
from 0 [no distension] to 100 [maximal distension]). 
Georgescu et  al. reported that one patient (7%) in the 
NIV group was intolerant to discomfort. Otherwise, no 
significant side effect was observed in either preoxygena-
tion technique.

Discussion
Our study found a significant difference in safe apnea 
time, number of patients achieving FeO2 after 3  min of 
preoxygenation, minimal SpO2 during TI, PaO2 after pre-
oxygenation, PaCO2 after preoxygenation, and PaO2 after 
TI between the NIV and conventional groups. Only SpO2 
after preoxygenation and PaCO2 after TI showed no  
significant difference, but a trend favoring NIV over con-
ventional preoxygenation methods was found. Although 
the pooled results and obese subgroup showed that the 
NIV group exhibited a significantly more favorable safe 
apnea time than the conventional preoxygenation group, 
the extracted the data of three of the seven trials with 
the nonobese subgroup which also include patients with 
potential difficult airway intubation showed no signifi-
cant difference of safe apnea time between the NIV and 
conventional preoxygenation groups. The results showed 
the possibility of NIV as an expecting method of preoxy-
genation, but more research is needed to determine NIV 
is the better preoxygenation method or not.

Spontaneous positive-pressure ventilation was first 
proposed experimentally as early as in the 1930s for 
patients with pulmonary edema [53, 54]. Later trials 
reported its application in patients with respiratory fail-
ure and for post-extubation respiratory rescue, facilita-
tion of weaning, and treatment of various lung injuries 
[52, 55, 56]. Caples et  al. (2005) reported that critical 

care settings favored NIV, especially for chronic obstruc-
tive pulmonary disease and acute cardiogenic pulmo-
nary edema [57]. The trials using NIV for preoxygenation 
started two decades ago.

Ventilator settings across the trials were different not 
only in the mode chosen but also in the inspiratory pres-
sure and volume parameters. Most trials in our study 
conducted CPAP and three trials conducted PSV, and 
both modes are commonly used in NIV practice. All the 
trials reported NIV to be more efficient than conven-
tional methods for preoxygenation irrespective of the 
mode chosen. Regarding patient’s degree of discomfort, 
PSV is generally considered a more comfortable method 
than volume-controlled modes.

A consensus is lacking for the application of preoxy-
genation with PEEP. Early trials reported that PEEP may 
reduce atelectasis risk during anesthesia induction but 
may not be effective in all patients [58]. A similar prob-
lem was observed in the seven trials in which PEEP was 
applied in the NIV group, but comparison with an NIV 
group without PEEP was lacking in these trials. Gener-
ally, the NIV group, with or without PEEP, showed more 
favorable results than the control group in our study. 
Further studies are needed to confirm this statement.

A consensus is lacking for recruitment maneuver (RM) 
application. RM transiently increases transpulmonary 
pressure and thus reopens alveolar units [59]. Pulmonary 
RM is useful in preventing anesthesia-induced atelectasis 
and, thus, may aid in oxygenation in obese patients [60, 
61]. An RCT included in our study (Futier et al.) reported 
that RM improved gas exchange and the end-expiratory 
lung volume, which may be associated with increased 
alveolar recruitment. In conclusion, RM may be helpful 
for preoxygenation, but more trials are needed to prove 
its feasibility.

In our study, 10 trials assessed the obese population, 
which generally experience difficulty with mask venti-
lation and TI [22, 62]. Gander et al. concluded that safe 
apnea time and BMI were negatively correlated (r = 0.711, 

Fig. 6  Forest plot of a comparison of PaO2 after ETI between NIV and control groups
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p = 0.003) when CPAP or PEEP was not applied. In obese 
patients, a more effective preoxygenation method is 
required for safe anesthesia and intubation experiences. 
Our subgroup analysis showed that NIV is more benefi-
cial than conventional methods in obese people.

Heterogeneity was found for the trials included in our 
study because of differences in factors such as age, sex, 
BMI, NIV settings, and surgical or procedural interven-
tion. First, the preoxygenation duration differed across 
the trials, ranging from 2  min to unsolidified length to 
90% FeO2 or end-tidal oxygen concentration [40, 44]. 
The setting of the preoxygenation time is not fixed in 
non–time-limited scenarios compared with the preoxy-
genation time for critically ill patients. The reasonable 
length of preoxygenation theoretically depends on the 
time needed to achieve denitrogenation of the functional 
residual capacity. Both 3 min of tidal breathing and tak-
ing eight deep breaths within 1 min have been reported 
to be sufficient for noncritical nonobese patients to 
achieve this goal [63, 64]. In our study, most included tri-
als set the criteria as 3 or 5  min. Moreover, the control 
group differed among the trials due to different choices 
of the conventional preoxygenation method, such as ven-
tilator facial mask, NRM, or other breathing circuit sets. 
Even the cut-off values of some parameters were different 
between the trials.

Limitations
Our study has some limitations. First, most of the 
included trials had a small sample size per treatment 
group. Second, some outcome data provided were inad-
equate for pooled analysis. For example, most trials did 
not provide the nadir SpO2 during intubation. Futier 
et  al. provided arterial-to-end-tidal partial pressure of 
carbon dioxide after 5 min of mechanical ventilation. We 
had anticipated that more data on postoperative perfor-
mance and unplanned ICU admission would be avail-
able, but this was not the case. Third, the definitions of 
variables, such as the cut-off value of desaturation for safe 
apnea time, were different among the trials, which may 
limit the comparison in our study. Fourth, the assess-
ments of air leakage from the mask, patient comfort, and 
additional costs associated with devices including face 
pads for improving sealing and reducing skin irritation 
were difficult to integrate. Finally, we did not include crit-
ically ill patients, children, healthy volunteers, patients 
with distorted head and neck anatomy, and other types 
of patients; thus, extending our results to these patient 
groups is difficult.

Tests for funnel plot asymmetry for meta-analysis 
should include at least 10 studies, but we don’t have more 
than 10 included studies available for each results, so we 
did not perform testing for funnel plot asymmetry [35].

Conclusions
Our study results suggest that for preoxygenation, NIV 
is possibly more beneficial than conventional methods, 
especially in obese patients receiving selective surgeries. 
But for the nonobese population, we state that further 
studies are needed to assess whether NIV is superior to 
conventional method. More gastric leakage and intoler-
ance were observed in some NIV groups, so the safety of 
NIV technique is a concern and may need to be further 
investigated.
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