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An academic team at Stanford University worked with the County of Santa Clara Public
Health Department to develop a machine-learning system for language matching in
Covid-19 contact tracing through a collaborative design process. Although developed for a
specific public health activity, the setting is representative of a wide range of health care
delivery contexts, and the experience lays out how health care organizations can develop
accountable algorithms that improve care, mitigate risk, and enable evaluation by
stakeholders. Key elements of the design process involved: (1) a partnership and
stakeholder consultation to develop a common understanding of and iteration around
algorithmic design; (2) the use of a model understandable to all stakeholders, which
exhibited only modest performance degradation relative to more complex models; and (3)
a randomized controlled trial and qualitative survey of how the algorithm impacted
real-world contact tracing, providing an evaluation that goes beyond narrow technical
measures of algorithmic performance.

While rapid advances in artificial intelligence (AI) have the potential to revolutionize health care,
there are also serious concerns around its adoption. AI systems can exacerbate bias,1 fail to
produce output that concurs with best health care judgment,2 or even degrade human
decision-making when relying on artifacts in data used to train the algorithm.3 The question of
how to build out health care algorithms reflects the broader debate around the accountability of
AI systems.4 The core question is whether and how we should build algorithms that reproduce
what is good about human clinical judgment — at scale or with reduced resources — without



exacerbating what is flawed in the same manual processes. Accountability means that
stakeholders must be able to understand, interrogate, and evaluate the risks and benefits of the
algorithm.5

Much of this debate has remained abstract.6 In this article, we use a concrete example of how an
AI system in an important health care and public health setting improved patient outcomes and,
specifically, overcame an existing disparity in care. Through an academic–public collaboration,
we developed a machine-learning approach to match the language needs of incoming patients
with contact tracers, which reduced case completion times by 14 hours and improved patient
and contact tracer engagement.

We document the technical components and results elsewhere,7 focusing in this article on our
design process and extracting broader lessons in how to scope out, develop, interrogate, and
assess an algorithmic solution. We attempt to address the following question: What is the
process by which multiple actors — computer scientists, social scientists, doctors, public health
officials, managers, and contact tracers — should exercise “the obligation to explain and justify”
the algorithm’s use, design, decisions, and impact?8 In addition, public organizations — and
government entities in particular — may struggle in academic and technical collaborations to
deploy strategies at the forefront of scientific ability while ensuring the level of responsibility
and minimal risk required of the public sector. The approach we used has broad applicability for
language access across health care systems9 and serves as a potential model with lessons for
how to build accountable algorithms in important settings.

Challenges of Contact Tracing

As part of its Covid-19 response, Santa Clara County, which has 1.9 million residents,
established a shelter-in-place order on March 16, 2020, along with five other Bay Area
counties.10,11 Santa Clara County created a contact tracing operation and scaled up to more than
900 tracers within a matter of weeks; the tracers called patients upon diagnosis, provided
information about isolation, and elicited close contacts to notify of a potential exposure. The
ultimate goal was to reach and encourage contacts to quarantine before they became
contagious, which required optimization for speed.

“ The core question is whether and how we should build algorithms
that reproduce what is good about human clinical judgment — at
scale or with reduced resources — without exacerbating what is
flawed in the same manual processes.”

Across all Covid-19 response efforts, contact tracing has proven challenging. First, many
individuals are reluctant to engage, trust, and offer information about contacts to the
government. Second, the infrastructure for testing and rapid dissemination of results has been
strained locally and nationally by supply and personnel limitations as well as major
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data-transmission backlogs and errors. Third, the pandemic’s disparate impact made contact
tracing particularly prone to language barriers. While Latinx individuals represent roughly 25%
of the Santa Clara County population, they constituted more than 50% of Covid-19 cases.
Laboratory reports provided incomplete information about language needs. In the software used
for case investigation and contact tracing (CICT) efforts across the state of California, there was
no way to match incoming cases to tracers on the basis of language spoken, and such needs
were hence met by a secondary step of dialing in state interpreter services.

The Design Process for a Language-Matching Algorithm

In July 2020, the County of Santa Clara Public Health Department (PHD) and Stanford’s
Regulation, Evaluation, and Governance Lab (RegLab) began a series of conversations to scope
out potential collaborations. The RegLab has a particular expertise in data science,
machine-learning, and public sector applications. PHD had created its own Covid-19 Situational
Awareness Branch, so key to collaboration was a series of conversations to identify
complementary efforts. Early conversations surfaced language-matching capability as a priority
because of both the perceived acute need and the feasibility of meeting the need.

Data Use

One of the major barriers was the contracting process for the data use agreement. Because
information from laboratory reports was sparse, there was a strong need to be able to use all
available information (e.g., name, date of birth, and address) to develop accurate predictions of
language need. Extensive negotiation was required to satisfy the security and privacy
requirements. While this process took 3 months — a long time in pandemic response terms, but
short relative to ordinary contracting — the Stanford team was able to develop the core
algorithm using a non–Covid-19 administrative data set. All data were ultimately placed on a
secure server, suitable for protected health information.

Collaborative Process

Our teams met weekly for the Stanford team to share project updates and for PHD to share how
the pandemic and contact tracing response was evolving. These meetings were critical to
developing a common understanding of data sources and the potential limits of an algorithmic
solution (Table 1).

For instance, the county used the state’s contact tracing data-management platform, the
California CONfidential NEtwork for Contact Tracing (CalCONNECT), which had a field for
language, but the county had little confidence the field was used in a reliable way, which led the
Stanford team to seek out different administrative data sets to train the model. In addition,
these meetings enabled the Stanford team to learn as much as possible about the substance and
process of contact tracing. A key question, for instance, lies in the human–computer
interaction:12,13 How should human contact tracers use risk scores for language need? Our
solution centered on the designation of a language specialty team to enable team leads to route
cases without breaking the existing organizational structure. These meetings were also critical
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to: (1) developing user comfort around the process and accuracy of the algorithm, which meant
we used more explainable approaches, and (2) building in an evaluation to assess impact.

Ongoing Monitoring

Upon deployment, we provided channels for language specialty team members to report any
issues, and we tailored the algorithm to fluctuating caseloads. We developed a dashboard of
results — including the actual preferred language of the case and the language the interview was
conducted in — to enable continuous monitoring, which ensured fidelity with the assignment
process and enabled adaptation when the third surge hit Santa Clara County in December 2020.
After the pilot period, which ran from December 2020 to February 2021, we also fielded a survey

Table 1. Translating Key Technical and Public Health Questions Related to Algorithm Development

A. Technical question B. Public health question C. Impact on intervention

What threshold should be used to predict
“positive cases” in a classification model?
Should the threshold vary over time?

What is the capacity of the language
specialty team? How does the team
adjust with fluctuating case counts?

Building in a flexible threshold that
allowed for trade-offs between model
performance and operational capacity in
response to case count and team size
fluctuations

What feature set should be included to
train the model?

Do we know what kinds of patients are
most likely to benefit from bilingual
contact tracing?

Selecting features associated with
increased likelihoods of having a
non-English preferred language (i.e., age,
area, and name)

Should the model be regularly retrained
on the basis of CalCONNECT fields that
indicate language?

How consistent are our guidance and
usage of the language field in the
workforce?

More standardized guidance on usage of
the language field in the workforce and
early monitoring of the model’s
performance on CalCONNECT language
data

If we retrain, should we be worried about
runaway feedback loops, if language
specialty team will pay more attention to
cases flagged by the algorithm than if
they had been coincidentally assigned a
Spanish speaker without the assignment
algorithm?

How different should the instructions be
to the language specialty team, and is it
possible to improve how all contact
tracers engage patients around language
issues?

Trained all staff on the importance of
correctly identifying and documenting
language, improving data in all parts of
the program (such as case reporting by
subgroups), not just the case assignment
process

What kind of a model should be
employed (e.g., logistic regression,
random forest, heuristic model)?

How can we explain the approach to key
decision makers and make discretionary
choices (e.g., about the cutoff and team
size) transparent?

Deployed an explainable heuristic
approach based on a small,
understandable set of variables rather
than a more accurate but more complex
random forest model

How should the model results be
deployed into the contact tracing
process?

Should the process be automated? Or
should team leads or individual tracers
choose cases?

A language specialty team composed
entirely of bilingual contact tracers was
created from among the existing pool of
contact tracers to facilitate case
assignment. Model results funneled cases
to the team, after which team leads had
discretion in case assignment. Risk
scores were also included as part of the
case record.

What performance measures should be
used?

How would we know when language
matching is not working?

Close monitoring of algorithmic
performance through data collection and
feedback from contact tracers early on in
the pilot

This table provides an illustration of technical-domain translation through a collaborative design process. Each row provides a question
stated in technical machine-learning terms (italicized) in column A; the resulting public health conversation around the goals, constraints,
and operation of contact tracing in column B; and the ultimate real-world impact on the intervention in column C. CalCONNECT 5
California CONfidential NEtwork for Contact Tracing (the state’s contact tracing data management platform). Source: The authors
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to all contact tracers to understand their assessment of existing state interpreter services and,
where applicable, the language-matching program.

Results

The core results of the pilot show that the intervention resulted in more efficient contact tracing
through significant time savings, despite the addition of a process for identifying and reassigning
the case records in the software system. Time from a case being opened to completion of the
initial interview was estimated to be reduced by nearly 14 hours for patients who would have
been matched to a bilingual contact tracer if flagged as a likely Spanish speaker. The likelihood
of completing a case interview on the same day it was opened increased by 12 percentage points.
Additionally, there was a 4-percentage-point reduction in patient refusal to interview, indicating
improved patient engagement under the program. To put this in context, for all patients in the
month prior to the pilot, the average time from a case being opened to completion of the initial
interview was nearly 30 hours; the average refusal rate was nearly 2%; and the average rate of
interviewed cases that were completed on the same day they were opened was 37%.

“ Time from a case being opened to completion of the initial
interview was estimated to be reduced by nearly 14 hours for
patients who would have been matched to a bilingual contact
tracer if flagged as a likely Spanish speaker.”

The survey results from the contact tracers corroborated the trial results, with 45% of
respondents indicating that using a third-party interpreter increased the time for contact tracing
considerably or by a great deal, showing the time-saving benefit of the program. In addition, 67%
of bilingual respondents reported that being able to conduct the interview in a non-English
language themselves was easier than dialing in a third-party interpreter. Respondents reported
that the interpretation service, although valuable, could sometimes make it more difficult to
build rapport with their clients because of technical issues and increased interview length.
Reported benefits of language matching included increased client satisfaction and engagement,
an improved ability to seek and provide important information, and an improved ability to build
trust.

Lessons

Overall, the results showed that the machine-learning system for Covid-19 contact tracing was a
strong success, and we believe it has several important general lessons on how to develop
accountable health care algorithms.

Bias and Equity

One of the dominant concerns with AI systems is built-in bias against certain demographic
groups.14 Usually, algorithms are built to optimize for accurately predicting an outcome and only
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attempt to correct for underlying bias by adding constraints on how the algorithm works.15 For
instance, if an algorithm had predicted interview time in order to optimize case processing time,
developers might take supplementary steps to attempt to mitigate potential disparities across
demographic groups.

But here, health equity (not case processing time) was itself the animating objective. The serious
concern was a status quo system — quasi-random assignment of patients to tracers — in which
patients with a preference to speak Spanish (Spanish speakers) assigned to a non–Spanish-speaking
contact tracer would have experienced unique downsides: difficulty in communication, the
potential use of a time-intensive state interpreter, and, thus, significant barriers to their ability to
isolate and quarantine. In contrast, under the system we adopted, some number of patients were
algorithmically identified as potential Spanish speakers and routed to Spanish-speaking tracers; by
design, there was virtually no downside to a false-positive identification, because all contact tracers
also spoke English. The identification of this potential “do no harm” solution was critical to a
first-order focus on equity. The interdisciplinary team also surfaced a range of discretionary choices
that had second-order equity impacts: we rejected an approach based solely on voter registration
data, for instance, because that could disproportionately leave out demographic groups affected
most acutely by the pandemic.

Stakeholder Consultation

Algorithms go astray when there is no genuine exchange between domain and technical
experts.16 Development of the algorithm involved extensive iteration among technical
developers, PHD leadership, and end users on the contact tracing team to develop a common
understanding of the goals, data, and main discretionary decisions in building out the AI system
(Table 1).17 We were helped here by the fact that the county team was already moving in a more
algorithmic direction by experimenting with the use of ZIP Codes to match bilingual contact
tracers with patients from specific geographic communities.

The AI system was, in that sense, a logical extension of prior efforts, and our extensive
exchanges guided development and integration. We note that the design process did not scope
as far as some participatory frameworks might advocate,18 namely to include broad segments of
other community members. We consulted with the county’s Racial and Health Equity Senior
Manager, who had extensive ties to the community, but a more extensive process would have
significantly delayed the intervention in an already time-sensitive setting. In other contexts,
deeper community engagement may be warranted.

Transparency and Interpretability

One of the key elements in stakeholder consultation was a clear articulation of the algorithm.
There is natural resistance to black box methods (which involve testing or deployment without a
clear understanding of how an algorithm arrives at its predictions), and one of the roles for the
technical team was to explain the logic behind the algorithm. What sources of data can be relied
upon? How should we determine cutoffs from risk scores? A key decision was to favor a simpler,
more explainable heuristic approach instead of a more complex, fully machine-learned random
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forest model.19 A random forest model leverages multiple randomly created decision trees, each
of which works on a random subset of features, which makes for a much less interpretable
decision process.19 The approach we designed is illustrated in Figure 1 and shows how the key
laboratory report information — name, address, and age — are combined with census
information to predict the likelihood of a Spanish speaker.

FIGURE 1

Explainable Algorithm Design
This figure shows the distribution of a subset of Spanish speakers in Santa Clara County from an
administrative data set that was used to train the algorithm across the heuristic approach’s inputs: age,
address score, first name score, and last name score. The deployed algorithm binned first name score
into six total bins, and this figure displays only the highest three first name score bins. Each bin was
associated with a risk score representing the proportion of individuals in that bin who were Spanish
speakers. We then calculated a cutoff boundary to identify cases who were more likely to have Spanish
language needs. In the pilot, cases who fell into one of the flagged bins would be routed to a language
specialty team. Size: circle size corresponds to the number of individuals in each bin. Hue: darker red
corresponds to a higher risk score for Spanish speakers. Hue: lighter red corresponds to a lower risk
score for Spanish speakers. Shading: gray shading denotes populations predicted to have Spanish
language needs.
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Individuals were classified into bins on the basis of those attributes, with each bin being
associated with a risk score representing the likelihood of an individual being a Spanish speaker,
on the basis of administrative data, making it transparent to understand why an individual may
or may not have been flagged. This kind of figure became a key way to articulate how the
algorithm extended earlier ideas of ZIP Code targeting to take advantage of all information
contained in laboratory reports.

We compared the performance between these two approaches by analyzing the trade-off
between sensitivity and specificity (calculated as the area under the receiver operating
characteristic curve [AUC]) and the relationship between precision and sensitivity (calculated as
the area under the precision-recall curve [AUCPR]). The greater the AUCs, the better the model
is in terms of accurately distinguishing between Spanish and non-Spanish speakers. The
heuristic approach had an AUC of 0.94 and an AUCPR of 0.85, while the random forest had an
AUC of 0.95 and AUCPR of 0.98. While there was a boost in performance from the less
interpretable random forest model, its performance was not deemed a practically significant
improvement over the heuristic approach, which was easier to explain to stakeholders.
Collaborative design enables decision-makers to make informed decisions about potential
trade-offs between accuracy and interpretability.20

“ A key decision was to favor a simpler, more explainable heuristic
approach instead of a more complex, fully machine-learned
random forest model.”

Complementarity Between AI and Human System

AI systems do not sit alone. The algorithm we developed ultimately had to integrate with a
complex case assignment and contact tracing process carried out manually by staff, illustrated in
Figure 2.

This multistep process, which involved human and AI systems, had to happen in real time, given
the urgency of contacting patients as soon as possible after a diagnosis.

Laboratories all across the state upload digital laboratory reports containing Covid-19 testing data
to the statewide testing system, California Reportable Disease Information Exchange (CalREDIE).
The case data are transferred in batches to CalCONNECT, a state-managed contact tracing
system built on a Salesforce cloud platform. From there, data are downloaded to the county’s
server, and cases are deduplicated. Duplicates are handled by the data team. Cases from
congregate settings, such as jails or long-term care facilities, are filtered out and routed to
specialized CICT teams. The rest go through an additional language-matching step we embedded.
During the pilot, flagged cases were randomly assigned to a Spanish-speaking language specialty
team. Holdout flagged cases and unflagged cases then went through the normal contact-tracing
process and were assigned by team leads to contact tracers on the basis of scheduling and
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FIGURE 2

Overview of the County’s Contact Tracing Data Pipeline
Laboratories transferred Covid-19 test information to the statewide testing system (CalREDIE); test data
were transferred in batches to the contact tracing system (CalCONNECT); the county ran all new cases
through a processing code to identify duplicates for handling by the data team and cases from
congregate settings for assignment to special teams; and team leads assigned remaining cases on the
basis of capacity and scheduling constraints. CalCONNECT 5 California CONfidential NEtwork for
Contact Tracing (the state’s contact tracing data management platform), CalREDIE5 California
Reportable Disease Information Exchange, CICT 5 case investigation and contact tracing.
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capacity constraints. Outcomes related to the interview, such as the patient’s preferred language
or engagement, were tracked and recorded in CalCONNECT to evaluate the pilot.

The technical team worked extensively to understand and streamline these existing systems before
embedding the pilot code in existing operations. The manual, time-intensive batch runs were
converted into dynamic, one-click batch runs that made the existing process more efficient and
enabled the embedding of the model and subsequent routing of likely Spanish-speaking patients to
the appropriate tracer. To embed the model, the technical team added an additional step to the
processing code for duplicates and special cases that applied the algorithm to each new case and
outputted a spreadsheet of predicted Spanish-speaking patients and their risk scores. These data
were routed to the language specialty team leads as part of the case-assignment process. The team
leads would review the spreadsheet and assign cases to their Spanish-speaking team members.
These case records appeared in each tracer’s queue in the system with a note included by their
team lead that the case was identified as possibly needing a Spanish-speaking tracer. Technical staff
had to understand the operational demands, and managers had to identify at which point the
language risk scores would be most useful.

A More Expansive Notion of Evaluation

AI researchers often have narrow technical evaluation criteria for model performance, such as
accuracy at the time of training on a limited data set. Yet what these criteria miss is that we
should also care about how an AI system performs in the human context in which it is actually
deployed.12,13 There are many ways in which these technical measures may fail.

First, there might be “domain shift” from the training data to the patient population: the
population of interest might be different from the sample on which the algorithm was trained,
just as AI medical devices may perform differently across different hospital settings.21 For this
reason, we monitored performance of the algorithm throughout the pilot period, adjusting the
algorithm to better fit the language data the team were collecting in their interviews.

Second, the AI system interacts with humans, so the algorithm is only useful if contact tracers
can make efficient use of the information. Much of the time spent preparing for implementation
focused on how to incorporate the algorithm into existing processes efficiently, to ensure that
team leads could actually assign cases on the basis of the findings before the cases were
assigned to someone else.

“ The compelling results here actually formulate the business case for
hiring more bilingual contact tracers. In that sense, language
matching became much less necessary — the AI system, in a sense,
actually automated itself away.”

Lastly, the AI system could, at least theoretically, worsen outcomes relative to the baseline. Just
as FDA drug approval hinges on evidence of efficacy and safety, we developed a randomized
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controlled trial to assess the effect of the language-matching intervention in actual operation
that evaluated both the potential benefit to efficient use of human resources and the risk of
interrupting functioning systems or exacerbating problems. In addition, we fielded a survey to
understand the dimensions that could not be captured by data fields in the contact-tracing
system (Table 2).

These results suggest that contact tracers agreed that the language-matching component
improved outcomes for themselves and their patients. This aligns with a general lesson from this
experience that a more expansive notion of evaluation will be necessary to understand
performance when the human–computer interaction is taken seriously.22

Looking Ahead

This case study shows how we can design AI systems that are transparent and accountable and
do not exacerbate existing harms and biases. The use of iterative stakeholder consultation
and partnership across a range of perspectives — involving social scientists, machine learners,
and public health officials — was critical to developing an equitable and effective system. This
partnership approach can serve as a model to address one of the core questions in health care
systems and the public sector: how to tame AI for good.

Table 2. Language Matching: Sample of Contact Tracer Survey Responses

Enhances collection of data, supports compliance “[M]y experience has been overwhelmingly positive! I think the
1:1 communication in the client’s language has helped me to
establish rapport and elicit more contacts... I think it also has
helped in promoting isolation/quarantine compliance and
relaying information on health monitoring, keeping household
contacts as safe as possible. Finally, I hear a lot of appreciation
from clients and that adds significantly to my satisfaction doing
this work.”

Improves efficiency,reduces frustration “[Using the interpreter service resulted in] too much to repeat...
[With language matching,] I was able to take more time to get
specific questions answered. With the [interpreter, clients]
became more impatient and frustrated and focused on ending
the call.”

Increases value of information “I gather more valuable information, clients open up to me and
are not afraid of asking for any additional questions or if they
need any referrals. A rapport is made when you speak their
language.”

Establishes connection, increases rate of success “As a Team Lead, I noticed that the rate of successful interviews
(calls answered and clients willing to interview and answer
questions) is much higher when the call is made by a native
speaker of the same language as the client. [Tracers] who need
to use the [interpreter] line had a higher percentage of
incomplete interviews or no answers. When making calls myself
in my native language, there was an immediate connection with
the client that helped the interviews as it made the client feel
more comfortable asking questions and sharing information.”

Drawing on a survey of 411 responses of contact tracers, here focusing on members of the language specialty team, we see comments that
express the perceived benefits of language matching.
Source: The authors
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Another current concern is the anxiety that exists around whether AI systems may automate
away the labor force.23 But the compelling results here actually formulate the business case for
hiring more bilingual contact tracers. In that sense, language matching became much less
necessary — the AI system, in a sense, actually automated itself away. That is one of the
lesser-known promises of evaluating AI systems for health care: they may teach us what the
currently irreducibly human elements to quality of care are and how to maximize their utility.
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