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Background: Tumor microenvironment (TME) has been reported to have a strong
association with tumor progression and therapeutic outcome, and epigenetic
modifications such as DNA methylation can affect TMB and play an indispensable role
in tumorigenesis. However, the potential mechanisms of TME and DNAmethylation remain
unclear in cervical cancer (CC).

Methods: The immune and stromal scores of TME were generated by the ESTIMATE
algorithm for CC patients in The Cancer Genome Atlas (TCGA) database. The TME and
DNAmethylation-related genes were identified by the integrative analysis of DNA promoter
methylation and gene expression. The least absolute shrinkage and selection operator
(LASSO) Cox regression was performed 1,000 times to further identify a nine-gene TME
and DNA methylation-related prognostic signature. The signature was further validated in
Gene Expression Omnibus (GEO) dataset. Then, the identified signature was integrated
with the Federation International of Gynecology and Obstetrics (FIGO) stage to establish a
composite prognostic nomogram.

Results: CC patients with high immunity levels have better survival than those with low
immunity levels. Both in the training and validation datasets, the risk score of the signature
was an independent prognosis factor. The composite nomogram showed higher accuracy
of prognosis and greater net benefits than the FIGO stage and the signature. The high-risk
group had a significantly higher fraction of genome altered than the low-risk group. Eleven
genes were significantly different in mutation frequencies between the high- and low-risk
groups. Interestingly, patients with mutant TTN had better overall survival (OS) than those
with wild type. Patients in the low-risk group had significantly higher tumor mutational
burden (TMB) than those in the high-risk group. Taken together, the results of TMB,
immunophenoscore (IPS), and tumor immune dysfunction and exclusion (TIDE) score
suggested that patients in the low-risk group may have greater immunotherapy benefits.
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Finally, four drugs (panobinostat, lenvatinib, everolimus, and temsirolimus) were found to
have potential therapeutic implications for patients with a high-risk score.

Conclusions: Our findings highlight that the TME and DNA methylation-related
prognostic signature can accurately predict the prognosis of CC and may be
important for stratified management of patients and precision targeted therapy.

Keywords: tumor microenvironment, DNA methylation, prognostic model, drug response, immunotherapy
response, cervical cancer

INTRODUCTION

Cervical cancer (CC) is the fourth leading cause of cancer-related
death in women, with more than 300,000 deaths worldwide each
year (Cohen et al., 2019), of which adenocarcinoma, squamous
cell carcinoma, and adenosquamous carcinoma are common
pathological types (Small et al., 2017). The incidence of CC is
gradually declining due to the identification of HPV as a causative
factor and the introduction of specific vaccines into clinical
practice (Wakeham and Kavanagh, 2014; Herrero et al., 2015;
Ogilvie et al., 2018). Although goals have been achieved in
preventing CC, when patients are diagnosed at an advanced
stage, the prognosis is extremely poor, with 5-year overall
survival (OS) less than 40% (Lin et al., 2010). Currently,
immunotherapy is one of the best treatment strategies for
patients with advanced CC (Wendel Naumann and Leath,
2020). However, tumor heterogeneity makes it difficult to
accurately assess the prognosis of each patient after
immunotherapy, which is also a shortcoming of the
Federation International of Gynecology and Obstetrics (FIGO)
stage system (Wright et al., 2019). Therefore, accurate molecular
predictors are needed to improve the prediction of CC prognosis
and guide the individual evaluation of immunotherapy, especially
those at high risk of recurrence or death.

Tumor microenvironment (TME) is defined as the
environment surrounding the tumor, including various
immune cells, stromal cells, extracellular matrix molecules,
and cytokines, among which immune cells and stromal cells
are closely related to tumor progression and treatment outcome
(Hanahan and Coussens, 2012; Binnewies et al., 2018), and the
genetic and epigenetic modifications acquired by the TME also
play important roles in tumorigenesis and lead to uncontrolled
growth of tumor cells (Sharma et al., 2010). Among all epigenetic
modifications, DNA methylation is a stable change in gene
structure and is one of the most studied mechanisms involved
in regulating gene expression (Bird, 2007). DNA
hypermethylation in the promoter region of genes encoding
inhibitory immune checkpoints, tumor suppressors, and
suppressive cytokines can lead to impaired activation of anti-
tumor immunity, immune escape, drug resistance, tumor growth,
and TME dyshomeostasis and significantly promote the
development and progression of cancer (Easwaran et al., 2014;
Ali et al., 2017).

In this study, we calculated immune and stromal scores based
on the ESTIMATE algorithm to estimate the TME status of each
CC patient and found that the immune scores were associated

with patients’ prognoses. We correlated epigenetic characteristics
and TME status by analyzing the multi-omics data (RNA
sequencing and DNA methylation array) across different
immune groups and identified the TME and DNA
methylation-related prognostic signature. We then used
microarray data from the Gene Expression Omnibus (GEO)
database for validation. Both the developed signature and the
nomogram based on the signature and FIGO stage showed high
potential for individual risk stratification and prognosis
prediction. Furthermore, we sought to understand the
relationship between the signature and tumor mutation status,
genetic variants, and pathway activation. Finally, we not only
identified four agents for these high-risk score patients but also
assessed the role of this signature in identifying immune
responders to immunotherapy. The results gathered from this
study may be valuable in predicting patients’ prognosis and
facilitating the individualization of immune treatment
strategies for CC.

MATERIALS AND METHODS

Data Acquisition and Processing
The Cancer Genome Atlas (TCGA) RNA-seq data, Illumina 450k
DNA methylation data, somatic mutation data, copy number
variation data, and clinical datasets of 306 CC patients were
downloaded from Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov/). FPKM values were transformed into
transcripts per kilobase million (TPM) values. Quantile
normalized microarray gene expression data and clinical
annotations of GSE44001 were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). All samples with
a survival time of 0 or duplicates were deleted, and TCGA 291
samples and GEO 283 samples were used for further analysis.
Expression profile data of human cancer cell lines (CCLs) were
obtained from the Broad Institute Cancer Cell Line Encyclopedia
(CCLE) project (https://portals.broadinstitute.org/ccle/) (Ghandi
et al., 2019). The sensitivity data were obtained from the Cancer
Therapeutics Response Portal (CTRP v.2.0, released October
2015, https://portals.broadinstitute.org/ctrp) and PRISM
Repurposing dataset (19Q4, released December 2019, https://
depmap.org/portal/prism/), respectively. In the two datasets,
drug sensitivity is measured using the area under the curve
(AUC) value and a lower AUC value indicates increased
treatment sensitivity. The compounds with more than 20% of
missing data were removed, and K-nearest neighbor (k-NN)
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imputation was used to impute the missing AUC values (Yang
et al., 2021).

Differential Expression Genes (DEGs) and
Differential Methylation Genes (DMGs)
Analysis
Limma analysis (Ritchie et al., 2015) was carried out to identify
DEGs between low- and high-immune score groups. The genes
meeting the |log2FC| > 1.0 and adjusted p-value < 0.05 were
considered as DEGs. DNA methylation level for each gene was
estimated by calculating the average beta value of probes in
promoter regions including TSS200, 1stExon, TSS1500, and
5′UTR (Jiao et al., 2014). An unpaired t-test was performed to
identify DMGs between low- and high-immune score groups.
The p-value was adjusted by the Benjamini Hochberg method.
DMGs were defined by |log2FC| > 0.1 and the false discovery rate
corrected p-value < 0.05.

Correlation Analysis Between DNA
Promoter Methylation and Genes
The Pearson correlation (r) was calculated between the mean β
values of the DNA promoter region and the normalized
expression values of the corresponding genes to examine the
effect of DNA methylation in the promoter region on gene
expression levels. Cut-off for significant correlations was set at
|r| > 0.3 and p-value < 0.05 (Piao et al., 2012).

Identification of the Prognostic Genes and
Calculation of the Risk Score
Robust prognostic genes in TCGA CC samples were identified
using multi-step processes. First, univariate Cox regression
analysis was performed to screen prognosis-related genes, and
genes with p-value less than 0.05 were selected for further
analysis. Next, we used the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis to assess
the correlation between the gene expression and prognosis.
This procedure was repeated 1,000 times, and the genes with
100 repetitions were kept for the next step analysis. Further, the
concordance index (C-index) was calculated of each possible
threshold from one to the number of genes, and the one (k) genes
were selected that could reach the largest C-index in the TCGA
cohort as the appropriate threshold of the signature. Then, the
selected genes were used to perform multivariate Cox regression.

The risk score was calculated by the formula risk score = Σ
βi*Expi, where βi is the coefficient of each gene in the multivariate
Cox model and Expi represents the normalized expression value
of each gene transformed by log2 and z-score. Patients were
divided into high- and low-risk groups using the median risk
score as the cut-off.

Construction of Nomogram
Based on the multivariate analysis results, we integrated the FIGO
stage and risk signature to construct a composite prognostic
model using the Cox proportional hazard regression in the TCGA

cohort. Then, the R package “rms” was utilized to generate the
nomogram. The consistency between the predicted and actual
survival outcomes was assessed using the calibration curves.
Moreover, time-dependent C-index and the decision curve
analysis (DCA) were performed to compare the predictive
accuracy of the nomogram, prognostic signature risk model,
and FIGO stage.

Enrichment Analysis and Tumor Immune
Signature Analysis
Differentially expressed genes in CC patients between different
risk score groups were analyzed by limma. The log2FC value of
each gene was used as an input to carry out gene set enrichment
analysis (GSEA) (Subramanian et al., 2005). The adjusted p < 0.05
was considered significantly enriched. Meanwhile, gene set
variation analysis (GSVA) was performed to find significantly
associated pathways, and adjusted p < 0.01 was considered
statistically significant. The gene set “h.all.v7.2.symbols.gmt”
was selected as the reference gene set.

Signature-related gene modules in the TCGA expression file
were identified by weighted gene co-expression network analysis
(WGCNA) (Langfelder and Horvath, 2008). The basic set
parameters of the program included setting the scale-free
topological fit index (R2) > 0.85, the minimum cluster size to
30, and the merge threshold function to 0.3. Gene modules with
biweight midcorrelation coefficient (r) ≥ 0.5 and p-value < 0.05
were defined as signature-related gene modules.

Immune signatures were evaluated from the gene expression
levels of immune checkpoints and human leukocyte antigen
(HLA) genes (De Simone et al., 2016; Johnston et al., 2019)
and the levels of immune cells infiltrating. The infiltrating
immune cells levels were calculated by CIBERSORT (Newman
et al., 2015), TIMER (Li et al., 2016), and MCP-counter (Becht
et al., 2016) algorithms.

Somatic Variants Analysis and Copy
Number Variation Analysis
Logistic regression analysis was performed to adjust for the
influence of other clinical pathological features to identify
differential mutation patterns, and genes with p < 0.05 were
defined as significantly mutant genes. Genes with more than five
mutations in at least one group were analyzed. The R package
“maftools” (Mayakonda et al., 2018) was used to create the
visualization of the mutations.

Genomic identification of significant targets in cancer
(GISTIC) analysis was used to analyze the copy number
variation data and identify the significant amplification and
deletion regions and all gene’s discrete copy number status
between different risk groups, which was performed by the
GISTIC 2.0 pipeline (GenePattern, https://genepattern.
broadinstitute.org/).

Drug Response Prediction
The CTRP and PRISM datasets were utilized to construct
predictive models of drug response. Before subsequent
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analysis, more than 20% of the compounds containing NAs in the
samples were excluded. ISOpure algorithm was utilized to reduce
the impact of non-tumor components on analysis results (Anghel
et al., 2015). A built-in ridge regression model of the
“pRRophetic” package was used to estimate the AUC value of
each compound in each patient by inputting TCGA purified
expression profile and drug sensitivity data.

Immunotherapeutic Response Prediction
The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm (Fu et al., 2020) and immunophenoscore (IPS)
(Charoentong et al., 2017) were leveraged to predict the
clinical response to immunotherapy of different risk groups
based on the gene expression profile of TCGA CC samples.
Patients with higher IPS and lower TIDE scores responded
better to immunotherapy.

Statistical Analysis
All statistical tests were performed in R statistical software
(v3.6.3). Unless otherwise noted, a comparison of a
continuous variable in two or more than two groups was
performed using Wilcoxon rank-sum test or Kruskal–Wallis
test. The correlation between two continuous variables was
measured by either Pearson’s (r) correlation coefficient or
Spearman’s rank-order correlation. Immune and stromal
scores were estimated to the TCGA cohort using the
ESTIMATE algorithm (Yoshihara et al., 2013). Kaplan–Meier
(KM) survival analysis was used to assess prognosis between
different groups by the log-rank test in the “survival” R package.
The time-dependent AUC was performed using the “timeROC”
R package. The time-dependent C-index was performed using
the “pec” R package. The p-value is two-sided, and p < 0.05 was
considered statistically significant.

FIGURE 1 | Identification of the TME and DNA methylation-related prognostic signature. (A) Scatter plot of promoter mean methylation difference and gene
expression levels change. hyper-up, hypermethylated-upregulated; hyper-down, hypermethylated-downregulated; hypo-up, hypomethylated-upregulated; hypo-
down, hypomethylated-downregulated. (B,C) Venn diagrams showing the intersection between DEGs and hypermethylated genes (top) and between DEGs and
hypomethylated genes (bottom). (D) The C-index of different genes combinations in the signature. (E) The nine genes included in the signature. Corresponding
coefficients are depicted by horizontal bars.
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RESULTS

Overview of Workflow
The whole workflow of this study was delineated in
Supplementary Figure S1, including the identification of
hypermethylated-downregulated genes; development and
validation of the prognostic signature; the construction of the
nomogram; and the analyses of signature-associated immune
signature, function enrichment, and genetic features.

Analysis of the Correlation of Immune and
Stromal Scores With Clinical Features
The detailed clinical information of patients in the TCGA
cohort is shown in Supplementary Table S1. Immune scores
ranged from −1,203.5 to 3,430.4, and stromal scores of these
patients ranged from −2,433.1 to 812.7. The median cut-off
values of immune scores and stromal scores were applied to
stratify CC patients into high- and low-immune groups and
high- and low-stromal groups. KM analysis result showed that
the OS of patients in the high-immune group was better than
that of the low-immune group, but there was no difference in
OS between the high- and low-stromal groups
(Supplementary Figures S2A,B). We also found a strong
negative correlation between immune score and tumor
purity (Supplementary Figure S2C). However, immune
scores were not associated with the FIGO stage
(Supplementary Figure S2D) and the tumor node
metastasis (TNM) stage (Supplementary Figures S2E–G).

Identification of DEGs and DMGs Between
High- and Low-Immune Groups
Wemapped the average β value of the DNA promoter region to
genes, and 14,932 genes were obtained (Figure 1A).
Differential methylation and expression analyses were
carried out between high- and low-immune groups. A total
of 2,819 DMGs were detected, with 764 hypermethylated genes
and 2,055 hypomethylated genes. A total of 1,046 DEGs were
detected, with 364 upregulated genes and 682
downregulated genes.

The integrative analysis of gene expression and DNA
promoter methylation in CC patients was performed by
identifying the intersection between the DEGs and DMGs.
Of the 764 hypermethylated genes, 13 genes were
upregulated and 189 genes were downregulated (Figure 1B).
Among the 2,055 hypomethylated genes, 84 genes were
upregulated and 32 genes were downregulated (Figure 1C).
Then, we focused on the hypermethylated-downregulated
genes and used the Pearson correlation analysis to examine
the impact of DNA promoter methylation on gene expression.
Among the 189 hypermethylated-downregulated genes, 111
genes revealed significantly negative correlations
(Supplementary Table S2), and mRNA expression of these
genes is shown in Supplementary Figure S3.

Identifying Prognostic Genes and
Development of the Risk Score
A total of 291 TCGA CC patients with available clinical
information were used to recognize the prognostic signature.
We first used univariate Cox proportional hazards regression
analysis and identified 55 genes correlated with OS (p < 0.01)
(Supplementary Table S3). After a 1,000-time LASSO Cox
regression analysis, we identified nine genes (CCR7, CD6,
POU2AF1, TMC8, PLAC8, RARRES3, BIN2, DNASE1L3, and
IL12RB2) that were stably associated with prognosis over 100-
time iterations (Supplementary Table S4).

For all possible thresholds from 1 to 9, a nine-gene set with the
largest C-index (0.728) was considered prognosis-associated
genes (Figure 1D, Supplementary Table S5). All nine genes
showed a high negative correlation betweenDNA promoter mean
methylation and gene expression (Supplementary Figure S4).
Furthermore, we estimated the risk score based on the linear
combination of the nine-gene expression levels weighted by their
multivariate Cox regression coefficients (Figure 1E): risk score =
(−0.147) ✕ CCR7 + (−0.097) ✕ CD6 + (−0.139) ✕ POU2AF1 +
(−0.039)✕ TMC8 + (−0.179)✕ PLAC8 + (−0.250)✕ RARRES3 +
(−0.038)✕ BIN2 + (−0.126)✕DNASE1L3 + (−0.150)✕ IL12RB2.
Then, according to the median risk score, CC patients were
divided into low-risk (n = 145) and high-risk groups (n = 146).

The Prognostic Value of Risk Score
A heatmap of expression levels of the nine identified genes and
the scatterplot of OS with a corresponding risk score are
illustrated in Supplementary Figure S5A. We explored the
distribution of the risk score with histological type, TNM
stage, and FIGO stage. Patients with a higher M stage and T
stage had a higher risk score, and patients in the squamous
subtype had a significantly lower risk score than those in other
subtypes (Figure 2A). We next found that patients with low-risk
scores were significantly associated with better OS compared with
patients with high-risk scores (Figure 2B). Moreover, the
accuracy of the risk score in OS prediction was evaluated
using the AUC, as shown in Figures 2C,D. The AUCs of the
risk score model at 1, 3, and 5 years were 0.812, 0.716, and 0.703,
respectively.

To confirm that the risk score had a stable prognostic value across
different datasets, we corroborated this association in an external
validation GEO (GSE44001) dataset. A heatmap of the signature
consisting of nine genes and the scatterplot of disease-free survival
(DFS) time with corresponding risk score in GEO (GSE44001) are
shown in Supplementary Figure S5B. Consistent with the above
TCGA results, patients with high-risk scores in GSE44001 had a
significantly poorer DFS than those with low-risk scores (Figure 2E),
and AUCs at 1, 3, and 5 years were 0.476, 0.575, and 0.645,
respectively (Figures 2F,G). The result showed that the risk score
did not show high accuracy in predicting the prognosis of CC
patients in the validation dataset (GSE44001), which may be caused
by the CC patients in the early stage (stages I-II).

The results of univariate and multivariate Cox regression
analysis further showed that risk score could be an
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independent predictor of survival outcome in CC patients after
being adjusted for the clinicopathological features (Figure 3),
suggesting that the TME and DNA methylation-related genes
might be involved in CC occurrence and development and could
serve as potential therapeutic targets. Meanwhile, we also found
that the tumor FIGO stage could be used as an independent
predictor.

Construction of Nomogram
To find a more effective method to strongly predict the prognosis
of CC patients, we combined tumor FIGO stage and risk score to
establish a complete evaluation signature. A nomogram was
created to predict the 1-, 3-, and 5-year prognostic survival
probabilities of patients with CC (Figure 4A). The calibration
curve was used to assess the consistency between the actual
survival status and the predicted outcomes of CC patients
(Figure 4B). The result revealed that based on the FIGO stage

and risk score, the nomogram could effectively predict the
prognosis. Then, we calculated the C-index to confirm this
(Figure 4C). These results suggested that the ability of the
nomogram to predict the prognosis of CC patients is more
reliable than a single independent factor. Moreover, the DCA
diagram showed that the net benefits of the nomogram were
significantly higher than the risk score and FIGO stage, indicating
the good clinical applicability of the nomogram (Figure 4D).

Risk Score Was Associated With Immune
Signature
To elucidate the interrelation of the risk score and immune
signature, we examined the correlation between the risk score
and immune and stromal scores, HLA family genes, immune
checkpoints, and infiltrating immune cells. The results showed
that immune and stromal scores were significantly positively

FIGURE 2 | Validation of the prognostic value of the risk score. (A) Difference analysis of the distribution of risk scores in different FIGO stages, TNM stages, and
histological types. (B) Kaplan–Meier curves for differential detection of patients in the TCGA cohort by the log-rank test. (C) ROC curves of risk scores used to predict 1-
year, 3-year, and 5-year survival in the TCGA cohort. (D) Time-dependent ROC curves of the risk score in the TCGA cohorts. (E) Kaplan–Meier curves for differential
detection of patients in the GSE44001 cohort by the log-rank test. (F) ROC curves of risk scores used to predict 1-year, 3-year, and 5-year survival in the
GSE44001 cohort. (G) Time-dependent ROC curves of the risk score in the GSE44001 cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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correlated with risk scores. Patients in the low-risk score group
had higher immune and stromal scores than those in the high-
risk score group, and patients in the low-risk score group had
lower tumor purity (Figures 5A−C). We next found that the gene

expression levels of 20 HLA family genes and 41 immune
checkpoints were significantly different between the high- and
low-risk groups (Figures 5D,E, Supplementary Table S6), and
the risk score was significantly negatively correlated with the

FIGURE 3 | Forest plot of the univariate and multivariate Cox regression analysis in TCGA and GSE44001 cohorts.

FIGURE 4 |Construction of a nomogrammodel. (A)Nomogram constructed in conjunction with the risk score and FIGO stage for the TCGA cohort. (B)Calibration
plot of the nomogram. (C) C-index curves of the FIGO stage, risk score, and nomogram. (D) Decision curve analysis for evaluating the net benefits of FIGO stage, risk
score, and nomogram.
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expression levels of 20 HLA genes and 43 immune checkpoints,
such as HLA-DOA, HLA-DPB1, IDO2, BTLA, and CD27
(Figure 5F, Supplementary Table S7). TIMER, CIBERSORT,
and MCP-counter were performed to estimate the distribution of

infiltrating immune cells between the low- and high-risk score
groups. Most immune cells and stromal cells were infiltrated
more frequently in the low-risk score group. However, antigen
presenting cells such as macrophage M0 and T cell regulatory

FIGURE 5 | The immune signature between the high- and low-risk groups in the TCGA cohort. (A–C) Association between immune score, stromal score, tumor
purity, and risk score and their distribution in different risk groups. (D,E) Differential analysis of gene expression levels of HLA family genes and immune checkpoints in
different risk groups. (F) Correlation analysis for the risk score and the gene expression levels of HLA family genes and immune checkpoints. (G) The heatmap showing
the immune and stromal cell infiltration levels and differences in distribution between different risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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(Tregs) increased in the high-risk score group (Figure 5G,
Supplementary Table S8). These results indicate that the
suppression of stromal and immune components in the tumor
microenvironment likely contributes to the worse prognosis in
high-risk patients.

Function Analysis of Genes Related to the
Risk Score
To explore the underlying mechanisms that lead to different
outcomes between the high- and low-risk score groups, we
carried out GSEA using annotations of hallmark gene sets.
Significantly enriched pathways with adjusted p-value < 0.05
are shown in Figure 6A. Genes involved in glycolysis, Myc
targets v1, and E2F targets signaling pathway were enriched in
the high-risk score group, while genes related to apoptosis, KRAS
signaling up, inflammatory response, and p53 signaling pathway
were enriched in the low-risk score group.

Furthermore, we performedWGCNA to get the signature-related
modules. Based on the median absolute deviation (MAD), the top
5,000 genes with the most variation were selected and the gene
expression file of these genes was inputted into the WGCNA. When

the lowest soft threshold power was four, the scale-free R2 reached
0.85 (Supplementary Figure S6). We constructed a cluster
dendrogram with the adjacency matrix; eight-color modules (blue,
yellow, red, turquoise, green, black, brown, and grey) were identified
(Figure 6B). Next, we analyzed the module-trait relationships and
found that the brownmodule was highly significantly correlated with
the signature risk score (|r| > 0.5) (Figure 6C). We then performed
GSEA using the annotations of the KEGG gene set to explore the
biological functions of genes in different modules. For brownmodule
genes, the top enriched terms were Th1 and Th2 cell differentiation,
T cell receptor signaling pathway, primary immunodeficiency, and
PD-L1 and PD-1 checkpoint pathway in cancer, indicating that genes
in the brown module are involved in regulating immune system
function (Figure 6D).

Differences in Genetic Variation and
Pathway Activation Between High- and
Low-Risk Groups
Tumor mutation burden (TMB) is largely attributed to genomic
instability and can indirectly reflect the ability and degree of
tumor production of neoantigens and predict the

FIGURE 6 | Function analysis of genes correlated with the risk score. (A) GSEA enrichment plots showing enriched gene sets against to hallmark dataset in high-
and low-risk groups. NES, normalized enrichment score. (B) A dendrogram of the top 5,000 genes with the most variation clustered based on the topological overlap
together. (C) The heatmap showing the association between gene modules and the signature risk score. (D) GSEA annotated by KEGG gene sets for the brown
module genes.
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immunotherapy efficacy of various tumors. We found that TMB
was significantly higher in the low-risk score group than in the
high-risk score group (Figure 7A). We further investigated the
somatic mutations across CC patients. Logistic regression
analysis showed that 11 genes mutation frequencies were
significantly different between high- and low-risk score groups,
including CENPF, EPHA2, GON4L, HLA-B, IGSF10, KMT2C,
PLXNA1, PSD, RYR1, TTN, andUBR5 (Figure 7B). Themutation
frequencies of these genes are shown in Figure 7C, and there were
significant co-occurrences among mutations of these genes
(Figure 7D). We also found that patients with mutant TTN
were significantly associated with better OS compared with wild-

type patients (Figure 7E), suggesting that the TTN may be a
potential immunotherapy target.

The GSVA also identified significant differences in biological
functions between the high- and low-risk groups (Figure 7F,
Supplementary Table S9). Consistent with the GSEA results, the
direct comparison revealed that E2F targets, G2M checkpoint,
glycolysis, and DNA repair pathways were significantly enriched
in the high-risk group. Comparatively, apoptosis, KARS signaling
up, and inflammatory response pathways were significantly
enriched in the low-risk group. Subsequently, copy number
variation analysis showed different patterns of chromosomal
alteration between the high- and low-risk groups (Figure 7G).

FIGURE 7 | Identification differences of the genetic variation and pathway activation between high- and low-risk groups. (A) Tumor mutation burdens were
compared among distinct risk groups. (B) Forest plot of genes with differences inmutation frequencies between the low- and high-risk groups. (C)Waterfall plot of the 11
mutant genes with significant frequency differences between low- and high-risk groups. (D) Interaction of differentially mutated genes. (E) Kaplan–Meier curve showing
that patients with mutant TTN have a better OS than those with wild type. (F) Differential analysis of GSVA scores among distinct risk groups. (G) Copy number
alteration gains (red) and losses (blue) between the low- and high-risk groups. (H) Differential analysis of altered, lost, and gained genome fractions (%) between the low-
risk and high-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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A larger proportion of genomic loss and gain were detected in the
high-risk group (Figure 7H). Our analysis indicated that
activation of tumor-related pathways, production of
neoantigens, and amplification and deletion of certain tumor
suppressor genes might cause differences in survival between
high- and low-risk score groups.

Identification of Potential Agents and
Prediction of Immunotherapeutic Effect
Based on the CTRP and PRISM-derived drug response datasets, we
used two approaches to identify potential agents for CC patients.
First, we performed a differential drug response analysis between
high-risk (upper decile) and low-risk (lower decile) groups to
identify drugs with significantly different AUC values (log2FC >
0.01, p < 0.05). Next, the Spearman correlation between the risk
score and the AUC value was conducted to screen out agents with a
significantly negative correlation coefficient (r < −0.20 for CTRP
and r < −0.40 for PRISM, p < 0.05). Finally, we determined two
CTRP-derived compounds (panobinostat, lenvatinib) (Figures
8A,B) and two PRISM-derived compounds (everolimus,
temsirolimus) (Figures 8C,D) as the potential agents for CC
patients with high-risk scores. Moreover, we also calculated the
TIDE score and IPS based on the TCGA gene expression profile to
determine the immunotherapeutic response in CC patients. We
found that patients in the low-risk group had lower TIDE scores
and higher IPS (Figures 8E,F), suggesting that patients in the low-
risk group were more likely to respond to immunotherapy than
those in the high-risk group.

DISCUSSION

In this study, the ESTIMATE algorithm was performed to
calculate the immune score and the stromal score to estimate
the TME infiltration pattern of each CC patient in the TCGA
cohort. Because the OS of patients in the high-immune group is
better than that of patients in the low-immune group, the TME
and DNA methylation-related genes were identified by the
integrative analysis of DEGs and DMGs between the low- and
high-immune score groups. Based on multiple LASSO Cox
regression analysis, we constructed a nine-gene TME and
DNA methylation-related prognostic signature to predict
prognosis for stratified CC patients and performed external
validation for its performance. Then, the signature was
combined with the FIGO stage to generate a composite
prognostic nomogram that reliably demonstrated the accurate
prognosis prediction for patients with CC. Furthermore, we
identified the tumor immune signature, function enrichment,
genetic variants, and pathway activation associated with the
prognostic signature. Finally, we predicted patients’
immunotherapy responses by the TIDE score and IPS and
provided four potential agents for patients with high-risk scores.

The fundamental role of TME is the dynamic interaction of
immune and stromal cells with malignant cells and can influence
tumor growth, metastasis, and patient prognosis (Hanahan and
Coussens, 2012). Many epigenetic studies have shown that DNA
methylation plays a key role in promoting cellular responses to
stimuli and regulating immune cell differentiation (Sørensen
et al., 2010; Smith and Meissner, 2013). Thus, it is generally

FIGURE 8 | Identification of potential agents and prediction of immunotherapeutic effect. (A,B) Differential drug response analysis of the selected agents for CC
patients between the higher and lower risk score groups based on the CTRP dataset and Spearman’s correlation analysis of CTRP-derived agents and risk score. (C,D)
Differential drug response analysis of the selected agents for CC patients between the higher and lower risk score groups based on the PRISM dataset and Spearman’s
correlation analysis of PRISM-derived agents and risk score. (E,F) The TIDE score and IPS were compared between the high- and low-risk groups. *p < 0.05; **p <
0.01; ***p < 0.001; ns, not significant.
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accepted that DNA methylation has a very complex regulatory
role on the TME, especially during the development of immune
and stromal cells. For example, one study has found that different
methylation patterns exist in myeloid and lymphoid lineages in
cancer tissues. During the differentiation and activation of
macrophages, the global methylation level increased, while it
decreased in both T and B lymphocytes (Schuyler et al., 2016).
Most importantly, DNA methylation can influence not only the
expression levels of genes important for immune cell
development but also the tumor immune response in the
TME. One study suggested that Th1/Th2 differentiation may
be mediated by methylation and demethylation of the FN-γ in
naive CD4+ T lymphocytes (Janson et al., 2008). Another report
revealed that hypermethylation of genes (LAX1, SIT1, and
UBASH3A) leads to enhanced anti-tumor T-cell responses in
breast cancer (Dedeurwaerder et al., 2011). Moreover, a previous
study showed that in non-small-cell lung cancer, demethylation
of the FOXP3 gene promoter could reduce the activity of DNMTs
in Tregs CD4+ lymphocytes and downregulate immune responses
in the TME (Ke et al., 2016).

In the present study, we have observed that CC patients
with low immunity levels have worse survival than those with
high immunity levels, which may be due to a decrease in the
immune infiltration levels caused by hypermethylation in the
promoter region of immune-related genes affecting gene
expression levels. To predict CC patient survival, we
constructed a nine-gene TME and DNA methylation-related
prognostic signature. In the training and validation datasets,
the risk score of the signature was an independent prognosis
factor and had a good predictive effect. Among the nine genes
included in the signature, their coded proteins correlate with
the immune system, such as CCR7, which coded protein
belonging to the CCR7 chemokine axis. The axis is involved
in the trafficking of effector cells for many immune responses
and controls the migration and metastasis of tumor cells to the
lymphatic system (Salem et al., 2021). CD6 is one kind of type I
transmembrane glycoprotein on the lymphocyte surface and is
involved in the development and differentiation of
lymphocytes (Santos et al., 2016). As a B cell
transcriptional coactivator, POU2AF1 regulates the
expression of B cell maturation factor TNFRSF17 and
stimulates the growth of myeloma cells (Zhao et al., 2008).
DNASE1L3 is a kind of deoxyribonuclease and is involved in
neutrophil activation and acute inflammatory responses
(Jiménez-Alcázar et al., 2017). IL12RB2 is the interleukin-
12 receptor. A study found that IL12RB2 knockout (KO) mice
develop autoimmunity, lymphoid proliferation, and B-cell
tumors and suggested IL12RB2 functions physiologically in
inhibiting aberrant B-cell activation (Airoldi et al., 2005).
Moreover, we established a composite nomogram based on
the FIGO stage and the signature to guide the prognosis
prediction of CC patients more effectively. The composite
nomogram demonstrated higher accuracy of prognosis and
greater net benefits than the FIGO stage and the signature.

Furthermore, our study results showed that the stromal and
immune scores were negatively correlated with the risk score, and
patients in the high-risk group had lower immune scores and

were more likely to be immunosuppressed. More seriously,
patients in the high-risk group had a lower immune activity,
including lower immune cell infiltration such as T cell CD4+,
T cell CD8+, and downregulation of HLA family genes and
immune checkpoints expression such as HLA-A, HLA-B, PD1,
and CTLA4, which contributed to immunosuppression and
tumor immune escape. We further analyzed GSEA pathway
enrichment in high- and low-risk groups and found that
proliferation-specific pathways were significantly enriched in
the high-risk group, such as the Myc targets v1 and E2F
targets pathway, while apoptosis, KRAS signaling up, and
inflammatory response pathway were significantly enriched in
the low-risk group.

Compared to other malignancies, immunotherapy plays an
even more important role in cervical cancer. For example, in
precancerous abnormalities and early tumors of cervical
cancer, restoring the immune response to cancer cells and
strengthening immune system function to HPV may stop
further progression (Lee et al., 2016). TMB measures the
number of nonsynonymous mutations of cancers, and more
mutations could generate more neo-antigens, thereby
activating the patient’s immune system and benefiting
cancer immunotherapy (Jardim et al., 2021). Therefore,
many studies have suggested that TMB could be a good
predictive biomarker of immunotherapy response (Chalmers
et al., 2017; Büttner et al., 2019). We found that patients in the
low-risk group had higher TMB than those in the high-risk
group. Taken together, the results of TMB, IPS, and TIDE
scores suggested that patients with lower risk scores may
benefit more from immunotherapy. In addition, somatic
mutations analysis revealed that the mutation frequency of
11 genes was significantly different between the high- and low-
risk groups. There were co-mutations in these genes,
suggesting that they may synergistically affect the regulation
of TME. Interestingly, patients with mutant TTN had better OS
than those with the wild type and TTN may be a potential
immunotherapy target. We also determined that the genetic
variants were significantly different between the high- and low-
risk groups. The high-risk group had a significantly higher
fraction of genome altered than the low-risk group, indicating
that patients with high-risk scores had more unstable genomes,
and some tumor-promoting pathways were activated, leading
to poor prognosis.

Immunotherapy has a demonstrable synergistic activity to
alter or enhance the immune system when combined with
radiotherapy, chemoradiotherapy, and targeted drugs (Dyer
et al., 2021). To identify drugs that synergize with
immunotherapy for high-risk patients and facilitate
personalized treatment decisions, we identified four potential
agents for high-risk CC patients by interaction analysis between
the risk signature and drug responses. Among the four
candidate agents, lenvatinib is a multikinase inhibitor of
receptor tyrosine kinases. Panobinostat is a nonselective
HDAC inhibitor. Both everolimus and temsirolimus are
inhibitors of mTOR kinase, which is part of the signaling
pathway associated with cell growth and proliferation. Many
studies have found that the destruction of mTOR leads to the
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suppression of the cell cycle and angiogenesis, thereby
inhibiting the development of cervical cancer. These studies
also validated the reliability of our results (Bossler et al., 2019;
Sun et al., 2020; Yang et al., 2020).

Our study has its limitations. First, although our signature is
beneficial in evaluating prognosis and conducting therapies for
CC patients, it does not yield a satisfactory result in the validation
set as their patients are in the early stage of CC. It should be
prospectively validated in other datasets. Second, because there
are no expression data for CC patients receiving immunotherapy,
we only used bioinformatics analysis to predict the effect of
immunotherapy in CC patients in the TCGA dataset, and
there is no actual immunotherapy benefit of immunotherapy
for patients with different risk scores. Third, drug clinical trials
and experimental exploration are needed to validate our drug
prediction results. In summary, our study highlights the value of
the TME and DNA methylation-related signature in predicting
prognosis and immune response.
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