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Alzheimer’s disease (AD) is a neurodegenerative disease with unelucidated molecular
pathogenesis. Herein, we aimed to identify potential hub genes governing the
pathogenesis of AD. The AD datasets of GSE118553 and GSE131617 were collected
from the NCBI GEO database. The weighted gene coexpression network analysis
(WGCNA), differential gene expression analysis, and functional enrichment analysis were
performed to reveal the hub genes and verify their role in AD. Hub genes were validated
by machine learning algorithms. We identified modules and their corresponding hub
genes from the temporal cortex (TC), frontal cortex (FC), entorhinal cortex (EC), and
cerebellum (CE). We obtained 33, 42, 42, and 41 hub genes in modules associated with
AD in TC, FC, EC, and CE tissues, respectively. Significant differences were recorded
in the expression levels of hub genes between AD and the control group in the TC
and EC tissues (P < 0.05). The differences in the expressions of FCGRT, SLC1A3,
PTN, PTPRZ1, and PON2 in the FC and CE tissues among the AD and control groups
were significant (P < 0.05). The expression levels of PLXNB1, GRAMD3, and GJA1
were statistically significant between the Braak NFT stages of AD. Overall, our study
uncovered genes that may be involved in AD pathogenesis and revealed their potential
for the development of AD biomarkers and appropriate AD therapeutics targets.
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BACKGROUND

Alzheimer’s disease (AD) is a type of dementia, which is commonly associated with β-amyloid and
neurofibrillary tangles (NFTs). Many clinical trials have faced difficulties in reducing β-amyloid
(Ashraf and So, 2020). The main characteristics of AD are the formation of NFTs, synapse
loss, and the deposition of senile plaques (Gouras et al., 2000; Patnaik et al., 2020). Several
studies reported that the distribution of NFTs in the brain is highly associated with cognitive
impairment status in AD (Braak and Braak, 1991; Nelson et al., 2012). Braak NFT stages
refer to the six stages (I, II, III, IV, V, and VI) of the development of NFTs according to the
spatial distribution of tangle-bearing neurons in the brain (Braak et al., 2006a). Whether a
large amount of tau protein can be detected in different parts of the AD brain is determined
by Braak NFT stages. Generally, the diagnosis sites include entorhinal regions (stages I–II),
limbic allocortex and adjoining neocortex (stages III–IV), and neocortex (stages V–VI) (Braak
et al., 2006b). So far, the pathogenesis of AD remains mostly unclear, although several theories
have been proposed to explain AD pathogenesis, including tau pathology, oxidative stress,
cholinergic neurodegeneration, neuroinflammation, and amyloidosis (Agostinho et al., 2010;
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Hampel et al., 2018). Nevertheless, treatment methods
derived from existing theories still cannot effectively limit
the growing number of AD patients. Therefore, to discover new
pharmacological targets, it is urgent to identify the molecular
basis of the disease.

The weighted gene coexpression network analysis (WGCNA)
is a widely used method to discover complex relationships
between modules and traits (Langfelder and Horvath, 2008).
The primary function of WGCNA is that it can gather genes
with similar expression levels into a module according to the
correlation coefficient between genes; thus, it can be used to
analyze the relationship between modules and sample traits.
WGCNA links sample traits and gene expression alteration,
facilitating an in-depth understanding of the systematic signaling
networks correlated with phenotypes of interest (Ma et al., 2017).
Previous studies have adopted WGCNA to find significant genes
and study the pathological mechanism. Changes in peripheral
blood may participate in AD pathology, and research of AD using
whole blood (WB) samples suggested that ATF4, TRPV2, HSPA8,
NDUFV1, LUC7L3, and STAT3 may contribute to the occurrence
of MCI (Tang and Liu, 2019). Except for whole-blood samples,
mouse (Rangaraju et al., 2018; Mukherjee et al., 2019; Pandey
et al., 2019), Caenorhabditis elegans (Godini et al., 2019), and
zebrafish (Hin et al., 2020) with AD have been studied widely
by scientists. Moreover, WGCNA and PCA were used to reveal
the unique transcriptome signatures among chronic traumatic
encephalopathy (CTE), CTE/AD, and AD (Cho et al., 2020).

This study aimed to explore and find key pathways involved
in AD as well as to identify potential genes related to AD
pathogenesis. We constructed WGCNA using 267 samples,
including 100 control and 167 AD samples from four tissues
[temporal cortex (TC), frontal cortex (FC), entorhinal cortex
(EC), and cerebellum (CE)]. Then we identified key modules
associated with AD and further analyzed modules with high
correlation. Next, we uncovered hub genes by Cytoscape
MCODE plugin. Additionally, we compared the expression levels
of differentially expressed genes (DEGs) and hub genes and
figured out significant genes involved in AD. Finally, we obtained
the expression of hub genes in GSE131617 datasets and verified
the classification function of hub genes based on AD classifiers.
For the first time, we compared the expression levels of hub genes
in four tissues of the brain and obtained the potential pathway
associated with AD development in these tissues. Our results
found that the expression levels of PLXNB1 and GJA1 based on
Braak NFT stages were significant, suggesting that these genes
may be involved in AD pathogenesis and have a high potential
for the development of AD biomarkers and target drugs.

MATERIALS AND METHODS

Data Collection and Data Preprocessing
The AD datasets of GSE118553 and GSE131617 were collected
from the NCBI GEO datasets1. GSE118553 contained 167
AD samples, 100 control samples, and 134 asymptomatic AD

1https://www.ncbi.nlm.nih.gov/gds

(AsymAD) samples (Table 1). We divided the GSE118553
dataset into four groups according to the source of the samples
(Table 1). GSE131617 consisted of 426 brain tissue specimens,
which were generated from three regions (TC, FC, and EC)
of the brain. Here, we used the GPL5175 of the GSE131617
dataset, which was divided into four groups according to
the Braak NFT stage. The corresponding information can be
seen in Table 2. The Python scripts were used to process
the raw data and generate the gene matrix, and the scripts
are available on GitHub2. The average expression level of
a gene was retained if the gene mapped with multiple
probes. The expression data of the gene matrix was log2
transformed as in the previous studies (Ambroise et al., 2011;
Ritchie et al., 2015).

Construction of Weighted Gene
Coexpression Network Analysis
The matrix data of GSE118553 were obtained from the GEO
database. We kept the mean value of gene expression when a
gene matched with multiple probes and finally chose 31,413
genes for WGCNA. We used a step-by-step construction method
for the coexpression network and chose soft power based
on the pickSoftThreshold function. This function can provide
a suitable β value by calculating the scale-free topology fit
index for a series of powers. Then, an adjacency matrix was
constructed based on soft-thresholding powers and transformed
into a topological overlap. A hierarchical clustering function was
applied to cluster genes with similar expression levels into several
modules according to the 1-TOM. Each module was represented
by the module eigengene (ME), which refers to the PC1 of the
expression level in the genes from a module. Dynamic tree cut
was used to reduce the number of modules according to the
dissimilarity of MEs, and the cutoff value was 0.25. The traits in
this study included AD and gender. The correlation between MEs

2https://github.com/BioinformaticsMan/probeToGeneSymbol.git

TABLE 1 | The information of GSE118553.

Sample source AD Control AsymAD

Temporal cortex (TC) 52 31 32

Frontal cortex (FC) 40 23 33

Entorhinal cortex (EC) 37 24 37

Cerebellum (CE) 38 22 32

Sum 167 100 134

TABLE 2 | The information of GSE131617 GPL5175.

Braak NFT stage Sample source Samples

0 13 TC; 13 FC; 13 EC 39

I–II 20 TC; 20 FC; 20 EC 60

III–IV 19 TC; 19 FC; 19 EC 57

V–VI 19 TC; 19 FC; 19 EC 57

– – 213

TC, temporal cortex; FC, frontal cortex; EC, entorhinal cortex; CE, cerebellum.
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and AD was calculated for key module selection based on Pearson
correlation coefficient (PCC). The function corPvalueStudent
was used to calculate the Student asymptotic P-value. Except
for the gray module, we chose the modules with the highest
and lowest correlation with AD as key modules (P < 0.05). The
WGCNA was completed by the R package “WGCNA” (Langfelder
and Horvath, 2008, 2012). The biological function of genes in key
modules associated with AD was investigated by the functional
enrichment analysis described below.

Uncovering of Hub Genes in the
Significant Module and Functional
Enrichment Analysis
In the coexpression network, the nodes with high interconnection
in a key module were defined as hub genes. First, we calculated
module membership (MM) (also refers to the correlation between
ME and gene expression) and the gene significance (GS) (also
refers to the correlation between gene expression and traits).
As the description of the author of WGCNA (Langfelder and
Horvath, 2008), the genes with a higher MM in the trait-
specific modules were considered as candidate genes for further
validation. Meanwhile, a higher mean GS of a module indicates
the more significant the correlation between the module and
traits. The significant genes were identified according to the
threshold of MM ≥ 0.8 and GS ≥ 0.2 as suggested by previous
studies (Liang et al., 2020; Mo et al., 2020; Xia et al., 2020).
Second, we selected the top 299 edges of the significant genes by
weight in each module for Cytoscape visualization and finally got
a weighted network of key modules. Additionally, a subnetwork
of the co-weighted network was generated by the Cytoscape
MCODE plugin with the default configuration. Finally, we
selected the nodes clustered in the subnetwork as hub genes and
performed functional enrichment analysis as described below.

Screening of DEGs and Functional
Enrichment Analysis
To further understand the gene expression of AD and control
groups in GSE118553 in different tissues, the gene expression
matrix of GSE118553 was divided into four tissue-specific gene
expression matrices according to the tissues. Based on each
tissue-specific gene expression matrix, the DEG analysis was
performed between the AD and control groups based on the
R package “limma” (Ritchie et al., 2015). The normalization
was completed by R package “limma.” The Benjamini–Hochberg
(BH) method was used to calculate the adj.P-value and was
implemented by the R package “limma.” The DEGs were screened
out based on adj.P-value < 0.05 and abs(log2FoldChange) > 1.2
as in previous studies (Yang et al., 2014; Richard et al., 2016).
The top 50 upregulated and downregulated DEGs were selected
based on | log2FoldChange| and visualized as a heatmap by the
R package “pheatmap”3. Moreover, the function and pathway
of DEGs were uncovered by functional enrichment analysis
as described below. The overlap of DEGs, modules genes,

3https://cran.r-project.org/web/packages/pheatmap/index.html

and hub genes were visualized by the R package “UpSetR”
(Conway et al., 2017).

Functional Enrichment Analysis
The function and pathway of genes from key modules, hub genes,
and DEGs were analyzed by Gene Ontology (GO) analysis by
using R packages “clusterProfiler” (Yu et al., 2012). The top 15
GO terms including biological process (BP), cellular component
(CC), and molecular function (MF) of the key modules were
shown in the bubble chart. Meanwhile, the top 10 KEGG
pathways of the key modules were also visualized by the bubble
chart. The BH method was carried out for multiple testing.

Validation of Significant Hub Genes by
Machine Learning
The significant hub genes were defined as the intersection of hub
genes and DEGs in this study. To validate the AD classification
function of significant hub genes, we constructed AD classifiers
using several machine learning algorithms from the scikit-learn
library (Pedregosa et al., 2011). The expression data of significant
hub genes in GSE118553 were used for training and testing of
the AD classifier. A total of 10 standard algorithms, including
support vector machine (SVM), random forest (RF), extra
tree, adaptive boosting (AdaBoost), gradient boosting, multi-
layer perceptron (MLP), K-nearest neighbors (KNN), logistic
regression, linear discriminant analysis, and Gaussian Naive
Bayes classifier (Gaussian NB), were used in this study. First, we
divided the GSE131617 into two parts according to 70% training
and 30% testing and selected 10 machine learning algorithms for
AD classifiers according to the suggestion of previous studies
(Kringel et al., 2018; Tunvirachaisakul et al., 2018; Xu et al.,
2018; Chen et al., 2019; Shigemizu et al., 2019; So et al., 2019;
Bi et al., 2020; Yaman et al., 2020). Then we optimized the AD
classifiers through parameter adjustment and selected 30% of
the data as the test. Finally, we generated the receiver operating
characteristic (ROC) curve of the AD classifiers and calculated
the area under the curve (AUC) to distinguish the performance of
AD classifiers. The detailed information of the machine learning
classifiers is summarized in Table 3. The classification metrics
including F1 score, sensitivity, specificity, PPV, and NPV were
calculated as in previous studies (Chen et al., 2009; Ray et al.,
2010; Trevethan, 2017).

Moreover, we validated the expression levels of hub genes
in GSE131617. As mentioned above, Braak NFT stages of
AD included different areas of the brain (TC, FC, and EC).
Therefore, we determined the role of hub genes in Braak
NFT stages through the expression levels of three regions
(TC, EC, and FC) in the AD brain. First, the GSE131617
were divided into three groups according to the tissues,
including TC, FC, and EC tissues. Then we performed
an analysis of variance (ANOVA) of each tissue based on
Braak NFT stages of AD. FDR was used to adjust the
P-value calculated by ANOVA. A Python script was used to
perform the ANOVA, which was uploaded on GitHub4. The
expression of hub genes in different tissues was visualized by

4https://github.com/BioinformaticsMan/anova.git
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TABLE 3 | The hyperparameter tuning of 10 machine learning classifiers.

Classifiers Parameter

SVM kernel = ‘linear’, probability = True,
Random_state = 42

Random forest Random_state = 42

Extra trees Random_state = 42

AdaBoost DecisionTreeClassifier (random_state = 42),
Random_state = 42, learning_rate = 0.1

Gradient boosting Random_state = 42

MLP classifier Random_state = 42

K neighbors Default configuration

Logistic regression Random_state = 42

Linear discriminant analysis Default configuration

Gaussian NB Default configuration

The number of cross-validation of all machine learning classifiers was 6.

beeswarm plot and was implemented by using the R package
“beeswarm”5.

RESULTS

Construction of Weighted Gene
Coexpression Network Analysis
We chose an appropriate β value for WGCNA via analyzing
the topology of the network. As shown in Supplementary
Figures 1A–C, when the β value was 3, and the dissimilarity
of MEs equaled 0.25, a total number of 31,413 genes were
clustered into 15 modules in the TC tissue. The same
treatment was applied to the genes in the FC, EC, and CE
tissues. The most appropriate power values were 2, 9, and 2,
respectively, for the FC, EC, and CE tissues (Supplementary
Figures 2–4A–C). The dendrogram plot of all genes grouped
depending on 1-TOM and clustering of MEs is shown in
Figures 1A–D.

To have a deeper understanding of the correlation between
modules and AD, we obtained the correlation between MEs
and sample traits, including AD and gender. As shown in
Figure 1E, MEdarkorange (cor: 0.59, P-value: 5e−09) and
MEdarkgreen (cor: −0.75, P-value: 6e−16) were the most
significant modules among the modules associated with AD in
the TC tissue. Figure 1F shows MEblue (cor: −0.37, P-value:
0.004) and MEskyblue (cor: 0.46, P-value: 2e−04) were the
most significant modules among the modules associated with
AD in the FC tissue. Figure 1G indicates that MEblue (cor:
−0.66, P-value: 1e−08) and MEdarkred (cor: 0.82, P-value:
1e−15) were the most significant modules among the modules
associated with AD in the EC tissue. As shown in Figure 1H,
MEdarkorange (cor: −0.45, P-value: 3e−04) and MEbrown (cor:
0.25, P-value: 0.06) were the most significant modules among
the modules associated with AD in the CE tissue. The PC1
(ME) of modules identified by WGCNA is summarized in
Supplementary Table 1.

5https://cran.r-project.org/web/packages/beeswarm/index.html

Function Annotation of the Significant
Modules
The function and pathways of genes from significant modules
associated with AD in the four tissues were analyzed by functional
enrichment analysis. As shown in Figure 2A, genes from
significant modules associated with AD in the TC tissue were
enriched in renal system development, nephron development,
DNA modification, focal adhesion, PI3K–Akt signaling pathway,
metabolic process, and tyrosine metabolism. Figure 2B showed
that genes from significant modules associated with AD in the
FC tissue were enriched in the carboxylic ester hydrolase activity,
focal adhesion, and mineral absorption. Figure 2C indicated
that genes from significant modules associated with AD in
the EC tissue were enriched in the modulation of chemical
synaptic transmission, synaptic vesicle cycle, and synaptic vesicle
transport. The results shown in Figure 2D revealed that genes
from significant modules associated with AD in the CE tissue
were involved in the regulation of synapse assembly, memory,
learning or memory, optic nerve development, and long-
term depression.

Identification and Function Annotation of
Hub Genes of Key Modules
According to the criteria MM ± 0.8 and GS ± 0.2, we
obtained significant hub genes associated with AD in the four
tissues (Supplementary Figures 1–4D–E). Then, hub genes were
clustered via Cytoscape MCODE (Supplementary Figures 1–
4F–G), and the expression levels of hub genes are shown in
Supplementary Figures 5–8. The detailed information of the
edges in the co-weighted network of each module is summarized
in Supplementary Table 2. We obtained 33, 42, 42, and 40 hub
genes, respectively, in the TC, FC, EC, and CE tissues.

The function and pathway of hub genes from significant
modules associated with AD in the four tissues were analyzed.
In the TC tissue (Figure 3A), the hub genes were enriched in
synapse assembly, neutrophil homeostasis, DNA modification,
cognition, and actin filament organization. Figure 3B showed
that the hub genes from significant modules associated with
AD in FC tissue were enriched in the protein–cofactor
linkage, regulation of postsynaptic neurotransmitter receptor
internalization, and protein oxidation. Figure 3C suggests that
the hub genes from significant modules associated with AD in EC
tissue were enriched in the synaptic vesicle cycle, synaptic vesicle
localization, and signal release from synapse. The hub genes from
significant modules associated with AD in the CE tissue were
enriched in myeloid cell homeostasis, homeostasis of a number
of cells, and regulation of T-cell tolerance induction (Figure 3D).

Identification and Function Annotation of
the DEGs
Differentially expressed genes were filtered out by the
threshold adj.P-value < 0.05 and abs(log2FoldChange) > 1.2.
Finally, we obtained 3,648 DEGs in the TC tissue, 555
DEGs in the FC tissue, 6,504 DEGs in the EC tissue,
and 188 DEGs in the CE tissue. The DEGs identified
in the four tissues were visualized on volcano plots
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FIGURE 1 | Identification of key modules associated with Alzheimer’s disease (AD) in the temporal cortex (TC), frontal cortex (FC), entorhinal cortex (EC), and
cerebellum (CE) tissues. (A–D) Clustering dendrogram of genes in the TC (A), FC (B), EC (C), and CE (D) tissues, with gene dissimilarity based on 1-TOM, together
with module color assignment. Different colors represent the different modules in which genes are gathered. The dynamic tree cut method was used to merge the
modules according to the dissimilarity of module eigengenes (MEs). (E) Correlation among modules and traits in the TC tissue. (F) Correlation among modules and
traits in FC tissue. (G) Correlation among modules and traits in EC tissue. (H) Correlation among modules and traits in CE tissue. The box includes the Pearson
correlation coefficient (PCC) and the corresponding P-value. The box color (ranges from blue to red) is correlated with the PCC value (range from –1 to 1). The red
box indicates the module is positively correlated with traits, while the blue box indicates the module is negatively correlated with traits. The traits in this study include
AD and gender.
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FIGURE 2 | Functional enrichment analysis of genes from significant modules associated with AD in the TC (A), FC (B), EC (C), and CE (D) tissues. The color of the
bubble indicates the adj.P-value of the GO terms or pathways, and the size of the bubble signifies the number of genes associated with a term.

(Supplementary Figures 9A–D), and the top 10 DEGs in
upregulated and downregulated clusters (ranked by adj.P-
value) were labeled. The top 25 DEGs in upregulated and
downregulated clusters (sorted by | log2FoldChange| are
shown in Supplementary Figures 9E–H. The corresponding
details of DEGs identified in four tissues are found in
Supplementary Table 3.

To get a better understanding of the biological function
of DEGs, we also did GO and KEGG functional analysis.
As shown in Figure 4A, DEGs in TC tissue were enriched
in regulation of neurotransmitter levels, neurotransmitter
transport, regulation of actin cytoskeleton, phagosome, and
synaptic vesicle cycle. Figure 4B shows that DEGs in the FC

tissue are enriched in epithelial cell proliferation, extracellular
matrix organization, and glycolysis/gluconeogenesis. DEGs
in the EC tissue are enriched in axonogenesis, regulation of
neurotransmitter levels, neurotransmitter transport, synaptic
vesicle cycle, neurotransmitter secretion, and synaptic vesicle
localization (Figure 4C), while DEGs in the CE tissue
are enriched in the postsynaptic membrane organization,
synapse organization, and modulation of chemical synaptic
transmission (Figure 4D).

Besides, we compared the overlap of DEGs, hub
genes, and module genes. The results shown in Figure 5
suggested that the hub genes from four tissues were
relatively independent and did not intersect. The common
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FIGURE 3 | Functional enrichment analysis of hub genes in the TC (A), FC (B), EC (C), and CE (D) tissues. The color of the bubble indicates the adj.P-value of the
GO terms or pathways, and the size of the bubble signifies the number of genes associated with a term.

DEGs were found in four tissues, including SLC6A12
and P8.

Validation of Hub Genes
We found a total of 33, 3, 42, and 4 significant hub genes in
TC, FC, EC, and CE tissues (Supplementary Table 4). To verify
the AD classification function of significant hub genes identified
above, we constructed AD classifiers using significant hub genes
as features. The training and testing data are as indicated
in Supplementary Table 4. In TC tissue (Supplementary
Figure 10A), the AD MLP classifier had the highest AUC (average
of AUC = 0.97 ± 0.05), and the AD AdaBoost classifier had
the lowest AUC (average of AUC = 0.78 ± 0.09). In the FC
tissue (Supplementary Figure 10B), the AD logistic regression
classifier had the highest AUC (average of AUC = 0.86 ± 0.07),
while the AD AdaBoost classifier had the lowest AUC (average

of AUC = 0.70 ± 0.11). In the EC tissue (Supplementary
Figure 10C), the AD SVM classifier had the highest AUC (average
of AUC = 0.99 ± 0.00), whereas the AD AdaBoost classifier
had the lowest AUC (average of AUC = 0.79 ± 0.09). In the
CE tissue (Supplementary Figure 10D), the AD SVM classifier
had the highest AUC (average of AUC = 0.85 ± 0.12), while
the AD AdaBoost classifier has the lowest AUC (average of
AUC = 0.70 ± 0.14). The other classification metrics (F1 score,
sensitivity, specificity, PPV, and NPV) of AD classifiers for four
tissues are found in Figure 6 and Supplementary Table 5.
Consistent with the AUC of AD classifiers in four tissues, we
found that the value of the metrics of AD classifiers was higher
in TC and EC tissues than in FC and CE tissues.

Additionally, we analyzed the expression levels of hub genes
in GSE131617 for validation. Supplementary Figure 11 showed
that the expression difference of PLXNB1 among Braak NFT
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FIGURE 4 | Functional enrichment analysis of DEGs in the TC (A), FC (B), EC (C), and CE (D) tissues. The color of the bubble indicates the adj.P-value of the GO
terms or pathways, and the size of the bubble signifies the number of genes associated with a term.

stages of the AD in TC tissue was significant (P < 0.05).
No difference was recorded in the expression levels of hub
genes based on the Braak NFT stages of the AD in FC
tissue (Supplementary Figure 12). The expression of GJA1 and
GRAMD3 (Supplementary Figure 13) based on Braak NFT
stages of AD in EC tissue was significantly different (P < 0.05).
The detailed results of ANOVA analysis of gene expression
among Braak NFT stages are as in Supplementary Table 6.

DISCUSSION

Alzheimer’s disease is a disease characterized by degenerative
changes in the central nervous system (CNS) and is common
in the elderly. In this work, we used systems biology analysis
methods to mine the potential information of AD transcriptome

data sets. A total of 31,413 genes were obtained after data
processing and were used for WGCNA analysis. In the TC,
FC, EC, and CE tissues, genes were clustered into 15, 18, 37,
and 22 gene modules, respectively. Moreover, we identified 33,
42, 42, and 41 hub genes, respectively, in modules significantly
associated with AD in TC, FC, EC, and CE tissues. The difference
in the expression of hub genes from modules associated with
AD in the TC and EC tissue among the AD and control groups
were significantly different. Expression of FCGRT from modules
associated with AD in the FC tissue was significantly different
among AD and the control group. Significant differences were
recorded in the expression of SLC1A3, PTN, PTPRZ1, and PON2
from modules associated with AD in CE tissue.

SLC1A3 is one of the high-affinity glutamate transporters
that mediate the cellular uptake of glutamate, resulting in
the pathogenesis of AD when the transporters dysfunction
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FIGURE 5 | Overlaps between hub genes, DEGs, and module genes in GSE118553. (A) The overlap between module genes and DEGs in GSE118553. (B) The
overlap between hub genes and DEGs in GSE118553. Each column indicates the gene set, and each row indicates the gene names. The light-gray cells indicate
that the gene names were not part of that intersection, and the black filled indicates the gene names were part of that intersection. The abbreviations of the row refer
to the hub genes, DEGs, and module genes detected in GSE118553. The abbreviations with “moduleGenes” or “hubGenes” refer to the genes obtained in key
modules, which represent module genes or hub genes. The abbreviations with “DEGs” refer to the DEGs detected in AD compared with the control group. The
abbreviations with “_tc,” “_fc,” “_ec,” or “_ce” indicate that the identified genes are from TC, FC, EC, or CE tissues. The cells in red represent the genes that were the
part of the DEGs detected in four tissues and the intersection of them were two genes, which were marked as “Common_DEGs.”

(Kanai et al., 2013). A previous work conveyed that PTN and
PON2 are involved in AD (Janka et al., 2002; Shi et al., 2004; Xu
et al., 2014; Gurung and Bhattacharjee, 2018). However, PTPRZ1
was rarely reported in past research and deserved a more in-depth
study. Exposure of the developing brain to immune mediators
promotes neurodevelopmental disorders and neurodegenerative
diseases; a previous study reported that IgG antibodies may
affect normal neurological development and function through
Fc gamma receptors (FcγR) expressed in the hippocampus and
cortex of newborn brains (Stamou et al., 2018). FCGRT is the
fragment of IgG receptor and transporter, which is believed to
be related to IgG in the brain (Glass et al., 2017). Therefore,
we speculated that FCGRT may be involved in AD through the
regulation of neural development by IgG antibodies. PTPRZ1
refers to the receptor-type tyrosine-protein phosphatase zeta and

is reported to be expressed in the CNS (Wang et al., 2010).
Moreover, PTPRZ1 is a potential schizophrenia susceptibility
gene as reported by a previous study (Buxbaum et al., 2008),
which may be related to the working memory deficits in mice
(Takahashi et al., 2011). Thus, we speculate that PTPRZ1 may
regulate the cognitive and memory pathways through the CNS,
thereby promoting the formation of AD.

In recent years, several methods have been proposed in the
analysis of the AD dataset. At present, several studies have used
bioinformatics methods to mine transcriptome data in different
regions of the AD brain. Wang et al. (2020) analyzed the AD
dataset (80 AD samples and 28 control samples) of the temporal
and dorsolateral prefrontal cortex through three algorithms,
and also used computational deconvolution methods to identify
differential genes in a single cell type (CI-DEG). Single-cell
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FIGURE 6 | Classification metrics of AD classifiers based on the significant hub genes from modules associated with AD in four tissues. (A–D) The classification
metrics of 10 AD classifiers based on the significant hub genes detected in TC (A), FC (B), EC (C), and CE (D) tissue. The classification metrics include F_1_score,
NPV, PPV, sensitivity, and specificity. The average value of each metric in six cross-validations was calculated and represented as the black line in the boxplot. Error
bar is provided in the boxplot as well. The black dots refer to the outliers.

sequencing has the advantage of uncovering the heterogeneity
among individual cells, but often, fewer cases are covered. Wang
and Wang (2020) conducted a comprehensive analysis of the AD
gene expression dataset, and identified DEGs in hippocampus
tissue (HIP), temporal gyrus tissue (TG), frontal gyrus tissue
(FG), and WB through differential expression analysis. They
found that GJA1 is a key gene of the PPI network in HIP,
TG, and FG, and this study found that GJA1 is a DEG among
AD and control groups in EC tissues. In addition, Wang and
Wang (2020) did not use a coexpression network to explore the
relationship between gene expression and AD, which may lead
to insufficient understanding of the AD dataset. TMEM106B acts
as a genetic modifier for the cognitive trajectory in Parkinson’s
disease (Tropea et al., 2019). To explore the precise mechanism
of neurodegeneration caused by TMEM106B haplotypes, the
researchers used ANOVA to obtain DEGs and WGCNA to
identify key genes in AD (Ren et al., 2018). However, using
only differential genes to build WGCNA may overlook the
role of some low-expressed genes. This study used all genes to
construct WGCNA, which can effectively avoid such problems.
Also, current gene mining on AD mainly uses mice (Rangaraju
et al., 2018; Mukherjee et al., 2019; Pandey et al., 2019), C. elegans
(Godini et al., 2019), and zebrafish (Hin et al., 2020) because
of the barriers in obtaining brain tissue. Although these studies
had found vital genes and pathways related to AD, these studies

still have limitations in explaining the pathological mechanism
of human AD. In this article, GSE118553 and GSE131617 were
generated from Homo sapiens, so the results can better reflect the
pathological mechanism of human AD patients. Moreover, we
compared the expression of hub genes from modules associated
with AD in the TC, FC, EC, and CE among AD and control
groups. The Venn plot (Figure 4) showed that the hub genes
found in the four tissues basically did not overlap, indicating
that the relationship between the level of these genes and
AD is different in the four tissues. Two common DEGs were
found in the four tissues. The SLC6 gene family consists of
four subfamilies including monoamine, GABA, amino acid,
and amino acid/orphan subfamilies (Hahn and Blakely, 2007).
SLC6A12 belongs to the GABA subfamily and encodes BGT1,
which is the transporter of gamma-aminobutyric acid (GABA)
(Lehre et al., 2011). It is reported that the upregulation of
BGT1 and downregulation of GABA signaling components
are common in post-mortem human middle temporal gyrus
(MTG) in AD, which may induce a cognitive decline in AD
(Govindpani et al., 2020). Similar to a previous study, we found
that SLC6A12 is upregulated in AD compared with the control
in TC tissue (Supplementary Table 3). Additionally, a previous
study demonstrated that betaine is transported by GAT2/BGT-
1 and reduces the risk of cognitive impairment in mice injected
with Aβ25-35 (Ibi et al., 2019). Therefore, we speculated that

Frontiers in Genetics | www.frontiersin.org 10 April 2021 | Volume 12 | Article 641100

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-641100 April 12, 2021 Time: 19:20 # 11

Zhao et al. Unearthing Genes in AD Pathogenesis

SLC6A12 may be involved in the occurrence and development
of AD through the BGT-1. Moreover, several members of the
SLC6 gene family are associated with the transport of GABA,
taurine, and norepinephrine and may be correlated to several
diseases, including the occurrence of brain diseases, especially
neurodegenerative diseases (Hu et al., 2020). For instance, a
previous study reported that the SLC6A3 9 repeat allele is
significantly related to the genetic susceptibility of AD (Fehér
et al., 2014). However, there are few reports on the role of P8 in
neurodegenerative diseases except for the report that p8 may play
roles in the development of the CNS in Xenopus laevis (Igarashi
et al., 2001). In addition to the CE tissue, in the remaining three
tissues, the expression of P8 in the AD group was upregulated
compared with the control group (Supplementary Table 3).
Therefore, there were a few genes with a similar expression
pattern among AD and control groups in four tissues. However,
more data and experiments are needed to verify our findings.

The main symptom of patients with AD is cognitive
dysfunction. The cognitive impairment in AD may cause synaptic
dysfunction, neuronal loss, and modification of neurotransmitter
receptors (Nikbakht et al., 2019). Previous work reported that
abnormal synaptic and dysfunction of network synchronous
activity might contribute to hippocampal-dependent memory
deficits in early AD models (Mayordomo-Cava et al., 2020).
According to a previous study, synaptic contacts between the
neocortex and hippocampus in the brain of AD patients are
lost, which is an early event in the disease process that may
be involved in cognitive decline (Scheff et al., 2006). Thus, the
loss of synapses is the best anatomical factor associated with
cognitive deficits in AD patients (Terry et al., 1991). Moreover,
hearing and sensorial impairments are prodromic symptoms of
neurodegeneration, and hearing loss was reported as a risk factor
for cognitive impairment and hippocampal synapse loss in AD
(Chang et al., 2019).

In our study, the hub genes from modules associated with
AD in the TC tissue were enriched in synapse assembly,
neutrophil homeostasis, and cognition, suggesting that these
genes have a high correlation with AD. The hub genes from
modules associated with AD in FC tissue were involved
in the regulation of postsynaptic neurotransmitter receptor
internalization, indicating that the hub genes may regulate
AD via the neurotransmitter receptor in the FC tissue. The
hub genes from modules associated with AD in the EC tissue
participated in the pathway of synaptic vesicle, suggesting
that these hub genes are significant for the synaptic vesicle
regulation in the EC tissue. The hub genes from modules
associated with AD in the CE tissue were involved in
myeloid cell homeostasis, homeostasis of several cells, and
positive regulation of tolerance induction, while the module
genes associated with AD in CE tissue were enriched in
synapse assembly, memory, and regulation of synapse structure
activity. These results revealed that the hub genes might
contribute to AD pathogenesis through synapses and pathways
of memory in CE tissue.

To explore the function of the hub genes in AD, we obtained
expression levels of the hub genes based on Braak NFT stages
from GSE131617. The results showed that the gene expression

level of PLXNB1 based on Braak NFT stages of AD in TC tissue
was significant. Similarly, the gene expression level of GJA1 based
on the Braak NFT stages of AD in EC tissue was significant. These
results suggested that PLXNB1 and GJA1 are the critical drivers
in AD pathogenesis, which was supported by a previous work
(Kajiwara et al., 2018; Yu et al., 2018). Additionally, we also found
that GRAMD3 can distinguish Braak NFT stage in AD samples
from EC tissues, which can explain that it may be involved
in early cognitive decline symptoms through cerebrovascular
disease (Dubé et al., 2013). However, we found that the FDR
values of the three genes discussed above were greater than 0.05,
suggesting that they have limitations in the classification of the
Braak NFT stage in AD samples.

Machine learning combined with MRI has been proven
to contribute to diagnosing several neurodegenerative
diseases, including dementia (Castellazzi et al., 2020). Thus,
we constructed AD classifiers, based on gene expression data
of significant hub genes, which were used to explore the
classification function of the genes. The results suggested that
AdaBoost is the worst classifier for AD in the four tissues. The
AD classifiers with the highest AUC in the TC and EC tissue
were AD MLP classifier (average of AUC = 0.97 ± 0.05) and
AD SVM classifier (average of AUC = 0.99 ± 0.00), respectively.
The average AUC of AD classifiers in the TC and EC tissues was
much higher compared with the other two tissues, suggesting
the important involvement of the corresponding significant
hub genes in AD pathogenesis. A total of six metrics were
previously introduced to evaluate the performance of prediction
methods (Vihinen, 2012), which were also used in our study.
Similar to AUC of AD classifiers, the F1 score, sensitivity,
specificity, PPV, and NPV of AD classifiers were higher in
TC and EC tissues compared with corresponding metrics of
AD classifiers in FC and EC tissues. Using fewer features in
the classification model will make the model simpler but also
prone to underfitting. Conversely, using too many features in
the classification model will make the model complicated and
overfitting (Lever et al., 2016). The good performance of AD
classifiers in TC and EC tissues may be due to the selection of
appropriate significant hub genes. In conclusion, the significant
hub genes identified in the modules associated with AD in the
TC and EC tissues have good AD classification ability, worthy
of further study.

Although this study discovered some genes that may
be related to the occurrence and progression of AD and
built an AD machine classifier on this basis, our research
conclusions still have certain limitations. All results in this
study were based on public data and published results, and
have not been verified by biological experiments or clinical
observations. We used AD-related hub genes to construct
an AD machine classifier, and it turns out that most AD
machine classifiers have AUC values above 0.9; however, the
number of training samples and test samples we used is too
small, which may lead to overfitting of the AD classifiers.
In the future, we will verify our findings through more
carefully designed experiments. Meanwhile, more AD datasets
will also be included in the training and testing of AD
machine classifiers.
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CONCLUSION

In conclusion, our study identified 33 and 42 hub genes from
modules associated with AD in TC and EC tissues. Among them,
PLXNB1, GRAMD3, and GJA were correlated with Braak NFT
stages of AD, suggesting that these genes may be involved in AD
pathogenesis and have a high potential for AD biomarker.
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Supplementary Figure 1 | Results of WGCNA analysis in the TC tissue. (A)
Sample clustering and characteristics heatmap. (B,C) β value selection by scale
independence and mean connectivity. (D,E) Scatter plot of GS vs. MM of the
significant module associated with AD in the TC tissue. The “cor” means the PCC
between GS and MM, while the p means the P-value calculated by
verboseScatterplot function. (F,G) The hub genes from the subnetwork of the
significant module associated with AD in the TC tissue by Cytoscape MCODE.
The red diamond represents hub genes, and the green ellipse represents the
nodes in the network.

Supplementary Figure 2 | Results of WGCNA analysis in the FC tissue. (A)
Sample clustering and characteristics heatmap. (B,C) β value selection by scale
independence and mean connectivity. (D–E) Scatter plot of GS vs. MM of the
significant module associated with AD in the FC tissue. The “cor” means the PCC
between GS and MM, while the p means the P-value calculated by
verboseScatterplot function. (F,G) The hub genes from the subnetwork of the
significant module associated with AD in the FC tissue by Cytoscape MCODE.
The red diamond represents hub genes, and the green ellipse represents the
nodes in the network.

Supplementary Figure 3 | Results of WGCNA analysis in the EC tissue. (A)
Sample clustering and characteristics heatmap. (B,C) β value selection by scale
independence and mean connectivity. (D,E) Scatter plot of GS vs. MM of the
significant module associated with AD in the EC tissue. The “cor” means the PCC
between GS and MM, while the p means the P-value calculated by
verboseScatterplot function. (F,G) The hub genes from the subnetwork of the
significant module associated with AD in the EC tissue by Cytoscape MCODE.
The red diamond represents hub genes, and the green ellipse represents the
nodes in the network.

Supplementary Figure 4 | Results of WGCNA analysis in the CE tissue. (A)
Sample clustering and characteristics heatmap. (B,C) β value selection by scale
independence and mean connectivity. (D,E) Scatter plot of GS vs. MM of the
significant module associated with AD in the CE tissue. The “cor” means the PCC
between GS and MM, while the p means the P-value calculated by
verboseScatterplot function. (F,G) The hub genes from the subnetwork of the

significant module associated with AD in the CE tissue by Cytoscape MCODE.
The red diamond represents hub genes, and the green ellipse represents the
nodes in the network.

Supplementary Figure 5 | Levels of hub genes from key modules associated
with AD in the TC tissue. (A) Levels of hub genes from darkgreen module
associated with AD in the TC tissue. (B) Levels of hub genes from darkorange
module associated with AD in the TC tissue.

Supplementary Figure 6 | Levels of hub genes from key modules associated
with AD in the FC tissue. (A) Levels of hub genes from blue module associated
with AD in the FC tissue. (B) Levels of hub genes from skyblue module associated
with AD of the FC tissue.

Supplementary Figure 7 | Levels of hub genes from key modules associated
with AD in the EC tissue. (A) Levels of hub genes from blue module associated
with AD in EC tissue. (B) Levels of hub genes form darkred module associated
with AD in EC tissue.

Supplementary Figure 8 | Levels of hub genes from key modules associated
with AD in the CE tissue. (A) Levels of hub genes from brown module associated
with AD in CE tissue. (B) Levels of hub genes from darkorange module associated
with AD in CE tissue.

Supplementary Figure 9 | Volcano plot and heatmap of the DEGs identified in
TC (A,E), FC (B,F), EC (C,G), and CE (D,H) tissue. The log2 fold change against
−log10(adj.P-value) of DEGs is shown in volcano plots. The significantly
upregulated and downregulated genes are colored in red and blue, respectively.
The expression of the top 50 upregulated and downregulated DEGs (ranked by |
log2FoldChange|) are shown in heatmaps.

Supplementary Figure 10 | ROC curves of ten AD classifiers based on
significant hub gens from modules associated with AD in TC (A), FC (B), EC (C),
CE (D) tissue. The ROC curve of sixfold cross-validation is displayed in different
colors, and the average ROC and standard deviation are marked in blue and
gray respectively.

Supplementary Figure 11 | Levels of hub genes of GSE131617 in the Braak
NFT stage from the TC tissue. Each point represents a sample. The height of each
point represents the amount of gene expression in the sample (after log2
conversion). The color of the point corresponds to the Braak NFT
stages of the sample.

Supplementary Figure 12 | Levels of hub genes of GSE131617 in Braak NFT
stage from the FC tissue. Each point represents a sample. The height of each
point represents the amount of gene expression in the sample (after log2
conversion). The color of the point corresponds to the Braak NFT
stage of the sample.

Supplementary Figure 13 | Levels of hub genes of GSE131617 in Braak
NFT stage from the EC tissue. Each point represents a sample. The height
of each point represents the amount of gene expression in the sample
(after log2 conversion). The color of the point corresponds to the
Braak NFT stage of the sample. The scripts used in this studies can be
downloaded in GitHub (https://github.com/BioinformaticsMan/piplineFor
TranscriptomAnalysis.git).

Supplementary Table 1 | The PC1 of modules identified by WGCNA.

Supplementary Table 2 | The detailed information of edges in the co-weighted
network of each module.

Supplementary Table 3 | The detailed information of the DEGs obtained among
AD and control groups in four tissues.

Supplementary Table 4 | The detailed information of the data used in
the AD classifiers.

Supplementary Table 5 | The classification metrics of AD classifiers for TC, FC,
EC, and CE tissue.

Supplementary Table 6 | The results of ANOVA in the Braak NFT stage of TC,
FC, and EC tissue.
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