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Applicability of Dynamic Energy 
Budget (DEB) models across steep 
environmental gradients
Cristián J. Monaco1,2 & Christopher D. McQuaid1

Robust ecological forecasting requires accurate predictions of physiological responses to environmental 
drivers. Energy budget models facilitate this by mechanistically linking biology to abiotic drivers, but 
are usually ground-truthed under relatively stable physical conditions, omitting temporal/spatial 
environmental variability. Dynamic Energy Budget (DEB) theory is a powerful framework capable 
of linking individual fitness to environmental drivers and we tested its ability to accommodate 
variability by examining model predictions across the rocky shore, a steep ecotone characterized by 
wide fluctuations in temperature and food availability. We parameterized DEB models for co-existing 
mid/high-shore (Mytilus galloprovincialis) and mid/low-shore (Perna perna) mussels on the south 
coast of South Africa. First, we assumed permanently submerged conditions, and then incorporated 
metabolic depression under low tide conditions, using detailed data of tidal cycles, body temperature 
and variability in food over 12 months at three sites. Models provided good estimates of shell length 
for both species across the shore, but predictions of gonadosomatic index were consistently lower 
than observed. Model disagreement could reflect the effects of details of biology and/or difficulties in 
capturing environmental variability, emphasising the need to incorporate both. Our approach provides 
guidelines for incorporating environmental variability and long-term change into mechanistic models to 
improve ecological predictions.

Improving our understanding and predictions of species responses to environmental variability requires mech-
anistic approaches capable of disentangling the relative and interacting effects of multiple drivers1. Because indi-
viduals can experience different conditions2, a focus at this level can help us to identify the relevant biological and 
ecological processes that drive the dynamics of populations and communities3,4. Classic energy budget models 
such as scope for growth have provided a means of quantifying the energy allocation and physiological state of 
organisms subject to specific biotic and abiotic conditions5. Although such models are informative of species’ 
adaptive capacities6, they are usually only applicable to the conditions defined by the experimental design. Given 
the inherent complexity and dynamism of natural systems, using the information gathered from these classic 
models to derive meaningful predictions for field conditions is difficult.

The introduction and ongoing development of the Dynamic Energy Budget (DEB) theory7–9, offers a mech-
anistic approach based on physical-chemical principles to integrating the physiological responses of organisms 
and quantifying fitness-related traits across time and space, and thus has gained much attention in the ecological 
literature. The scope and generality of DEB theory has been repeatedly confirmed empirically and theoretically, 
with a growing number of species being successfully parameterized10.

DEB models currently exist that can describe the effects of contrasting body temperature11, food availability12 
or seawater pH13 on the physiological condition of animals throughout ontogeny. However, despite the capacity of 
DEB theory to incorporate contrasting physical conditions, the models are usually built and implemented for spe-
cies/populations that experience relatively homogeneous environments, particularly in terms of food and temper-
ature. For instance, marine mussels, which have long served as DEB theory model species14, are predominantly 
modelled under relatively stable subtidal conditions. While many DEB model applications have incorporated nat-
ural environmental variability, successfully capturing organisms’ physiological responses15–17, less attention has 
been given to explicitly testing model performance under steep gradients of environmental variability. Ignoring 
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environmental variability can reduce the predictive power of energy budget models, and variability deserves 
special consideration when working with taxa subject to wide fluctuations in food and temperature, as recently 
highlighted for terrestrial and semi-aquatic species18,19.

Marine rocky shores form an exceptionally steep ecotone between permanently marine and permanently 
terrestrial conditions and are among the most variable of physical habitats2,20,21, making them ideal systems for 
testing the ability of DEB models to describe an organism’s physiological state under fluctuating conditions. With 
the ebb and flow of the tide, organisms experience regular changes in body temperature, desiccation, and food 
availability (Fig. 1). As almost all intertidal species are of marine origins, this results in a dramatic increase in 
physiological stress from low- to high-shore levels22.

This study examines the application of DEB models across the environmental stress gradient offered among 
shore levels using two model species: the mussels Perna perna and Mytilus galloprovincialis (hereafter Perna and 
Mytilus). Perna is indigenous to and Mytilus invasive on the south coast of South Africa, where they exhibit partial 
habitat segregation. Within the shore heights occupied by mussels, Perna dominates the lower and Mytilus the 
higher level, the two co-occurring in the middle23. This provides a good system to test the effectiveness of DEB 
models across a stress gradient that includes a high level of variability in physical conditions.

We use DEB models for South African populations of Perna and Mytilus to ask whether these models perform 
well for individuals found across a steep intertidal gradient of environmental forcing variables. To incorporate 
intertidal physical gradients into a DEB framework, we explicitly consider tidal dynamics and the associated 
fluctuations in body temperature and filter feeding11. Additionally, we incorporate dynamics in thermal sensi-
tivity as, during aerial exposure, intertidal mussels can markedly depress their metabolic rates, often undergoing 
anaerobiosis24–26. These responses hinge on complex biochemical, physiological, and behavioural adaptations that 
differ widely among species27–30. However, with the aim of modelling energetics over a relatively long period (i.e. 
months to years), we make the simplifying assumption that during aerial exposure all processes associated with 
metabolic depression can be encapsulated by a constant empirically derived for each species.

Materials and Methods
DEB model topology.  We briefly describe the parameters and state variables that determine an organism’s 
physiological state. For details see Kooijman8 and Monaco, et al.31. We work with a modified standard DEB model: 
i.e. growth is isomorphic, except for the larval stage, when metabolic acceleration is implemented32, there is one 
reserve compartment and one structure compartment. The organism’s condition is defined by three state varia-
bles: amount of energy in reserve, E (J), volume of structure, V (cm3), and amount of energy in the reproductive 
buffer, ER (J) (Fig. 2).

Tables 1, 2 and 3 list the equations and parameters that describe flows of energy and the dynamics of state 
variables. Mussels acquire energy by ingesting phytoplankton, here assumed to be proportional to chlorophyll-a, 
X (μg L−1)33. Ingestion rate is described by ṗX (J d−1), which is constrained by the maximum surface-area specific 
ingestion rate parameter, {ṗXm} (J d−1 cm−2), and follows a scaled type II functional response, f (−), which in turn 

Figure 1.  Example illustrating the changes in environmental variables and physiological state of high-shore 
intertidal organisms subjected to shifting tides. With the rise and fall of the tide (predictions by XTide), mussels 
experience alternating periods of submergence and aerial exposure (grey and white bars, respectively). This 
forces wide fluctuations in body temperature (recorded using robomussels), thermal sensitivity (e.g. metabolic 
depression), and intermittent windows of feeding and fasting.
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is controlled by the half-saturation coefficient, Xk (μg L−1). Assimilation rate, ṗA (J d−1), depends on the maximum 
surface-area specific assimilation rate, {ṗAm} (J d−1 cm−2), the assimilation efficiency, ae (−), and the acceleration 
factor, sM (−), during the larval stage. The assimilated energy that is stored as reserves is utilized at a rate, ṗC 
(J d−1), and divided between somatic and reproductive allocation pathways in accordance to the kappa rule: a 
proportion κ (−) is used for somatic maintenance and growth (i.e. structure), while the rest, 1 − κ, goes towards 
maturity maintenance and reproduction (i.e. maturation or gametogenesis in adults). This implies that somatic 

Figure 2.  Schematic representation of the energy flows described by the Dynamic Energy Budget (DEB) model. 
State variables are illustrated in boxes. Arrows depict rates of energy flow: continuous lines = allocation to state 
variables and maintenance costs; dashed lines = loss of energy as overheads. Equations that describe the flows 
are given in Table 2.

Biological metric Equation

Shell length, LW δ= VL /W M
1/3

Soma dry weight, Wsd Wsd = VdV + EρE

Gonad dry weight, Wgd Wgd = ERρE

Gonadosomatic index, GSI =GSI W /Wgd sd

Table 2.  Auxiliary equations to translate Dynamic Energy Budget model quantities (Table 1) to empirical 
biological metrics.
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Table 1.  Dynamic Energy Budget model equations that describe energy flows illustrated in Fig. 2.
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processes have priority over allocation to reproduction. The energy used in somatic and maturity maintenance, 
ṗM and ṗJ (J d−1) respectively, is proportional to structure. Growth occurs if κ * ṗC > ṗM. Similarly, investment in 
reproduction, ṗR (J d−1), takes place if (1 − κ) * ṗC > ṗJ.

Temperature influences all physiological rates via a thermal sensitivity equation based on Arrhenius thermo-
dynamics34,35. During aerial exposure, thermal sensitivity is corrected by a metabolic depression constant, Md (−) 
(Table 1).

V is proportional to mussel shell length, Lw (cm), via the shape coefficient (Table 2). Gonadosomatic index, 
GSI, was computed as gonad dry weight, Wgd (g), over soma dry weight, Wsd (g) e.g.36,37. The model assumes that 
gonads are produced continuously during the year of simulations, at which point total aggregate GSI is com-
puted, and after which spawning occurs. Shell-free soma dry weight is composed of the added masses of structure 
and reserve. Structural mass is derived assuming a specific density, dV (g cm−3), and reserve mass based on a 
weight-energy coupler, ρE (g J−1).

DEB models parameterization.  For both species, we estimated parameter values using the program 
DEBtool_M (available at http://www.bio.vu.nl/thb/deb/deblab/). This program uses the covariation method (Lika 
2011), which relies on the Nelder-Mead algorithm to simultaneously fit the various DEB parameters to the species 
life-history data (see Supplementary Table S1). We included life-history data for subtidal populations only to 
avoid confounding the effects of aerial exposure. These data were obtained from the literature and our own obser-
vations, as follows. Growth data for Perna were extracted from Berry (1978) using WebPlotDigitizer 4.038. Growth 
data for Mytilus were determined using 100 mussels collected at Ancona, Italy (N 43°36′56.88″, E 13°31′8.04″), 
and aged based on growth rings39.

DEB models validation across shore levels.  To test the validity of the models under realistic conditions 
across shore levels, we used the estimated parameter values (Table 3) along with data for environmental drivers 
(see Environmental drivers) to run DEB model simulations for the period between October 2015 and October 
2016. Simulations were conducted using an R script40, which computes hourly energy flows and dynamics of 
state variables as a function of body temperature and food availability (see below, Fig. 2, Table 1). We considered 
tide height as a third environmental driver, defining the alternating periods of aerial exposure and submergence 
(Fig. 1). During low tide events, the model supresses food ingestion and simulates metabolic depression accord-
ing to empirical observations conducted in water and air by Tagliarolo and McQuaid25 (metabolism is depressed 
to 0.39 and 0.15 of submerged levels for Perna and Mytilus, respectively). We did this for three sites separated 
by 10–30 km on the south coast of South Africa, where both species coexist: Brenton-on-Sea (S 34°04′31.73″, 
E 23°01′28.06″), Plettenberg Bay (S 34°03′35.81″, E 23°22′50.65″), and Keurboomstrand (S 34°00′17.04″, E 
23°27′18.63″). Based on species zonation patterns, we ran simulations for Mytilus at high- and mid-shore levels, 
and for Perna at mid- and low-shore levels.

To establish initial values for the model state variables, reserves and structure, we ran spin-up simulations for 
each species assuming constant temperature (20 °C), food (f = 1), and submergence until reaching 4-cm shell length. 
The initial value for reproductive buffer was set to yield GSI values that matched each species’ lowest value based on 
our field data (Perna = 0.04 and Mytilus = 0.12). We ran single simulations for each species at their corresponding 

Parameter Symbol Units Perna Mytilus

Surface-area specific ingestion rate {ṗXm} J d−1 cm−2 15.54 9.42

Half-saturation coefficient Xκ μg L−1 0.50 2.10

Assimilation efficiency ae — 0.69 0.80

Fraction of energy used for growth and 
somatic maintenance κ — 0.82 0.47

Structural length at birth Lb cm 0.0021 0.0019

Structural length at metamorphosis Lj cm 0.0242 0.0197

Structural length at puberty Lp cm 0.6729 0.6912

Volume-specific somatic maintenance [ṗM] J d−1 cm−3 29.07 10.27

Volume specific cost of structure [EG] J cm−3 2800 3156

Fraction of energy used for gametes κR — 0.95 0.99

Shape coefficient δM — 0.23 0.22

Density of structure dV g cm−3 0.09 0.09

Dry weight-energy coupler ρE g J−1 5.71 × 10−5 5.71 × 10−5

Arrhenius temperature TA K 9826 10590

Lower limit of tolerance range TL K 273 279.6

Upper limit of tolerance range TH K 309 306.1

Arrhenius temperature at lower limit TAL K 55400 22670

Arrhenius temperature at upper limit TAH K 250600 34540

Metabolic depression constant Md — 0.39 0.15

Table 3.  Estimated Dynamic Energy Budget model parameters for Perna perna and Mytilus galloprovincialis.

http://www.bio.vu.nl/thb/deb/deblab/
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shore heights, starting with a 4-cm shell length individual to ensure maturity and to match the size of the biomi-
metic loggers used to capture body temperatures (see Environmental drivers). During the period of this exercise, 
the reproductive buffer was gradually filled. The maximum value reached was then compared against the observa-
tions done on real mussels. We assessed our model predictions based on observations of aggregate annual GSI and 
maximum shell lengths (see Gonadosomatic index (GSI) and shell lengths). We worked with aggregate annual GSI 
because, while mussel gametogenesis and spawning are often correlated with food and temperature41, their exact 
relationship (or their interaction with other factors) has not been clarified42,43. The aim of these simulations was not 
to trace the observed dynamics in GSI perfectly, but to predict total annual investment in reproduction.

Environmental drivers.  Food availability, body temperature, and exposure/submergence were the DEB 
model drivers. As a proxy for food availability, we used chlorophyll-a concentration (μg L−1) derived from daily 
Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images16,17. We used Ocean Color’s 
web interface (https://oceancolor.gsfc.nasa.gov/cgi/l3) to download daily chlorophyll-a concentrations, estimated 
based on the OCI algorithm, and provided at a 4-km2 spatial resolution. Using SeaDAS 7.1, we extracted 9 pixels 
daily, centred 15 km offshore from each study site.

Mussel body temperatures were measured using biomimetic temperature loggers i.e. robomussels44,45. Loggers 
(iButton DS1922, Maxim Integrated, CA USA), set to record every 30 min at 0.5 °C resolution, were placed in 
empty shells (4-cm length) of each species filled with waterproofing electrical resin (3 M Scotchcast 48FR, USA). 
We deployed two Perna-robomussels on the low- and two on the mid-shore, as well as two Mytilus-robomussels 
in the mid- and two on the high-shore levels. Robomussels were cemented to the rock with Z-Spar Splash 
Compound (Kopper’s Co., USA).

We used robomussel and tide height data to determine when mussels at each shore level were exposed/sub-
merged46,47. Hourly tide height predictions were retrieved from XTide (http://www.flaterco.com/xtide/). During 
rising tide periods, a sudden drop in temperature indicated the time of robomussel submergence, and thus the 
effective shore level (ESL). This was done for 10 different spring-tide cycles to calculate a mean ESL for each site 
and shore level. XTide predictions do not account for the influence of wind, atmospheric pressure, or wave splash 
on the realized tidal inundation time. Thus, to avoid incorrectly regarding exposure as submergence, we added 
0.3 m to the ESL (the tidal range on this coast is approximately 2 m). Within the DEB simulation context, this is a 
conservative approach because it prevents unrealistic spikes in physiological rates due to higher low-tide temper-
atures that can still be attained while being splashed.

In order to run the DEB simulations, all environmental data were either averaged (body temperature) or line-
arly interpolated (chlorophyll-a) to an hourly resolution.

Gonadosomatic index (GSI) and shell lengths.  To test the performance of the models across shore 
levels, we used information on GSI and shell lengths. We collected 30 Perna from each of the low- and mid-shore 
levels, and 30 Mytilus from each of the mid-and high-shore levels. We collected animals >30 mm shell length 
and up to the largest individuals that could be found at each level to cover the full range of adult size. Mussels 
were preserved in 70% ethanol and taken to the laboratory for subsequent dissection and sizing. We removed 
epibionts, measured shell lengths with Vernier callipers to the nearest 0.01 mm, and dissected the soft tissue, dis-
criminating between mantle (gonads) and soma. Tissues were dried for 48 h at 60 °C, and weighed to the nearest 
0.01 mg. This protocol was repeated 8 times between October 2015 and October 2016, approximately every 1.5–2 
months intervals.

Mussel GSI was calculated as gonad tissue dry-weight over soma tissue dry-weight36. To compare this with 
DEB modelled data, we estimated the GSI for an individual of 4-cm shell length based on linear relationships 
between shell length and GSI computed from the 30 animals collected per species, shore level, site, and sampling 
date. A standard size of 4-cm was chosen to ensure reproductive maturity and because animals of this size were 
observed across all sites and shore levels. To compare with DEB-modelled GSIs, empirical GSIs were computed 
for each species and shore level as annual aggregates by adding the mean peak values observed across the 8 sam-
pling dates. As reported previously42, we identified two peaks during the year for both species. Maximum shell 
lengths at each site and shore level were calculated as the 99th percentiles from all the individuals sampled there.

To assess the model performance we calculated Percent Errors (PE) and Mean Absolute Percent Errors 
(MAPE) between observations and model predictions. We also regressed observations versus predictions of shell 
lengths and GSI, and tested whether the slopes were significantly different from expected 1:1 relationships (i.e. 
slope = 1) using the R package smatr48.

Results
DEB model parameter values.  Using life-history data gathered from the literature and our personal obser-
vations (Supplementary Table S1), we successfully parameterized Dynamic Energy Budget models for Perna 
and Mytilus (Table 3). These parameters provide good predictions of both species’ allometric scalings, meta-
bolic rates, growth trajectories (Fig. 3), and annual gonadosomatic indices assuming permanent submergence 
(Supplementary Table S1). The only trait that was not adequately captured by the models was length at larval 
metamorphosis, because of incomplete data on the larval stages.

The estimated parameter values reflect functional differences between Perna and Mytilus (Table 3). Most nota-
bly, the proportion of catabolized energy allocated to somatic maintenance and growth, κ, was substantially lower 
for Mytilus, reflecting its high investment into reproduction.

Dynamics in environmental conditions.  The environmental conditions experienced by Mytilus and 
Perna depended on the estimated ESLs, and the corresponding aerial exposure. Generally, these did not vary 

https://oceancolor.gsfc.nasa.gov/cgi/l3
http://www.flaterco.com/xtide/
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widely across sites. The ESLs for low-, mid-, and high-shore mussels were 0.91, 1.04, and 1.21 m above mean low 
lower mark (MLLW) at Brenton-on-sea; 0.85, 1.01, and 1.11 m above MLLW at Plettenberg Bay; and 0.91, 1.01, 
and 1.15 m above MLLW at Keurboomstrand. The duration of aerial exposure increased from low- to high-shore, 
with some inter-site variability. The percent times exposed to aerial conditions for low-, mid- and high-shore 
mussels were 34.41, 43.47, and 53.83% at Brenton-on-sea; 29.71, 41.39, and 47.53% at Plettenberg Bay; and 34.41, 
41.39, and 65.40% at Keurboomstrand.

Figure 3.  Training data used to parameterize Dynamic Energy Budget models for Perna perna and Mytilus 
galloprovincialis. See Table 3 for underlying parameter values. The lines represent model predictions. 
Supplementary Table S1 provides error estimates for these and other predictions of these species’ life histories.
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Median body temperatures were very similar across sites, species, shore levels, and medium (air/water). The 
temperature range, however, differed between media, and among shore levels (Fig. 4A–C). The range was con-
sistently higher during periods of aerial exposure, especially because of a higher frequency of high temperatures. 
The interquartile range of aerial body temperatures increased towards the high-shore at every site (Fig. 4A–C). At 

Figure 4.  Body temperature (recorded in situ using ‘robomussels’, panels A–C) and chlorophyll-a (derived from 
satellite images, panels D-F) experienced by Perna perna and Mytilus galloprovincialis during the study period 
(October 30th 2015 to October 30th 2016) at each site (Brenton-on-sea, Plettenberg Bay, Keurboomstrand). Data 
are provided as a function of species and shore level: Perna-Low (P-L), Perna-Mid (P-M), Mytilus-Mid (M-M), 
and Mytilus-High (M-H). Body temperatures regarded as aerial or submerged in the DEB model simulations 
are plotted separately. Chlorophyll-a plots are aggregates of aerial and submerged periods, with values of 
zero assigned to the former. The white circles are the medians. The boxes mark the 25th and 75th percentile of 
the distributions. The vertical lines are 1.5 time the interquartile ranges. Violin shapes show the distribution 
densities of the body temperature data. Violins are not shown for chlorophyll-a data because outliers would 
squeeze the boxplots rendering them unintelligible.
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Plettenberg Bay and Keurboomstrand, maximum aerial temperatures were higher on the mid- than high-shore, 
which is likely explained by the mediating effect of neighbouring boulders on direct solar radiation. Some body 
temperatures categorized as submerged based on ESLs were apparently too high, notably high-shore Mytilus 
at Brenton-on-sea where some records exceeded 30 °C (Fig. 4A). Most of our submerged body temperatures, 
however, fell substantially lower than the historical daily maximum seawater temperatures recorded at Knysna 
(~4 km from Brenton-on-sea) and Plettenberg Bay (24.7 and 24.6 °C, respectively) by the South African Coastal 
Temperature Network, SACTN.

Satellite-derived chlorophyll-a estimates (a proxy for food) were also similar between sites, with overall 
median values around 1 μg L−1 (Fig. 4D–F). Strong variability over the year was observed for all sites, espe-
cially Plettenberg Bay. The temporal dynamics in chlorophyll-a appeared coupled between the neighbour sites 
Plettenberg Bay and Keurboomstrand, but less so with Brenton-on-sea (Supplementary Fig. S6). Due to increasing 
aerial exposure with shore level, high-shore mussels received less food in the DEB models than low-shore mus-
sels. This gradient was more evident at Brenton-on-sea and Keurboomstrand than Plettenberg Bay (Fig. 4D–F).

Gonadosomatic index (GSI) and shell lengths.  GSI cycled over the year at every site (Fig. 5A–C). It 
was always higher for Mytilus than Perna. For each species, GSI was similar across shore levels, but when dif-
ferences were observed, the GSI values were higher on the lower shore. For Mytilus, two peaks in GSI could be 
detected, generally around March and October. Perna showed a higher peak in March, and a lower one in October 
(Fig. 5A–C).

Observed maximum mussel size also varied with site, species, and shore level (Fig. 5D–F). Mussels were 
on average smaller at Plettenberg Bay than Brenton-on-sea and Keurboomstrand. Perna was consistently larger 
than Mytilus, even when compared at the same mid-shore level. Individuals were larger towards the low-shore 
(Fig. 5D–F).

DEB model validation.  We found significant correlations between expected values and observations for 
both annual GSI and maximum shell length (Pearson’s correlation: GSI, ρ = 0.87, p < 0.001; shell length, ρ = 0.87, 
p < 0.001). Additionally, observations and predictions for both traits were not significantly different from 
expected 1:1 relationships (slope test: p > 0.05) (Fig. 6A,B).

On average the models predicted shell lengths better than GSIs (MAPE = 10.3 and 18.6%, respectively) (Fig. 6). 
The few unsatisfactory predictions of shell length were observed at the mid- and high-shore levels (Fig. 6D). We 
observed poor predictions of GSI except at Plettenberg Bay. At Brenton-on-sea and Keurboomstrand, GSI was 
consistently underestimated across shore levels for both species (Fig. 6C). No obvious patterns of model error 
were detected between species (Fig. 6; see Supplementary Table S2 for details of model errors by site, shore level, 
species, and trait).

To test the value of implementing metabolic depression in the model directly, we compared the model skill 
between simulations run with and without the metabolic depression parameter. Metabolic depression improved 
predictions of both maximum shell length and GSI, as not considering it would yield average MAPEs of 26.6 and 
21.3% respectively. Improvement in predictions varied with trait, species, and shore level (Fig. 7). For example, 
at Brenton-on-sea maximum, shell length was generally better predicted than GSI when including metabolic 
depression. However, for mid-shore Perna, while metabolic depression improved predictions of shell length it 
worsened those of GSI.

Discussion
One of the main reasons for the growing popularity of Dynamic Energy Budget theory in the ecological literature 
is its ability to model organismal responses to a variable environment on a mechanistic basis. Its utility has been 
extensively proven in comparisons of systems where conditions differ across latitudes, or across eco-regions49,50. 
However, implementing DEB models for populations that experience regular, strong fluctuations in abiotic fac-
tors has received considerably less attention. Here we test the efficacy of DEB models for intertidal populations 
of the mussels Perna perna and Mytilus galloprovincialis. These species are important ecological engineers that 
occupy a large portion of rocky shores throughout temperate and subtropical regions.

We followed a two-step approach to finding appropriate parameters to model the energy budget of intertidal 
populations. First, using the covariation method in DEBtool51, we estimated the primary parameters that would 
define the species’ physiological responses under standard, aquatic conditions. These parameters provided ade-
quate fits for allometric scalings, metabolic rates, growth trajectories, and reproduction for both Mytilus and 
Perna. Furthermore, the parameter values are consistent with known differences in life-history traits between 
these species. For instance, given differences in the allocation parameter κ, the models capture the higher invest-
ment of Mytilus into reproduction, one of the key traits that have contributed to the ability of this species to 
become invasive on all continents except Antarctica52. Additionally, both earlier empirical studies53 and the data 
used to parameterize the models showed that, under equal environmental conditions, standard metabolic rate 
and GSI are higher for Mytilus than Perna. Note that, while Mytilus is also expected to grow faster than Perna53,54, 
we were unable to find growth data collected under the same standard conditions (e.g. seawater temperatures 
experienced by Perna in the published studies were warmer, accelerating its growth rate). However, this is not a 
problem for the parameterizing exercise if information on temperature and food is accounted for while running 
DEBtool51.

Second, to examine the possibility of applying these models under extremely variable conditions, we vali-
dated them using independent datasets on maximum mussel shell length (derived from structural length) and 
accumulated annual GSI, along with detailed information on the dynamics of food availability and body temper-
atures experienced by animals across the shore. Earlier work by Sarà, et al.11 provided initial confirmation that 
DEB models could be used to simulate dynamics in physiological performance of Mediterranean Sea intertidal 
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Mytilus populations, and predict the sites where mussels could grow and survive. That study also accounted for 
the suspension of feeding during emersion, but ignored metabolic depression. Here we took one step further and 
introduced a simple constant to consider at a gross level the various underlying physiological processes that take 

Figure 5.  Observed gonadosomatic index (GSI, panels A–C) and maximum shell length (panels D–F) 
across time for Perna perna and Mytilus galloprovincialis at each site (Brenton-on-sea, Plettenberg Bay, 
Keurboomstrand) and shore level. GSI data were estimated means ± 95% CI for a 4-cm shell length mussel, 
computed from linear models relating shell length and gonad dry weight. Maximum shell lengths were 
calculated as the 99th percentile of all mussels measured across the study period. Symbols: dots = Perna 
perna; squares = Mytilus galloprovincialis. Connecting lines: continuous = low-shore; dashed = mid-shore; 
dotted = high-shore.
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place during aerial exposure27–30. Although still imperfect (see Dynamics in environmental conditions and model 
performance), this approach improved predictions of mussel growth across the shore, and we therefore recom-
mend explicitly incorporating metabolic depression where appropriate, including situations involving aestivation 
or hibernation as well as intertidal DEB models. For intertidal systems, including metabolic depression is espe-
cially critical where species distributions extend higher on the shore due to strong negative biotic interactions on 
the low-shore e.g.54–57.

Accurate estimates of life-history traits are contingent upon the level of detail with which environmental 
drivers are characterized58. In general, our model outputs agreed with expectations (i.e. physiological condition 
was better for lower-shore mussels), indicating that environmental gradients due to tidal variability were ade-
quately captured. However, the fact that the model validations consistently underestimated annual GSI points to 
the possibility of unaccounted sources of error. We now discuss possible sources of error, specifically potential 
inaccuracies associated with the data on tidal height dynamics, body temperature and food, and over-estimates 
of observed reproductive output. We suggest that the latter is likely the main cause for the models’ suboptimal 
performance here.

The performance of these models is tightly dependent on our ability to track periods of aerial exposure, as 
these directly affect the amount and rates of energy ingested/assimilated by mussels, as well as the rate of energy 
allocation to maintenance, growth, and reproduction8,31. Here we determined periods of aerial exposure by com-
bining tidal height predictions and in situ temperature data, a method that has been advocated in the literature, 
as it simplifies data collection and allows the sampling of more sites46,47. Our observation that temperature was 
more variable in air than water suggests that on average, we identified periods of submergence correctly. However, 
because we used tidal height predictions and not observations, the influence of wind or atmospheric pressure on 
wave height and the realized exposure time of individuals could not be estimated. The fact that supposedly sub-
merged body temperatures occasionally reached abnormally high temperatures suggests occasional misidentifi-
cation of the beginning or end of periods of aerial exposure. Indeed, the example data illustrated in Fig. 1 showed 

Figure 6.  Comparison of Dynamic Energy Budget (DEB) model predictions with field observations of  
(A) mean gonadosomatic index (GSI) and (B) shell length. Panels (C,D) provide the percent errors calculated 
based on these predictions and observations across shore levels for each species and site. Dashed lines indicate a 
perfect match. Linear regression fits (±95% CIs) are provided in panels (A,B).
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that for three consecutive days, while body temperature rose with the ebb of the tide, it did not decrease at the 
presumed time of re-submergence. Future applications of the model could consider alternative methods to record 
exposure directly; for example, by coupling temperature and pressure loggers, Mislan, et al.59 were able to trace 
exposure, submergence, and surge periods with great accuracy.

By using species-specific robomussels in this study, we captured body temperature dynamics more accurately 
than via proxies like air temperature44. Although we did not observe obvious differences in body temperature 
between mid-shore Mytilus and Perna, previous studies suggest that shell colour, material properties or the pres-
ence of epibionts can drive variation within and among species, with potentially important physiological and 
ecological consequences60–62.

Chlorophyll-a has long been used as a proxy of food availability for filter feeders, including within a DEB 
framework33. Here we worked with Aqua/MODIS satellite-derived estimates because data are readily available 
and offer an opportunity for models to be employed globally. The caveat is that, while satellite-derived estimates 
have been validated as indicators of coastal phytoplankton and organic material in other regions11,63, no such 
relationship exists for South African shores. Our approach may ignore important sources of variability in the 
quantity and quality of food available to mussels, including the effects of tidal or topographical hydrodynamics, 
local upwelling, or sediment loads64–66. Either conducting the necessary validations for satellite data, or better, 
measuring food availability in situ would certainly improve the application of DEB models across the shore.

Figure 7.  Mean absolute percent errors (MAPE) of model predictions of (A) gonasomatic index and (B) shell 
length performed either considering metabolic depression during aerial exposure (points) or not (crosses). 
Colours represent sites: blue = Brenton-on-sea; black = Plettenberg Bay; red = Keurboomstrand.
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The environmental variables tested contributed to the overall model skill, and our validation revealed that 
reproductive output was the only trait that was poorly predicted. Given that all shore levels and both species were 
affected by this problem, it is unlikely that it can be resolved by improving environmental data or by tweaking the 
model parameters. A more plausible explanation is that our empirical observations may have been misleading. 
In the study region, mussel GSI can cycle irregularly over the year, and often spawning is not complete42. Because 
the ecophysiological mechanisms behind this reproductive strategy are not fully understood42, we did not incor-
porate them in this model. For simplicity, we assumed that mussels would release all their gametes once a year, 
which could have led to overestimates of the calculated annual GSI. This is an area that deserves further attention, 
especially if we are to use these models to predict population level dynamics.

With ongoing technological developments in sensor and logging devices, we can track environmental con-
ditions with increasing precision and across a broad range of spatial/temporal scales2,67. As a result, mechanistic 
models potentially form excellent tools for predicting the responses of organisms to different environmental 
conditions. Because conditions are normally in a state of constant flux, however, these models need to incorporate 
natural environmental variability. Our results show that DEB models are capable of incorporating such variability 
and making good predictions for growth across a particularly steep ecotone. The underestimation of reproductive 
output by our models highlights the importance of fine features of biology, which can readily be incorporated, 
and potentially the importance of variability in the abiotic conditions experienced at the individual level2. For 
example, experimental modification of in situ flow dynamics at centimetre scales has been shown to affect mussel 
growth rates64.

Intertidal habitats are amongst the most productive and diverse ecosystems on Earth, but they are also among 
the most environmentally variable. The demonstrated ability of our models to incorporate this variability into 
accurate predictions of species traits illustrates the effectiveness of the mechanistic approach of DEB to predicting 
responses under dynamic conditions. Such models can also help predict the responses of organisms to expected 
climate change scenarios, under which both air and sea surface temperatures are expected to vary4,68.

Data Accessibility
All data are available in the manuscript and supplementary material.
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