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Abstract

Feedback is essential for many kinds of learning, but the cognitive processes involved in

learning from feedback are unclear. Models of category learning incorporate selective atten-

tion to stimulus features while generating a response, but during the feedback phase of an

experiment, it is assumed that participants receive complete information about stimulus fea-

tures as well as the correct category. The present work looks at eye tracking data from six

category learning datasets covering a variety of category complexities and types. We find

that selective attention to task-relevant information is pervasive throughout feedback pro-

cessing, suggesting a role for selective attention in memory encoding of category exemplars.

We also find that error trials elicit additional stimulus processing during the feedback phase.

Finally, our data reveal that participants increasingly skip the processing of feedback alto-

gether. At the broadest level, these three findings reveal that selective attention is ubiquitous

throughout the entire category learning task, functioning to emphasize the importance of cer-

tain stimulus features, the helpfulness of extra stimulus encoding during times of uncertainty,

and the superfluousness of feedback once one has learned the task. We discuss the implica-

tions of our findings for modelling efforts in category learning from the perspective of

researchers trying to capture the full dynamic interaction of selective attention and learning,

as well as for researchers focused on other issues, such as category representation, whose

work only requires simplifications that do a reasonable job of capturing learning.

Introduction

Research into the cognitive processes that enable a human to classify objects into categories

has a long history within psychology (e.g., [1]). Work in this field has produced a variety of

computational models that describe how mental representations of various kinds (e.g., proto-

types [2–4], stimulus exemplars (e.g., [5, 6]), or stimulus clusters [7]) can be used to predict

how someone might classify a particular stimulus. Early models were aimed at capturing

asymptotic performance, and thus might be called categorization models. Later models

emphasized understanding and predicting the entire learning process. These category learning

models use learning algorithms, such as backpropagation, to adjust connections between rep-

resentations of stimuli or stimulus features and categories [8], and also to weigh (or attend to)

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0259517 December 16, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dolguikh K, Tracey T, Blair MR (2021)

The ubiquity of selective attention in the processing

of feedback during category learning. PLoS ONE

16(12): e0259517. https://doi.org/10.1371/journal.

pone.0259517

Editor: Evan James Livesey, University of Sydney,

AUSTRALIA

Received: March 31, 2021

Accepted: October 20, 2021

Published: December 16, 2021

Copyright: © 2021 Dolguikh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All Data used in the

analyses, and some of the materials (e.g., stimulus

images) will be made available at the Summit

repository hosted by Simon Fraser University upon

publication. Data for the response phase of the

published experiments are currently available at

http://summit.sfu.ca/item/12716 (Dataset 1), http://

summit.sfu.ca/item/12715 (Dataset 2), http://

summit.sfu.ca/item/12719 (Datasets 3 and 4),

http://summit.sfu.ca/item/11827 (Dataset 5), http://

summit.sfu.ca/item/12718 (Dataset 6). These

experiments were not preregistered. An additional

https://orcid.org/0000-0001-7847-6218
https://orcid.org/0000-0001-5291-7871
https://doi.org/10.1371/journal.pone.0259517
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259517&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259517&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259517&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259517&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259517&domain=pdf&date_stamp=2021-12-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259517&domain=pdf&date_stamp=2021-12-16
https://doi.org/10.1371/journal.pone.0259517
https://doi.org/10.1371/journal.pone.0259517
http://creativecommons.org/licenses/by/4.0/
http://summit.sfu.ca/item/12716
http://summit.sfu.ca/item/12715
http://summit.sfu.ca/item/12715
http://summit.sfu.ca/item/12719
http://summit.sfu.ca/item/12719
http://summit.sfu.ca/item/11827
http://summit.sfu.ca/item/12718
http://summit.sfu.ca/item/12718


various stimulus dimensions [9]. In all these models, knowing the correct category is crucial to

the learned association of features to categories, regardless of differences in how categories

might be represented. Thus, these models instantiate a simple and uncontroversial idea: feed-

back is crucial to learning.

Research in category learning tends to use a prototypical experimental procedure. In the

response phase, a stimulus is presented for classification into one of several possible categories.

The stimulus has features that vary along different dimensions and from which the correct cat-

egory can be derived. For example, stimuli might be cartoon bugs that could have one of two

different types of antennae, body shape, feet, and eyes; category A bugs might tend to have

round bodies and long antennae, and category B the opposite. After the participant inspects

the various features and responds with a category decision, the feedback phase begins. The cor-

rect category is indicated (appearing in one of the corners of the screen, for example) and the

stimulus is re-presented. After that, the next trial begins with a new stimulus. An experiment

might have a few hundred trials, during which it is hoped that most participants will learn how

to classify all the stimuli correctly. It is common for both the response phase and the feedback

phase to be self-paced; that is, the participants themselves decide when they are ready to select

a category, and for how long to view feedback before moving on the next trial.

It seems clear that specific feedback, in the form of the correct category assignment for that

stimulus, enhances our ability to learn. How this works in category learning research is still

unknown, and because the primary topic of interest in the field is category representation,

there is little research into the mechanics of feedback processing. For the response phase of the

experiment, wherein participants are deciding what category to choose for each stimulus,

work has been done to understand reaction times [10] and how attention is allocated to stimu-

lus features [11–13]. However, few studies even report analogous feedback phase data, much

less taking them as a target of investigation (for an exception, see [14]).

Despite the general lack of attention-based research focused on the feedback phase, there is

evidence from several sources to suggest that learning is influenced by the manner in which

participants experience feedback, and thus some reason to think that theories of category

learning can be improved by being extended to account for feedback processing. Several studies

suggest that allowing participants more time between trials improves learning. Bourne and

Bunderson manipulated the inter-trial interval (ITI)—the time between the end of one trial and

the beginning of the next—and found effects on learning, with the optimal ITI 9 seconds long

[15]. In a later experiment, Bourne and colleagues found that maintaining the stimulus

onscreen while presenting feedback resulted in better learning than removing the stimulus [16].

More recently, Watson and Blair used eye tracking to investigate participants’ gaze while

processing feedback [17]. In two experiments, participants learned complex categories with

self-paced feedback. They found that participants spent more of their time looking at the stim-

ulus features than the feedback signal itself. Further, they found that the time spent looking at

stimulus features during feedback on incorrect trials was greater for those participants who

were able to meet the learning criterion than for those who were not.

In addition to evidence showing that participants’ attention to a re-presented stimulus is

important, recent work has shown that feedback processing might be different for different kinds

of categories. Worthy and colleagues investigated effects of stimulus offset (when the stimulus dis-

appears) and delayed feedback onset in category learning [18]. They compared a rule-based cate-

gorization structure to an information integration one. In rule-based category structures, simple,

verbalizable rules (based on some particular feature of the stimulus, such as size) distinguish the

categories. In an information-integration structure, there are no such simple rules because the

information from multiple dimensions must be integrated together. They found that if the stimu-

lus was not shown during feedback, performance was impacted for information-integration
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structures, but not for rule-based structures. Experiments from Maddox and colleagues as well as

Smith and colleagues found concurring results; information-integration structures are impaired

from delayed feedback compared to rule-based structures [19, 20].

The learning implications from the absence of feedback were found to also change based

on category structure. By removing the feedback element from a category learning experiment,

Ashby and colleagues found that subjects tended to default to unidimensional strategies,

regardless of whether they were assigned structures that required processing of two dimen-

sions [21]. These strategies eventually transitioned into a more optimal unidimensional strat-

egy for basic rule-based structures, but were not effective in discriminating between categories

in a information-integration structure.

In a study of the neurophysiological basis of the interactions between learning and attention

that used a paradigm very similar to category learning, Leong and colleagues found that a

model of participant performance was improved by taking into account participants’ process-

ing of feedback [22]. They reported that eye movements during the feedback phase and during

the response phase were independently predictive of task performance, and that feedback-

related eye movements provided additional useful information over and above the response

eye movements. They also found that as learning progressed, the gaze targets between response

and feedback converged, which is especially interesting because attention during response and

feedback might easily be imagined to be complementary. For example if the participant looked

primarily at Features 1 and 2 pre-response, one can image that participants might spend extra

time looking at Feature 3 during feedback, either as a reaction to an error or even just to be

sure there was not valuable information. Given that some researchers argue that attention is

used as a kind of error correction mechanism (e.g., [8]) this is a plausible prediction. The find-

ings of Leong and colleagues thus point to a heightened theoretical importance of eye move-

ments during feedback early in learning (cf. [17]).

The Leong and colleagues paper [22] also highlights the interest in feedback from work out-

side the field of category learning. While categorization researchers might justifiably be inter-

ested in attention during feedback primarily, or even exclusively, because of its eventual

influence on categorization decisions, there are researchers for whom the integration of atten-

tion and learning is the primary target of investigation. Researchers like Gottlieb, who advo-

cates for an ‘active sensing’ framework, argue that attention and learning should be studied

together [23]. To such researchers, and such modelling efforts, a dataset of eye movements

during learning is a valuable resource, and the very aim of their explanatory efforts.

Work on a model integrating learning, attention, and gaze in our lab provides an example

of a more integrated approach. LAG-1 is a dynamic neural field theory model of three impor-

tant systems as they apply to category learning: a category learning system, a spatial attention

system, and a saccade timing system, each comprising a set of smaller processing units [24].

The model calculates their mutual influence continuously over time. Based on the associations

between features and categories—learned through co-activation of features and categories dur-

ing the feedback phase—information gain is calculated and drives feature priority and guides

targeting of saccades to relevant features. It produces a continuous stream of fixations and

responses like a human would. Because the model hypothesizes core cognitive processes and

implements them continuously in time, the model is not mute on how feedback will be pro-

cessed, even though it was not originally designed with feedback, or the present results, in

mind. The model predicts that fixations will be guided by information gain, and thus increas-

ingly favour relevant features. It also predicts that the time spent on feedback will decrease

with learning as the model more rapidly reaches the threshold due to stronger category-feature

associations. In addition to making relatively straightforward predictions about feedback,

LAG-1 can, because it is a somewhat generic looker/learner, be applied to other visual
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cognition tasks, such as visual search. The emphasis is not on category learning in particular,

but in predicting how learning and attention interact in real time. A dataset for eye-move-

ments during feedback can directly confirm, or not, the predictions of such a model.

Overall, then, evidence advocates for more study of participants’ allocation of attention

while they are given feedback. As most category learning studies do not report data regarding

the feedback phase, there is a lack of basic data describing how participants process feedback

when learning categories of various types, data which may be of interest to category learning

researchers and will be of clear interest for researchers studying the interaction between atten-

tion and learning. In the present work, we analyze the feedback phase of six prior category

learning studies from our lab. These studies were all originally conducted to answer research

questions unrelated to feedback but, because we recorded participants’ gaze data throughout

the feedback phase of each trial, they can help us understand feedback processing in more

detail while also allowing us to test the generality of prior findings.

Our analysis of the data answers seven questions. First, how long do people spend processing

feedback, and how does it change with learning? Second, what do people look at during the feed-

back phase? Previous research suggests that people spend more time investigating stimulus fea-

tures than the correct category label [17]; does this generalize to other types of categories? How is

attention distributed to stimulus features that are relevant for categorization compared to those

that are irrelevant? Third, are there regularities in the order that features are fixated? Fourth, are

response phase and feedback phase attentional allocation similar or different, and how do they

change with learning? Leong and colleagues found that attention during the response and feed-

back phases converged [22]—does this replicate and generalize to different kinds of categories?

Fifth, do the characteristics of individual gaze fixations change between response and feedback?

There is research to suggest that fixation durations decrease slightly with learning [25], and other

research to suggest this occurs particularly for incorrect trials [26]. The LAG-1 model generally

predicts falling fixation durations because learning will facilitate the rapid reaching of the thresh-

old that triggers a new saccade. While there may be an increased chance that participants will

skip feedback, according to LAG-1, there should be no reason for fixations from the response

phase to be longer than fixations from the feedback phase. The answer to this question has theo-

retical relevance for this model, at least. Sixth, is feedback processing different for error trials and

correct trials? Seventh, do participants ever ignore feedback entirely? The answers to these ques-

tions, across a variety of category types, will provide a good overview of how participants process

feedback that will be of use for extending computational theories of attention and learning gener-

ally and of category learning; These data will also be useful for researchers constructing experi-

ments using the category learning paradigm, and, more broadly, for researchers interested in

feedback and learning from fields such as memory or education.

Methods

In this paper we investigate important regularities of feedback processing. To do this, we look

at the feedback phases of prior category learning experiments from our lab. Where we are

using a dataset with results previously published in a journal article, we say so, enabling the

interested reader to fit together the two phases (response phase and feedback phase) of the

experiments. None of the feedback processing data presented here have been published previ-

ously. Because we are in part interested in how the regularities of feedback processing change

with different categories and experimental procedures, we group not by experiment, but by

measure, showing all the datasets together for comparison. The following is an overview of the

datasets used in our analyses. For all datasets, the research was approved by the Simon Fraser

University Research Ethics Board. Informed, written consent was obtained for all participants.
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Datasets

Dataset 1: Relevance differences across categories, 4 categories (RelDif-4cat). Dataset 1

was originally from a category learning experiment that investigated the relationship between

working memory span and the allocation of attention in category learning. Participants in this

experiment were taught categories that used the category-specific feature relevance category

structure first used by Blair and colleagues [11]. Some of the data from the category response

portion of this experiment were previously reported by McColeman and colleagues as Dataset

8 [25], but the data reported here regarding the processing of feedback have not been previ-

ously published. Overall, this category structure was difficult for participants to learn, and

most participants displayed a pattern of attention that was different for different categories.

Participants. Participants were 220 undergraduates at Simon Fraser University recruited

from introductory psychology classes. All had normal or corrected-to-normal vision. Of these,

16 were excluded from analysis for random responding. This left 204 participants included in

analysis.

Stimuli and category structure. Stimuli consisted of fictitious microorganisms with three

binary-valued organelles, for a total of eight distinct stimuli to classify into four categories. The

full stimulus subtended 16.3˚ of visual angle. Each feature was located centrally in each of the

microorganism’s “arms”. Each feature subtended 1.3˚ and they were separated by 10.6˚ of

visual angle. On every trial, exactly two of the organelles were informative as to category mem-

bership ("relevant" features), and one was not ("irrelevant" feature). Which two were relevant

varied by trial—the value of one feature determined which of the other two was relevant. This

category structure is illustrated in Fig 1A.

Procedure. Each trial began with a fixation cross. Gaze data from this portion were used to

clean gaze information prior to analysis. The stimulus would then appear after participants

clicked with a mouse.

Fig 1. Category structures for the six experiments in order from L to R. Datasets 1 and 2 used the leftmost category structure (A). Datasets 3–6 used

the remaining category structures (B-E). Features outlined in grey were irrelevant for categorization. Note that in Dataset 1, the two A categories have

different relevant features than the two B categories. In Dataset 2, the irrelevant features were consistent for all categories. For Datasets 3 and 4, there

was an additional manipulation of instructions to emphasize speed or accuracy. For Datasets 5 and 6, the rule-based categories are shown on top and

the information-integration categories are shown on the bottom. Features were broadly similar to those used in Experiment 2, but were manipulated in

Photoshop to have continuous values (size, curvature and rotation). There was an additional feature dimension not shown (thus, three in total) that was

irrelevant for categorization.

https://doi.org/10.1371/journal.pone.0259517.g001
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Participants made a category selection using the mouse, at which point the category buttons

changed to provide feedback—if an incorrect response was made, the participant’s choice

turned red and the correct answer turned green; otherwise, the response simply turned green.

Participants could look at this feedback screen as long as they wanted (self-paced feedback)

and moved on to the next trial by clicking on the mouse. See Fig 2 for an illustration of the

phases of the trial.

The experiment consisted of a maximum of 272 trials, but could be completed early by

those who learned. Participants reaching the learning criterion of 24 consecutive correct trials

prior to trial #200 were only required to complete 72 trials after learning.

A Tobii X120 eye tracker sampling at 120 Hz was used to collect all gaze information. All

subjects were seated 60 cm from the eye tracker.

Dataset 2: Base rate manipulation, relevance differences, 4 categories (5:1&1:1-4cat).

Dataset 2 was from a category learning experiment that investigated probability gain as a factor

driving information access. The category structure was the same as in Dataset 1, but with an

additional manipulation of the category base rates such that two categories were shown 5

times as often as the other two. Measures relevant to that manipulation were published in the

second experiment of a paper by Meier and Blair [27]. The feedback processing data reported

here were not investigated previously. This dataset is especially good for comparison with

Dataset 1 as they share a category structure.

Participants. Participants were 116 undergraduates at Simon Fraser University recruited

from introductory psychology classes. All had normal or corrected-to-normal vision. Of these,

23 were excluded from analysis for problems with gaze quality, and 6 more were excluded for

responding randomly. This left a total of 87 participants included in analysis: 47 in the unequal

frequency (5:1) condition, and 40 in the equal frequency (1:1) condition.

Category structure and base rate manipulation. Stimuli were similar to Dataset 1 and the cat-

egory structure is shown in Fig 1A. Participants in the 1:1 condition saw all categories at an

equal probability, while those in the 5:1 condition had two categories appear 5 times more

often than the other two. For example, in a 24-trial block, participants would see ten A1 and

A2 stimuli each, and two B1 and B2 stimuli each.

Procedure. Participants’ fixations were recorded with an eye tracker and responses were col-

lected with a Logitech gamepad. Trials began with a centralized fixation cross. Participants

pressed a button on the gamepad to reveal a stimulus. Participants made a category selection

using the gamepad, at which point feedback was displayed as a 500 ms mask of green (correct)

or red (incorrect). The stimulus was then re-presented along with the participants’ response

and correct answer centrally displayed as shown in Fig 3.

Dataset 3: Speed accuracy, 4 category, with fixed feature relevance (Spd&Acc-4cat).

Dataset 3 was from a category learning experiment that investigated how instructions to

Fig 2. Phases of a trial. From left to right: fixation cross, response phase, feedback phase. The right panel shows the feedback button style used in all

Datasets except Dataset 2 (5:1&1:1-4cat).

https://doi.org/10.1371/journal.pone.0259517.g002
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emphasize speed or accuracy influence various attentional measures during category learning.

The response phase data were reported by McColeman and colleagues as Dataset 2 [25], but

the feedback phase data are analyzed here for the first time. This experiment used a less com-

plex category structure wherein one of the three feature dimensions was always completely

irrelevant. The feedback phase for this experiment was like Dataset 1 (RelDif-4cat).

Participants. Participants were 69 Simon Fraser University undergraduate students. 25 par-

ticipants with bad gaze quality were dropped from analysis, leaving a total of 44: 20 in the

speed-emphasis condition, and 24 in the accuracy-emphasis condition.

Stimuli and category structure. Stimuli were similar to previous datasets. The category struc-

ture was simpler than in the first two datasets, with the same two features relevant to every cat-

egory, and the third feature consistently irrelevant. This is shown in Fig 1B. Apparatus,

stimulus location, and feature visual angle remained the same.

Procedure. The experiment was grouped into speed-emphasis and accuracy-emphasis con-

ditions, in which participants were instructed to prioritize either speed or accuracy in their

responses. Each trial began with a fixation cross followed by presentation of the stimulus. Par-

ticipants then chose a category using a Logitech gamepad. Feedback was presented similar to

what is shown in Fig 3. Participants completed 300 trials in blocks of 20, with each block sepa-

rated by a screen indicating their average response time and response accuracy.

Dataset 4: 2 category, with fixed feature relevance—Speed accuracy 1 relevant feature

(Spd&Acc-2cat). The experiment that produced Dataset 4 was nearly identical to that pro-

ducing Dataset 3 (Spd&Acc-4cat). The only difference was this one had only two categories, so

only one of the three feature dimensions was relevant, making for an easy-to-learn category

structure. The response phase data were analyzed and presented by McColeman and col-

leagues [25] (Dataset 7), and the feedback data are presented for the first time here.

Participants. 69 undergraduate students from Simon Fraser University were recruited to

participate in the experiment. 15 participants were excluded for bad gaze data, and one addi-

tional participant was excluded for random responding, leaving a total of 53 participants in the

analysis: 29 in the speed-emphasis condition, and 24 in the accuracy-emphasis condition.

Stimuli and category structure. A two-category structure was used where only one feature

determined stimulus category, as shown in Fig 1C. Stimuli were identical to the other speed &

accuracy dataset (#3).

Fig 3. Dataset 2 (5:1&1:1-4cat), a gamepad was used to record inputs, and no response boxes were shown. For

Feedback, which indicated the participants response and the correct response, was displayed in the centre of the screen

as shown.

https://doi.org/10.1371/journal.pone.0259517.g003
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Procedure. Participants were first exposed to the fixation cross and stimulus, then made a

selection using a Logitech gamepad. Feedback was given by re-presenting the stimulus and

highlighting the correct response in green, and if the participant chose incorrectly, their incor-

rect choice was highlighted in red. Participants completed 300 trials in blocks of 20.

Dataset 5: 4 category rule-based and information-integration categories (RB&II-

4cat). Dataset 5 used stimuli with continuous-valued features rather that binary-valued fea-

tures. Rule-based (RB) and information-integration (II) category structures are common (e.g.,

[28]), and are interesting for our purposes because there is some evidence from Smith et al.

that there are feedback-related differences between RB and II categories [20].

Analysis of the response phase data was previously published [25], but the feedback process-

ing data are new.

Participants. Participants were 78 Simon Fraser University undergraduates. 3 were unable

to complete the experiment, 10 experienced equipment failure, 9 had poor gaze data, and 8

responded randomly. The remaining 48 participants were included for analysis: 25 in the

information-integration condition, and 23 in the rule-based condition.

Stimuli and category structure. The experiment used a continuous rule-based or informa-

tion-integration category structure with four categories as shown in Fig 1D. Stimulus features

subtended 3˚ of visual angle and were spaced from each other by 10.6˚. Though RB/II studies

often use multi-dimensional stimulus features, the stimuli in this experiment had features sep-

arated into spatially distinct locations in order to facilitate eye tracking analysis of the data.

Like the previously described stimuli, stimuli for this experiment had three distinct organelle-

like features. However, the stimulus feature properties changed on a continuous scale to create

the distribution of stimuli for a rule-based or information-integration category structure.

These feature properties were rotation, size, and curvature.

Procedure. Subjects were tasked with categorizing 200 stimuli. Distance from stimulus to

participant was measured to be approximately 70 cm. Each trial began with the subject using a

mouse to click on a fixation cross to show the stimulus. Subjects would then click again to

move into the categorization phase, at which point only the category labels were visible. Identi-

cal to previous experiments, once a category was chosen, the resulting feedback was shown;

the stimulus was re-presented, and the correct category was highlighted in green, while an

incorrect answer was highlighted in red.

Dataset 6: 2 category rule-based and information-integration categories (RB&II-

2cat). Our final dataset is similar to Dataset 5 (RB&II-4cat) except there were two categories

instead of four.

Participants. 71 Simon Fraser University undergraduate students were recruited for this

experiment. Data for 2 participants were excluded for random responding; the remaining 69

were included for analysis: 37 in the information-integration condition and 32 in the rule-

based condition.

Stimuli and category structure. All stimulus features were identical to those used in Dataset

5. The category structure used is shown in Fig 1E.

Procedure. Experiment procedure was identical to Dataset 5 except that subjects categorized

stimuli into two categories rather than four.

Results

The primary aim of our analysis is to provide an accurate description of participant behaviour.

More detailed research will be required to make causal claims about specific mechanisms, so

we forgo complex followup analyses and only conduct the statistical analyses aimed at support-

ing the common sense reading of presented data. Each dataset was modelled separately. Many,
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but not all of the datasets include an experimental manipulation—for example Dataset 2

includes category frequency manipulation, and Dataset 3 includes a speed/accuracy manipula-

tion. In all such cases, we include an effect for condition in the analysis. For all analyses, we

used linear mixed effects models to test for main effects of relevant variables. The p-values for

significance were determined by likelihood ratio tests of the full model with the effect in ques-

tion present against the model with the effect absent. We discuss the significance of effects but

do not lean on obtained model coefficient values for our conclusions. As such, we report these

values in the Appendix rather than in the main text. All figures were made using the Gramm

plotting library for MATLAB [29]. In all figures with separated panels, datasets 1–6 are pre-

sented with 1, 3, and 5 on the top row, and 2, 4, and 6 on the bottom, in that order.

Data were analyzed and visualized in bins of 24 trials each, with each bin representing the

mean value of the trials it represents. This serves to make the graphs more legible and the data

more normally distributed. In cases where a factor was excluded from the final model, graphs

show results collapsed across that factor for the sake of clarity. Lastly, in the RelDif-4cat experi-

ment (Dataset 1), participants were permitted to end the experiment early if they successfully

met the learning criterion of 24 consecutive correct trials. As such, the final blocks have inordi-

nately small numbers of participants, so we chose to omit the final two trial bins of data for

this dataset to keep this variance consistent, leaving 10 trial bins for analysis.

Question 1: How long do participants spend on feedback?

The experiments we analyzed all had self-paced feedback phases, so participants themselves

chose how much time to spend reviewing the correct answer and the stimulus. The plots of

response time for the response phase and the feedback phase for all datasets are shown in Fig 4.

Participants showed a general decrease in time spent on both phases of the experiment as the

experiment progressed. The maximum time spent was in the first block and there were fairly

steep declines after that. For several of the datasets, participants spent more time on their

responses than on the feedback, but this was not universally true.

To confirm these observations, response time was modelled as a function of trial phase

(response or feedback), with experiment condition (included for any dataset with an experi-

mental manipulation) and trial bin as fixed effects, and a random effect for intercept and trial

grouped by subject. This was done separately for each dataset. We found that trial bin was a

significant predictor of response time duration in all datasets (for Datasets 1–6, χ2(1) = 196.32;

51.11; 114.58; 57.23; 81.08; 66.10. All p<.001). The effects of trial phase varied per dataset;

models from Datasets 1 (RelDif-4cat), 3 (Spd&Acc-4cat), 4 (Spd&Acc-2cat), and 5 (RB&II-

4cat) estimated that feedback response times were shorter (χ2(1) = 384.31; 148.3; 5.85; 334.11,

and p<.001; <.001; = .016; <.001, respectively), while the model from Dataset 2 (5:1&1:1-

4cat) indicated the reverse (χ2 = 8.26; p = .004). Finally, Datasets 2 (5:1&1:1-4cat), 3

(Spd&Acc-4cat), and 6 (RB&II-2cat) had significant effects for condition (χ2(1) = 13.51; 10.51;

18.21, and p<.001; = .001; <.001, respectively) with the 1:1, accuracy and II conditions having

the longer response times.

Question 2: What do participants look at during the feedback phase?

Research on stimulus re-presentation suggests that participants can benefit from additional

viewing of the stimulus following their response (e.g., [17]). We focused on three areas of

interest: the relevant features of the re-presented stimulus, the irrelevant features of that stimu-

lus, and the corrective feedback itself, which we call the feedback button. We disregarded fixa-

tions to other areas of the display. We also restricted the analysis to trials prior to the learning

criterion of 24 consecutive correct responses. Fig 5 shows the total mean fixation duration per
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Fig 4. Response time during stimulus presentation and during feedback by trial bin. Each bin contains 24 trials and error shading represents SEM.

In top-to-bottom order, the left-hand column contains Datasets 1 and 2, the middle column contains Datasets 3 and 4, and the right-hand column

contains Datasets 5 and 6.

https://doi.org/10.1371/journal.pone.0259517.g004

Fig 5. Mean time (per trial) spent fixating each area of interest (feedback button, irrelevant stimulus feature, relevant stimulus feature) for

trials prior to reaching learning criterion. Conditions that were not significantly different were collapsed. Light bars represent the second

condition (i.e., Accuracy, II). Error bars represent SEM. In top-to-bottom order, the left-hand column contains Datasets 1 and 2, the middle column

contains Datasets 3 and 4, and the right-hand column contains Datasets 5 and 6.

https://doi.org/10.1371/journal.pone.0259517.g005
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trial for the three areas of interest (AOI; relevant, irrelevant, button) for each dataset. Where

condition was not a statistically significant factor, we collapsed those data for the purposes of

plotting.

We find two features of these plots especially salient. First, participants spent significant

time fixating stimulus features. In all datasets, the actual corrective feedback (i.e., button) was

fixated less than half of the total time spent looking at these areas of interest. Given that the

experiment phases were self-paced, and in our experience participants tend to be eager to fin-

ish, this represents a significant investment in time over the course of the experiment. These

data echo findings that show that re-presenting the stimulus leads to improved performance in

some cases [16]. Second, we see that in processing feedback, participants consistently empha-

sized relevant stimulus features over irrelevant ones. This was true even in the 2-category data-

sets, which had more irrelevant features than relevant ones. This suggests a role for selective

attention even during feedback processing.

The importance of AOI and experimental condition on mean total fixation duration by

trial was modelled using experiment condition (for datasets with experimental manipulations)

and AOI as fixed effects with a random intercept for each subject. Experimental condition

only proved significant for Datasets 4 (Spd&Acc-2cat) and 6 (RB&II-2cat) (χ2(1) = 6.23; 28.02

and p = .013; <.001, respectively). Area of interest, in contrast, was a significant contributor to

the model in all datasets (χ2(1) = 272.09; 59.00; 107.14; 89.91; 111.09; 188.09. All p<.001).

Question 3: Are there regularities in the order in which information is

attended?

Our third analysis question investigates the order in which information was fixated during

feedback. We again restricted analysis to data prior to meeting the learning criterion of 24 con-

secutive correct trials. In Fig 6 we show the probability of fixating each of the three areas of

interest (relevant, irrelevant, button) for the first three fixations of each trial. Because not all

trials have at least three fixations, the probabilities on fixations 2 and 3 are generally lower

than on fixation 1, and the probabilities on each fixation do not always sum to 1. We note that

experiments in which participants received feedback through the response buttons (RelDif-

4cat (Dataset 1) and the two RB&II experiments (Datasets 5 and 6)) show high first fixations

to buttons. The design of these particular experiments required participants to click on an

onscreen feedback button with the mouse in order to begin the feedback phase of the trial,

whereas the other experiments required pressing a button on a Logitech gamepad. The high

proportion of first fixations to feedback was likely caused by participants keeping their gaze on

the button after clicking on it directly. It also seems that relevant stimulus features were more

likely to be fixated than irrelevant ones, echoing a similar pattern from above. There were sig-

nificant differences in the conditions of Datasets 4 and 6 (Spd&Acc-2cat and RB&II-2cat, the

two experiments with only two categories) with the accuracy and RB conditions more likely to

be fixated. This also echoes the finding from Question 2 above; as total fixation duration and

probability of fixating are likely correlated measures, this is understandable. We note that fixa-

tion probabilities for all areas of interest go down towards the end of the experiment. This hap-

pens because participants make less fixations during feedback as they learn; the later in the

experiment they get, the less likely there is a second or third feedback fixation at all. We find

no other theoretically interesting effects in the plots, and no evidence of interesting participant

strategies.

We modelled the probability of fixation as a function of location (relevant feature, irrelevant

feature, feedback button), fixation order (first, second, or third of the current trial), and experi-

mental condition (for datasets with experimental manipulations), with random intercepts for
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each subject. For all datasets, fixation order proved a significant predictor of fixation probabil-

ity, meaning that there were significant differences between the first, second, and third feed-

back-phase fixations of each trial. For Datasets 1–6, χ2(1) = 305.82; 220.78; 152.5; 50.95;

288.67; 190.92, respectively. All p<.001. Likewise, AOI was also a significant predictor in all

datasets, χ2(1) = 2210.9; 354.13; 223.45; 186.14; 968.49; 441.58. All p<.001. Condition was sig-

nificant only for Datasets 4 (Spd&Acc-2cat) and 6 (RB&II-2cat), χ2(1) = 5.90; 13.92, respec-

tively; p = .015,<.001.

Question 4: Do participants use a different allocation of attention during

the response and feedback phases?

Our fourth research question asks how the allocation of attention during the response phase

compares to the allocation during the feedback phase. One possibility is that participants use

the feedback phase to look at any information they did not look at during the response phase,

leading to complementary allocations of attention. Another possibility is that participants

employ increasingly consistent and relevance-focused attentional allocations, leading to con-

verging allocations of attention between response and feedback phases. There is some support

for this second idea [22].

To determine the similarity between response and feedback-phase attention allocation, we

represented attention to the stimulus in each phase as a point in 3D space (one dimension for

each stimulus feature—see Fig 1), with attention defined as the total amount of time spent fix-

ating that feature. The final value was calculated as the Euclidean distance between the points

Fig 6. Probability of fixating each area of interest (feedback button, relevant stimulus feature, irrelevant stimulus feature) on each of the first

three fixations of a trial. This is conditioned over all trials, whether or not they had three fixations. Conditions that were not significantly different

were collapsed. Dashed lines represent the second condition (i.e., Accuracy, II). Shaded area represents SEM. In top-to-bottom order, the left-hand

column contains Datasets 1 and 2, the middle column contains Datasets 3 and 4, and the right-hand column contains Datasets 5 and 6.

https://doi.org/10.1371/journal.pone.0259517.g006
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in the response phase and feedback phase of the same trial. For example, if a participant looked

at Feature 1 for 1000ms, Feature 2 for 1000ms and Feature 3 for 0ms during the response

phase, but Feature 1 for 0ms, Feature 2 for 0ms and Feature 3 for 1000ms, then the euclidian

difference would be 1732 ms. On the other hand, a value of 0 would mean attention to stimulus

features was identical between the response and feedback phases. The obtained differences in

attentional allocation are shown in Fig 7.

We modelled attentional distance by experimental condition (for datasets with experimen-

tal manipulations) and trial bin, with random slopes for trial bin grouped by subject. Trial bin

was a significant predictor for all datasets: χ2(1) = 113.06; 79.00; 61.26; 27.48; 68.99; 65.95, with

all effects having p<.001. Experimental condition was a significant predictor in Datasets 2

(5:1&1:1-4cat), 3 (Spd&Acc-4cat), and 6 (RB&II-2cat), χ2(1) = 15.47; 6.93; 4.53 respectively.

Effects had p<.001; = .008; = .033, respectively.

To account for the possibility that the convergence shown might be the result of decreasing

overall time spent during both phases of the experiment, we performed two additional analyses

to ensure we could present a clear picture of the participants’ behaviours. First, we investigated

the possibility that participants might trade off their time in the response phase with time in

the feedback phase such that some participants spend the bulk of their time during the

response phase, while others spend theirs during feedback. Total time spent on feedback was

subtracted from total time spent pre-response on a trial by trial basis. We examined the distri-

butions of these difference values by experiment, and found they were unimodal and appeared

normal. They showed the incidence of participants taking a short time during response and

long time during feedback (indicating a trade-off strategy) was exceedingly rare.

Our second analysis sought to confirm that participants looked at the same information

during response and feedback, and rule out decreasing durations as the primary cause of con-

vergence. Previous results show that participants learn to focus their attention on relevant

Fig 7. Differences in the allocation of attention between the response and feedback phase plotted over trial bins by dataset and condition. Shaded

areas represent the SEM. In top-to-bottom order, the left-hand column contains Datasets 1 and 2, the middle column contains Datasets 3 and 4, and the

right-hand column contains Datasets 5 and 6.

https://doi.org/10.1371/journal.pone.0259517.g007
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information, gradually reducing the time spend on irrelevant information as the experiment

progresses [25]. If participants do the same during feedback, we can be sure that the conver-

gence we find is not only in decreased time overall, but in a similar allocation of attention to

relevant stimulus features. We calculated the proportion of time spent on irrelevant stimulus

features during the feedback phase and pre-response, and took the difference on a trial by trial

basis. This should remove any effect of decreases in total time from our results. As shown in

Fig 8, we found that in most cases the difference in proportion time spent on irrelevant fea-

tures between the two trial phases decreased. The exceptions were Datasets 1 & 2, in which the

difference increased slightly. These two datasets employ the more complex category structure

where all features are relevant at least some of the time, and so perhaps Leong et al.’s finding of

converging attention [22] only applies to simpler tasks. Statistically, trial bin was a significant

predictor for all datasets except Dataset 4 (Spd&Acc-2cat) (χ2(1) = 27.71; 8.45; 13.73; 43.8;

23.15 for Datasets 1–3, 5, and 6 respectively, with all effects having p<.001 except Dataset 2

where p = .004). Condition was only a significant factor in Dataset 6, where RB and II condi-

tions were different (χ2(1) = 33.01, p<.001).

Question 5: What are the characteristics of individual fixations in the

response and feedback phases?

There is some evidence that the properties of individual gaze fixations during category learn-

ing can vary based on learning [26]. Our fifth analysis question asks if there are any of these

kinds of effects during feedback processing. We restricted our analysis to trials prior to the

learning criterion of 24 consecutive correct responses. Average durations for fixations were

within the 200-400ms range, except for Datasets 3 and 4 which were a bit higher. The effects

on the duration of individual fixations were generally small and somewhat inconsistent, and so

we do not include a figure. We modelled mean fixation duration as a function of trial phase

Fig 8. Differences in the proportion of attention allocated to the irrelevant feature between the response and feedback phase plotted over trial

bins by dataset and condition. Shaded areas represent the SEM. In top-to-bottom order, the left-hand column contains Datasets 1 and 2, the middle

column contains Datasets 3 and 4, and the right-hand column contains Datasets 5 and 6.

https://doi.org/10.1371/journal.pone.0259517.g008
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(response or feedback), with additional fixed effects for area of interest (relevant stimulus fea-

ture, irrelevant stimulus feature, feedback button) and trial bin, and random slopes for trial

bin grouped by subject. Trial bin was a significant predictor in all datasets except Dataset 3

(Spd&Acc-4cat); Datasets 1, 2, 4–6, χ2(1) = 125.08; 57.55; 9.44; 47.56; 57.20 with p<.001

except for Dataset 4 (Spd&Acc-2cat) where p = .002. Fixations generally shrunk as the experi-

ment progressed, except for Dataset 4 (Spd&Acc-2cat), where they lengthened. Trial phase was

a significant predictor in all datasets. Datasets 1–6, χ2(1) = 588.98; 367.78; 8.55; 15.93; 37.43;

61.74. All p<.001, except for Dataset 3 (Spd&Acc-4cat) which had p = .003. In Dataset 2

(5:1&1:1-4cat), feedback phase fixations were longer than response phase fixations. In all other

datasets, response phase fixations were slightly longer. Area of interest was significant across

all datasets, with fixations to relevant stimulus features longer than fixations to feedback but-

tons, and sometimes longer than fixations to irrelevant stimulus features: for Datasets 1–6,

χ2(1) = 345.83; 300.95; 109.15; 56.78; 846.24; 67.54. All p<.001.

Overall, the durations of individual fixations seemed to be influenced by various factors at

play in feedback processing. We saw shorter fixations during feedback and when processing

the feedback signal (as opposed to the stimulus). Fixations also shrank in most cases as the

experiment progressed. We hasten to note that these effects are small, with differences in the

low tens of milliseconds, not hundreds of milliseconds. As such, these findings may be of inter-

est to researchers working on saccadic timings and oculomotor control, but may not rise the

level of important for researchers focused on learning.

Question 6: Do participants inspect feedback differently after they make an

error?

Given the relationship between attention and learning, one could expect that participants

would treat the feedback phase on an error trial differently than they would following a correct

response (e.g., [17]).

Fig 9 shows the difference between total fixation durations per trial on incorrect trials and

correct trials. First, we note that in almost every case, values were positive, indicating that par-

ticipants spent more time on feedback after a mistake. Second, the overall patterns were similar

to Fig 5, indicating that the extra time spent on incorrect trials was just more of the same—

emphasizing the stimulus and relevant features in particular—rather than an altogether differ-

ent approach.

Statistically, we modelled mean total fixation time per trial as a function of area of interest

(relevant, irrelevant, button) and trial accuracy (correct, incorrect), as well as experimental

condition (for datasets with experimental manipulations), with random intercepts for each

subject. We found that including trial accuracy significantly improved model fit for all datasets

(χ2(1) = 404.92; 161.32; 32.67; 19.62; 60.52; 24.61. All p<.001.) We also found that area of

interest significantly improved model performance. Datasets 1–6 (χ2(1) = 497.38; 111.94;

199.35; 149.08; 235.38; 316.80. All p<.001). Only Dataset 4 (Spd&Acc-2cat) and 6 (RB&II-

2cat) showed improvement by including condition: χ2(1) = 5.97; 27.53 with p = .015; <.001,

respectively.

One possibility is that errors are longer simply because they tend to occur earlier in the

experiment, when feedback phases are longer overall. To check that these findings were not

simply the result of there being less error trials as learning increased, we did the same analysis

using only the last 10 trials prior to learning criterion being reached. We found a similar pat-

tern of increased time spent on feedback, and on all areas of interest, on error trials than cor-

rect trials, even when limiting the range of trials included.
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Question 7: What happens when people ignore feedback altogether?

Our seventh and final analysis asks how often people choose to simply skip the feedback alto-

gether. This is a phenomenon currently unaccounted for by models of category learning, which

assign a feedback signal boosting connection weights on every trial regardless of whether a

human participant would have even looked at the feedback or not. We define feedback click-

throughs as trials where participants made no informative fixations—that is, no fixations to

stimulus features or feedback buttons. Fig 10 plots the prevalence of clickthroughs by trial bin.

In all datasets, the probability of clicking through feedback increased as the experiment went

on—the more the participant had learned, the less they appeared to need to look at the feedback

signal or the re-presented stimulus. The magnitude of change varied greatly by experiment, but

the phenomenon appeared to some extent in all datasets, increasingly so in later trials.

We modelled the probability of clickthrough by trial bin with random slopes for trial bin

grouped by subject. Trial bin was significant for all datasets (χ2(1) = 142.07; 32.09; 99.94; 58.01;

32.52; 35.88. All p<.001). Condition (included for datasets with experimental manipulations)

was not significant in any dataset.

It seems as though prevalence of clickthroughs is related to the difficulty of the task, with

easier category structures having more clickthroughs. We note that, though many click-

throughs are very fast, there is the possibility that participants are still able to covertly attend

some information, a possibility also noted by Meier and Blair [27]. Understanding covert atten-

tion in the context of information access seems like a worthwhile avenue for future research.

General discussion

Much of the recent research on learning from feedback is focused on specific effects, including

delaying feedback information (e.g., [30]), probabilistic/contingency-based models (e.g., [31]),

Fig 9. Mean difference (error trials minus correct trials) in total time fixating each AOI (feedback button, relevant stimulus feature, irrelevant

stimulus feature), plotted by dataset and condition. Conditions that were not significantly different were collapsed. Lighter bars represent the second

condition (i.e., Accuracy, II). Error bars represent SEM. In top-to-bottom order, the left-hand column contains Datasets 1 and 2, the middle column

contains Datasets 3 and 4, and the right-hand column contains Datasets 5 and 6.

https://doi.org/10.1371/journal.pone.0259517.g009
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and phrasing of feedback (e.g., as positive or negative [32]). In contrast, the primary goal of the

present work was to build a basic understanding of how people process feedback in a category

learning experiment. Feedback is inarguably important for learning, yet the dominant models

within category learning treat it as a simple teaching signal that is automatically processed and

stored—something useful in the learning process, but lacking nuance Here, we investigated

participants’ gaze data during feedback processing in datasets from six category learning

experiments (each with varying category structures and manipulations), a total of 505 partici-

pants, in order to support or reject this simplified view. Our findings demonstrate that the sim-

ple view of feedback overlooks participant behaviour in three important ways.

First, the simplified view overlooks the clear importance of stimulus re-presentation, which

is the dominant target of gaze by participants, garnering more attention than the feedback

itself. Further, when participants spend more time on feedback after mistakes, they spend it

mostly looking at the features of the re-presented stimulus. This was true regardless of category

structure or difficulty of learning. The prominence of the stimulus as a fixation target may be

related to the complexity of the stimulus. The categories were alphanumeric and thus were

very familiar to participants; the stimuli, in contrast, were novel and relatively complex micro-

organisms. Future research might swap the features for the categories so that the features are

alphanumeric and the categories are the novel and complex visual features to investigate this

possibility. Regardless of the outcome of such an experiment, our findings replicate the promi-

nence of stimulus viewing during feedback of Watson and Blair [17], and are consistent with

findings like those of Bourne and colleagues and Halff that show that re-presenting the stimu-

lus provides important benefits while learning categories [16, 33].

Fig 10. The probability of clicking through the feedback phase with no fixations, plotted by trial bins and dataset. Shaded area represents SEM. In

top-to-bottom order, the left-hand column contains Datasets 1 and 2, the middle column contains Datasets 3 and 4, and the right-hand column

contains Datasets 5 and 6.

https://doi.org/10.1371/journal.pone.0259517.g010
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Second, because the simple view treats feedback on correct and error trials as identical, it

also fails to account for the fact that participants change their behaviour if they make a mistake.

Feedback processing differs between correct and error trials: participants spend more time on

the feedback phase when they make errors. This finding has two different aspects. First, the

idea that additional study time, and thus additional co-activation of features and category

labels, will improve memory is not new (e.g., [34]). Existing category learning models, though,

are not constructed to address temporal manipulations post-response at all; they are built

around the idea of one incremental change per trial. Second, there is no self-monitoring mech-

anism in these models to allow the flexibility to spend additional resources to improve learning

on specific trials. The flexibility shown here by participants is reminiscent of how participants

can selectively attend to features depending on the value of other features [11], and argues for

adding these mechanisms to extant models.

The third major finding is that later in the experiment, participants increasingly choose to

skip the processing of feedback altogether, clicking on to the next trial without fixating any rel-

evant information. This happens rarely at the beginning of the experiment, but increases in

prevalence as the experiment progresses. Of all the present findings, this effect seems most

influenced by category structure: the most difficult categories have small numbers of click-

throughs, but the easier categories have very high clickthrough rates. This makes sense, though

we note that existing models assume the stimulus exemplar is processed and stored on each

trial, regardless of accuracy or need, which appears not to reflect the actual behaviour of

human participants.

There are also a few curios within these analyses. Dataset 2 in particular stood out in several

key ways. The time spent on feedback was extraordinarily long, especially in the 5:1 condition

(Fig 4) during the first few blocks of the experiment. Further, the additional time spent during

feedback seems to be allocated to the feedback button more for this dataset than any other

dataset (Fig 7), and the probability of clicking through feedback is least of all the datasets. We

would guess that the explanation involves at least a combination of two factors. First, it is the

most complex category structure, wherein the features are relevant are different for different

categories. McColeman et al., reported a large number of fixations to irrelevant features com-

pared to simpler categories and slower learning [25]. The second factor, and one that separates

it from Dataset 1 is that the feedback buttons are central, rather than in the corners. We expect

this combination encouraged more inspection of feedback buttons than in datasets with only

one of those factors. More focused research will be needed to understand how feedback place-

ment and task difficulty might influence feedback processing.

The durations of individual fixations, which might have been longer during feedback, reflect-

ing more careful encoding of stimulus features, are actually shorter than response phase fixa-

tions in all datasets except RelDif-4cat, with all differences quite small in magnitude. Fixations

to relevant stimulus features were consistently longer than fixations to feedback signals, suggest-

ing more careful attention to the stimulus than the feedback signal when processing feedback.

The fixation order analysis, which sought to reveal if participants might be strategically

investigating stimulus features and feedback in a particular order, mostly shows that partici-

pants varied across fixations, but not substantially. The exception to this is that in those experi-

ments where participants selected their category choice with a mouse (Datasets 1, 5, and 6),

they tended to look at the category feedback first. Given that their attention was already on the

feedback when the feedback phase began, this makes sense, but does not seem to have impor-

tant implications for theory. Relevant features maintained a higher likelihood to be fixated

than irrelevant features across the first three fixations of all datasets.

At the broadest level, our three main findings reveal that selective attention is ubiquitous

throughout the whole category learning task. It functions to emphasize the importance of
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certain stimulus features, the helpfulness of extra stimulus encoding during times of uncer-

tainty, and the superfluousness of feedback once one has mastered the task. This ubiquity

serves as a reminder that there is value in thinking about, and implementing, the basic princi-

ples guiding cognitive processing as generally as possible. Extant models of category learning

allow for selective attention only to stimulus features for the purpose of improving category

learning decisions (e.g., [8]), and indeed, it is an established finding that participants weigh the

importance of information when choosing to access it [11, 12]. But, our study shows clearly

that this restriction is unnecessary and inaccurate and that human cognition is dynamic and

flexible. Gottlieb argues that too often researchers study decision-making independently from

the active sensing behaviours with which they are coordinated [23], and that seems to be the

case in the current situation. Theoretical work that aims at understanding active sampling [23]

conjoined with decision processes seem better suited to characterizing our findings than more

specific models despite those models’ focus on our exact experimental paradigm.

The dynamical field model of learning, attention and gaze, LAG-1, is an example of an inte-

grated approach [24]. Without fitting the model explicitly, it is impossible to make quantitative

assertions about the model’s ability to account for every aspect of these particular data, but

most of our findings seem compatible with the theoretical framework outlined by LAG-1. The

model naturally predicts improved response times during response and feedback phases

because learning boosts activations and thus reaching thresholds faster. It also predicts the

present finding that people prefer relevant features to irrelevant ones in both response and

feedback phase. Though LAG-1 predicts convergence—learning drives attention toward all

and only the relevant features in both phases of the experiment, it is unclear to us whether or

not LAG-1 could account for the degree of attentional convergence found here. Early in learn-

ing, before LAG-1 has much information about which features indicate which categories,

LAG-1 will tend to fixate all three available features before making a choice, keeping atten-

tional allocations somewhat similar. Humans, however, will often fixate only one or two fea-

tures before deciding (perhaps in an attempt to find a simple rule that correct classifies the

stimuli). To the degree that the magnitude of our convergence measure depends on that vari-

ability, it may be out of reach for LAG-1. The difference between correct and incorrect trials is

another example where LAG-1 predicts the correct qualitative pattern. In the model, these dif-

ferences arise from competitive dynamics between the category nodes, which delay the

response to move to the next trial. During that delay, the attentional system will prioritize

informative features, just like during the response phase, producing findings similar to the

present findings. Finally, other modelling efforts with LAG-1 (currently under review) have

demonstrated the increasing likelihood of skipping feedback altogether. This occurs because

the threshold to begin the next trial can be initiated immediately if the category activation is

strong enough. Two of the findings from Dataset 2 seem likely to be difficult for the model to

capture. The findings that attention diverges rather than converges, and that fixation durations

are longer during feedback than during the response phase may be due to some strategic

mechanisms engaged by the difficulty of the task that are not currently part of LAG-1.

Not all research will want or need to simulate the full scope of dynamic human information

access in category learning tasks as LAG-1 does. Still, researchers using models that simplify

feedback processing can benefit from our findings without the added complexity of creating a

fully dynamic model in a couple of ways. First, participants in the present experiments clearly

prioritize looking at the re-presented stimulus, and researchers running category learning

experiments should remember that participants consider this information worth their time

and make it available to them. Second, most models use selective attention for category deci-

sions, but none that we know of use it for feedback processing. Applying the same set of atten-

tion weights to the learning processes, for instance by storing weighted features of category
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exemplars, seems a relatively simple inclusion that will bring models more in line with the

human behaviour we see in the diverse categories we reviewed here.

Differences in processing feedback when learning RB and II categories have been of interest

[28]. According to Smith and colleagues’ study, a rule-based structure is learned through itera-

tive testing of hypotheses, requiring the use of working memory, while information-integration

structures are learned through reinforcement signals that are sensitive to temporal delays [20].

They found that deferred feedback significantly impaired the performance of subjects learning

implicit structures because of these underlying differences. However, Le Pelley and colleagues

argued that this effect was confounded with task difficulty and expanded on this study by add-

ing another category structure; a conjunctive rule-based structure that operated on two-dimen-

sions [35]. It was found that manipulating feedback showed no effect on category structure

when comparing between the conjunction and implicit structure, while significant interactions

were found between the unidimensional rule-based structure and the conjunction structure.

This supported Le Pelley and colleagues’ view that deferred feedback dissociated between diffi-

culty, and not the underlying mechanisms in learning category structures. In a similar fashion,

we have found that manipulating between rule-based and information-integration structure

conditions showed significant differences for the majority of our measures in Dataset 6 (2-cat),

but not Dataset 5 (4-cat). Given that these two datasets differ only in the number of categories

used, it seems that difficulty, not category structure, may be responsible for changes in how we

process feedback, as proposed by Le Pelley and colleagues [35].

In addition to studying feedback to understand category representation, there is also a theo-

retical interest in learning algorithms that drive change in learning and attention shifts. While

not all models use supervised methods (e.g., [7, 24]) some models rely on error-driven learning

algorithms (e.g., [8, 9]). The evidence for error driven learning of attention is mixed, and

seems to rule out a simple universal error-driven mechanism for both learning and attention.

For example, McColeman et al. tracked attentional change across trials of a wide variety of cat-

egory learning studies segregating correct and incorrect trials [25]. They found that for many

(but not all) datasets, there was no bias toward attentional change during error trials. A study

by Blair, Watson & Meier showed that, in the category structure they used, attention shifts

occurred largely after participants learning the correct classifications, rather than concurrently

[11]. They also found that attentional optimization continued long after participants stopped

making mistakes. Further, in the experiment, they stopped receiving any category feedback at

all after they met a learning criterion of 24 consecutive correct trials. Despite receiving no feed-

back at all, attention continued to shift away from irrelevant stimulus features. On the other

hand, work by Don and colleagues notable especially because they examined attention during

feedback, found patterns consistent with error driven learning [14]. Further research is

needed, clearly, but we are confident that a complete account of the influence of error on

attention and learning will include data from all phases of the category learning task.

The datasets analyzed here were from experiments not explicitly designed for studying feed-

back processing. That is an advantage in that they reveal feedback processing under normal,

un-manipulated conditions that might occur in a typical experiment, and allow for a baseline

comparison for future research. The downside, however, is that without a direct manipulation

of feedback presentation, we cannot make precise causal claims that one might be able to make

if one, for example, manipulated the duration of the feedback phase to investigate its causal

impact on learning. We thus see our work as part of the earliest steps of research that taps into

an unmined vein of research possibilities that involve memory, attention, and categorization

in the category learning task as a whole.

All the feedback phase data used in the analyses are available at http://summit.sfu.ca/item/

21376. Data for the response phase of the published experiments are currently available at
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http://summit.sfu.ca/item/12716 (Dataset 1), http://summit.sfu.ca/item/12715 (Dataset 2),

http://summit.sfu.ca/item/12719 (Datasets 3 and 4), http://summit.sfu.ca/item/11827 (Dataset

5), http://summit.sfu.ca/item/12718 (Dataset 6). These experiments were not preregistered.
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to thank past members of the lab, especially Kim Meier and Lihan Chen for significant help in
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