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Objective: Triple-negative breast cancer (TNBC) is distinguished by early recurrence and
metastases, a high proclivity for treatment resistance, and a lack of targeted medicines,
highlighting the importance of developing innovative therapeutic techniques. Salvia
chinensis Benth (SCH) has been widely studied for its anticancer properties in a variety
of cancers. However, its significance in TNBC treatment is rarely discussed. Our study
investigated the anticancer effect of SCH on TNBC and the underlying mechanisms.

Methods: First, we used clonogenic, cell viability, flow cytometry, and Transwell assays to
assess the effect of SCH on TNBC. Bioinformatic studies, especially network
pharmacology-based analysis and RNA sequencing analysis, were performed to
investigate the constituents of SCH and its molecular mechanisms in the suppression
of TNBC. High-performance liquid chromatography and thin-layer chromatography were
used to identify two major components, quercetin and b-sitosterol. Then, we discovered
the synergistic cytotoxicity of quercetin and b-sitosterol and assessed their synergistic
prevention of cell migration and invasion. Breast cancer xenografts were also created
using MDA-MB-231 cells to test the synergistic therapeutic impact of quercetin and b-
sitosterol on TNBC in vivo. The impact on the DNA damage and repair pathways was
investigated using the comet assay and Western blot analysis.

Results: Our findings showed that SCH decreased TNBC cell growth, migration, and
invasion while also inducing cell death. We identified quercetin and b-sitosterol as the core
active components of SCH based on a network pharmacology study. According to RNA
sequencing research, the p53 signaling pathway is also regarded as a critical biological
mechanism of SCH treatment. The comet assay consistently showed that SCH
significantly increased DNA damage in TNBC cells. Our in vivo and in vitro data
revealed that the combination of quercetin and b-sitosterol induced synergistic
cytotoxicity and DNA damage in TNBC cells. In particular, SCH particularly blocked the
inter-strand cross-link repair mechanism and the double-strand breach repair caused by
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the homologous recombination pathway, in addition to inducing DNA damage. Treatment
with quercetin and b-sitosterol produced similar outcomes.

Conclusion: The current study provides novel insight into the previously unknown
therapeutic potential of SCH as a DNA-damaging agent in TNBC.
Keywords: Salvia chinensia Benth, triple negative breast cancer, DNA damage and repair, Quercetin, b-Sitosterol
INTRODUCTION

Despite significant advances in diagnostic and treatment
strategies, breast cancer remains the leading cause of cancer-
related death in women (1). Triple-negative breast cancer
(TNBC) is detected in 15% to 20% of women with breast
cancer and is characterized by the lack of ER, PR, and HER2
(2). In the first 3 to 5 years following the initial diagnosis, TNBC
patients have an increased risk of recurrence and metastasis (2,
3). The main obstacles in the treatment of TNBC are primary
and acquired resistance to treatments (4). When one signaling
node is suppressed, cancer cells prefer to rely on alternate
signaling routes, which is recognized as the underlying
mechanism of acquired resistance (5). As a result, multitarget
tactics may be more effective than single-node strategies.

Herbs have long been used as adjuvant therapies for TNBC,
particularly in patients with advanced metastatic cancers (6).
Previous research found that combining herbal medication with
chemotherapy or radiotherapy might boost antitumor
effectiveness while decreasing side effects (7, 8). Salvia chinensis
Benth (SCH), also known as Salvia chinensis herbal or Chinese
Sage (Shijianchuan), is extensively documented in the
Compendium of Materia Medica (Ming Dynasty, A.D. 1590).
SCH is often used to treat ostealgia and swelling carbuncles (9).
Previous studies have suggested that SCH has anticancer efficacy
in breast, gastric, nasopharynx, lung, colon, liver, and pancreatic
cancer (10, 11). However, there are few studies on the effects and
underlying mechanisms of SCH in TNBC.

We aimed to investigate the role of SCH in TNBC therapy in
this study. To the best of our knowledge, this is the first in vitro
and in vivo study indicating that SCH promotes TNBC cell death
by generating DNA damage while simultaneously decreasing
DNA damage repair. Furthermore, subsequent findings show
that quercetin and b-sitosterol, two essential constituents of
SCH, synergistically suppress TNBC cells by increasing DNA
damage. Overall, our data suggest that SCH has strong potential
as an adjuvant treatment option for TNBC patients.
; TNBC, triple-negative breast cancer;
eptor; HER2, human epidermal growth
peat; OD, optical density; TCMSP,
Pharmacology database; OB, oral
, Online Mendelian Inheritance in
Encyclopedia of Genes and Genomes;
ard deviation; CI, combination index;
langiectasia mutated; ATR, ATM- and
ARP, poly ADP-ribose polymerase.
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MATERIALS AND METHODS

Cells and Reagents
The human TNBC cell lines MDA-MB-231 and HCC1187, the
human mammary epithelial cell line MCF-10A, the mouse
TNBC cell line 4T1, the human luminal breast cancer cell lines
MCF-7 and T47D, and the human HER2-positive breast cancer
cell lines HCC1954 and SKBR3 were procured from ATCC
(Manassas, VA, USA) and were sustained in culture medium
(MDA-MB-231 in DMEM (Gibco, Grand Island, NY, USA,
C11995500BT), other cell lines in RPMI-1640 (Gibco,
C11875500BT)) supplemented with 10% fetal bovine serum
(FBS, Biological Industries, Cromwell, CT, USA, 04-001-1ACS)
and 100 units per ml penicillin/streptomycin (HyClone, Logan,
UT, USA, SC30010) at 5% CO2 and a moderate temperature of
37°C in an incubator. We prepared the culture medium for
MCF-10A cells as described previously (12). The cell lines were
free of mycoplasma contamination and were verified by short
tandem repeat (STR) profiling. Quercetin and b-sitosterol were
purchased from MedChemExpress (MCE, Princeton, NJ, USA,
HY-18085 and HY-N0171A). To procure the aqueous extracts of
SCH, the shredded herb was boiled with a 10× volume of water
for 2 h (in duplicate), followed by freeze-drying of the
concentrate. The resultant dry powder was preserved at -20°C.
The doses used in the current investigation were aliquoted as an
equivalent weight of raw herb per ml.

Clonogenic Assay
The cells (1 × 104 cells/well) were incubated in 12-well plates and
cultured continuously, and every third day, the medium was
renewed. After culturing, the cells that were stained with 0.5%
crystal violet were subsequently washed with PBS, dried, and
finally dissolved in 10% acetic acid. The OD was measured at 590
nm with the aid of a SpectraMax 190 (Molecular Devices, San
Jose, CA, USA).

Migration and Invasion Assay
Cell migration and invasion were assessed according to the
instructions of the manufacturer (Corning, Tewksbury, MA,
USA) of the Transwell assay kits. In brief, the chambers were
filled with BD Biosciences Matrigel (San Jose, CA, USA) for the
invasion assay or without Matrigel for the migration assay.
Serum-restricted medium (5 × 103 cells/200 ml of cell
suspension) was added to the upper chamber, with SCH (100
mg/ml) medium containing 10% FBS in the lower chamber.
After 2 days of incubation, the non-invading cells were carefully
removed, and the invading cells stained with 0.5% crystal violet
were imaged via inverted phase-contrast microscopy (Olympus
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Corporation, Tokyo, Japan). Images were captured with a
microscope (Leica, Wetzlar, Germany, DMI1) at ×100
magnification. Cell counts were assessed from three random
microscope fields for every group.

Flow Cytometry
A flow cytometric evaluation of cell apoptosis was performed by
Annexin V and PI staining via the APC Annexin V Apoptosis
Detection Kit (KeyGen Biotech, Nanjing, China, KGA1030). The
cells for cell-cycle analysis were prepared and stained as
previously described (13). All examinations were performed on
a BD FACSCanto™ II (BD Biosciences, USA).

Western Blot Analysis
RIPA buffer augmented with protease and phosphatase
inhibitors was administered for cell lysis (14). The proteins
were separated by SDS-PAGE and then transferred to
nitrocellulose blotting membranes (GE Healthcare Life Science,
Germany). The spots were examined with antibodies against
PARP (Cell Signaling Technology, CST, Danvers, MA, USA,
9542), vinculin (Abcam, Cambridge, MA, USA, ab129002),
GAPDH (HUABIO, Woburn, MA, USA, M1310-2), ATM
(Santa Cruz Biotechnology, Dallas, TX, USA, sc135663), p-
ATM (Ser1981) (CST, 5883) , H2AX (Santa Cruz
Biotechnology, sc517336), p-H2AX (Ser139) (Santa Cruz
Biotechnology, sc517348), CHK1 (Santa Cruz Biotechnology,
sc8408), p-CHK1 (Ser345) (CST, 2348), P53 (Santa Cruz
Biotechnology, sc126), p-P53 (Ser15) (CST, 9286), ATR (Santa
Cruz Biotechnology, sc515173), p-ATR (Ser428) (CST, 2853),
FANCD2 (Santa Cruz Biotechnology, sc20022), and RAD51
(Santa Cruz Biotechnology, sc398587).

Cell Viability
The cells (103 cells/well) were incubated in 96-well plates. Then,
the viability of the cells was evaluated with the aid of CCK-8
(Bimake, B34304). A SpectraMax 190 (Molecular Devices, USA)
was used to assay the optical density (OD) at 450 nm. The IC50s
were calculated from sigmoidal dose–response curves
utilizing Prism.

Network Pharmacology Analysis
The chemical ingredients and target genes of SCH were
investigated based on the Traditional Chinese Medicine
Systems Pharmacology (TCMSP) database. Parameters such as
oral bioavailability (OB) ≥30% and drug likeness (DL) ≥0.18
were evaluated according to the thresholds recommended in the
TCMSP. TNBC-related genes were collected from Gene Cards
(www.genecards.org) and Online Mendelian Inheritance in Man
(OMIM). After collecting the data for genes of interest pertaining
to SCH and TNBC, the shared genes between SCH-related genes
in TNBC were identified by Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis (15).

High-Performance Liquid Chromatography
The quercetin standard was dissolved in methanol, generating
concentrations of 0.1, 0.05, 0.02, 0.01, and 0.005 mg/ml, which
were used to prepare the standard curves for quercetin
Frontiers in Oncology | www.frontiersin.org 3
quantification in the tested sample. Aqueous extracts of SCH
(100 mg) were extracted via ultrasonication in methanol (1 ml)
for 20 min. The extracted solutions were subjected to a 0.22-mm
filter membrane, yielding a clear solution for high-performance
liquid chromatography (HPLC) analysis. Analytical HPLC
experiments were conducted on a Dionex UltiMate 3000
instrument (Thermo Scientific, Waltham, MA, USA) equipped
with a diode array detector and a Waters XSelect HSS T3 C18
column (250 × 4.6 mm, 5 mm). The chromatographic conditions
for HPLC analysis were as follows: acetonitrile-H2O (0.1%
H3PO4) (30:70, v/v), flow rate of 1 ml per min, column
temperature of 30°C, run time of 20 min, and a detected
wavelength of 360 nm.

Thin-Layer Chromatography
Using b-sitosterol as the standard compound, SCH was analyzed
by thin-layer chromatography (TLC). In general, TLC was
performed using precoated silica gel GF254 plates (2.5 ×
7.5 cm, Qingdao Marine Chemical Inc.) with petroleum ether-
ethyl acetate (9:1, v/v) as the developing solvents. Then, the spots
were visualized by spraying the plates with 20% sulfuric acid in
EtOH, followed by heating at 90°C.

RNA Sequencing and Data Analysis
RNA sequencing of MDA-MB-231 cells (vehicle vs. SCH
treatment) was carried out by Novogene Corporation (Beijing,
China). The sequencing libraries were created using the
NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB,
Ipswich, MA, USA) according to the manufacturer ’s
instructions. FPKM (expected number of Fragments Per
Kilobase of transcript sequence per Million base pairs
sequenced) was used to estimate gene expression levels. The
ClusterProfiler R package was used to test the statistical
enrichment of differentially expressed genes in KEGG
pathways. We have submitted our RNA-seq dataset to the
Gene Express ion Omnibus (GEO) under access ion
number GSE189547.

Comet Assay
DNA damage was assayed by a comet assay (16). Using alkaline
lysis buffer, the cells were lysed and electrophoresed (buffer
counteracted with PBS), stained, and assessed with Gold View
(Coolaber, SL2140). Ultimately, cells were documented with a
Leica fluorescence microscope (Leica Microsystems, Wetzlar,
Germany), and the occurrence of the DNA in the tail
(percentage) was evaluated on a quantitative scale of DNA
damage using CASP (Comet Assay Software Project
Lab) software.

Animals
The protocol for animal experiments was approved by the
Animal Research Committee of Dalian Medical University. To
develop breast cancer xenografts, MDA-MB-231 cells (6 × 106)
were subcutaneously inoculated into female BALB/c nude mice.
At the culmination of the 7th day of implantation, mice were
administered vehicle, quercetin (75 mg kg-1), b-sitosterol (75 mg
kg-1), or both quercetin and b-sitosterol each day via oral gavage
August 2022 | Volume 12 | Article 882784
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for 3 weeks. The tumor volumes were calculated every 5 days
with the aid of calipers and were quantified using the following
formula: tumor volume = (length × width2)/2. At the end of the
experiment, mice were subjected to carbon dioxide asphyxiation
for euthanasia: the mice were put into a clean container with
carbon dioxide at a slowly increasing concentration. After
approximately 10 min, the mice died slowly and painlessly.

Immunohistochemistry
Immunohistochemical (IHC) staining was performed using the
streptavidin–peroxidase method. Formalin-fixed paraffin-
embedded tumor tissues were cut into 4-µm-thick sections that
were dewaxed and rehydrated using standard conditions.
Sections were pretreated with 10 mM Tris–Na citrate (pH 6)
for 20 min at 95°C and washed. Then, the sections were
incubated for 10 min in 3% H2O2 in PBS to inhibit
endogenous peroxidase. The slides were blocked in goat serum
for 30 min, followed by incubation with antibodies (the same
antibodies used for immunoblotting) overnight at 4°C. After
washing with PBS, the biotinylated secondary antibody–HRP
conjugate was applied for 60 min at room temperature. The
sections were counterstained with hematoxylin. Additionally,
some slides were stained with hematoxylin and eosin (H&E).
After dehydration and mounting, histological samples were
quantified using a microscope (Lecia, DMI1) at ×200
magnification. Tumor necrosis was determined according to
the percentage of the overall necrosis area. The proteins
involved in DNA damage and repair were quantified by the
percentage of the overall area that was stained. For each sample,
the percentages of positive staining were assessed on the basis of
three random microscope fields, and each group was tested with
three independent samples.

Statistical Analysis
Data are presented as the mean ± standard deviation (SD).
GraphPad Prism software was employed to perform unpaired
two-sided t tests, one-way ANOVA, and Tukey’s multiple-
comparison tests (for both in vitro and in vivo animal studies).
CalcuSyn 2.0 software (Biosoft) was used for the drug interaction
assessment (Chou–Talay method). An additive effect was
indicated by combination index (CI) =1, whereas synergism was
indicated by CI <1 and antagonism was indicated by CI >1. A P
value <0.05 was considered to indicate statistical significance.
RESULTS

SCH Suppresses TNBC Cell Growth and
Induces TNBC Cell Apoptosis
We investigated the in vitro cytotoxicity of SCH against human
TNBC cells (MDA-MB-231, HCC1187) and mouse TNBC 4T1
cells using a clonogenic survival experiment. Figures 1A, B
shows the time-dependent and dose-dependent suppressive
effect of SCH on TNBC cells. A high dose of SCH (200 mg/l)
reduced the clonogenic potential to a level comparable to that
achieved with a traditional chemical medication (cisplatin 5 µM,
Frontiers in Oncology | www.frontiersin.org 4
paclitaxel 10 µM) (Figure S1A). We also examined the drug
sensitivity of various subtypes of breast cancer cells to SCH
(Figure S1B). According to the data, the appropriate therapeutic
dosage of SCH for TNBC is 50–200 mg/l. In addition, we
performed a Transwell assay and found that SCH suppressed
cellular migration and invasion 48 h after treatment (Figures 1C,
D). The effect of SCH on cell survival was also investigated, and
the results demonstrated that SCH treatment promoted G0/G1-
phase cell-cycle arrest (Figure S2), followed by apoptotic cell
death (Figures 2A, B), with increasing levels of cleaved PARP
(Figure 2C), an indicator of apoptosis. Altogether, these results
indicate that SCH has antitumor activity against TNBC cells.

Quercetin and b-Sitosterol Synergistically
Inhibit TNBC Cells
Based on the TCMSP database, the main therapeutic
constituents of SCH were identified as quercetin and b-
sitosterol (Table 1). The ingredients with low OB (≤ 30%) or
low DL (≤ 0.18) are not listed in the table. Using HPLC and TLC,
we verified the presence of quercetin and b-sitosterol in SCH
(Figure S3). The effects of quercetin and/or b-sitosterol on
TNBC cells were then assessed using cell viability tests.
Interestingly, both quercetin and b-sitosterol inhibited TNBC
cell growth, and the combination treatment resulted in a more
dramatic dose-susceptible suppression of cell viability than
monotherapy (Figure 3A). The CI values revealed a strong
synergism of the combination treatment, with CI <1.0 for all
dosages tested (Figure 3B). Furthermore, the combination
treatment’s synergism was verified by a 3-day clonogenic
survival experiment (Figures S4A, B). We assessed the
synergistic inhibition of the combination treatment on cell
migration and invasion using a Transwell assay (Figures 3C,
D). In addition to the synergistic inhibition of TNBC viability,
the synergistic induction of G0/G1-phase cell-cycle arrest
(Figure S4C), cell apoptosis (Figures 4A, B), and activation of
cleaved PARP were observed after the combination treatment
(Figure 4C). These findings confirm that the major components
of SCH are effective in inhibiting TNBC growth and that the
combination of these substances generates significant
synergistic cytotoxicity.
SCH Exerts Its Antitumor Effect Through
the P53 Signaling Pathway in TNBC
Using network pharmacology analysis, 83 genes were identified
as SCH- candidate genes, while 4,129 TNBC-related genes were
acquired from Gene Cards and the OMIM database. Next, we
located 65 shared genes between SCH-targeted genes and TNBC-
related genes (Figure 5A). Then, to identify SCH-related
pathways in TNBC, KEGG analysis of shared genes was
performed. As shown in Figure 5B, many classical pathways,
such as the p53 signaling pathway, apoptosis pathway, and TNF
signaling pathway, were represented. We performed RNA
sequencing to detect transcriptome alterations in MDA-MB-
231 cells generated by SCH treatment for 24 h to learn more
about the underlying anticancer mechanism of SCH. RNA
sequencing analysis revealed a substantial link between the p53
August 2022 | Volume 12 | Article 882784
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signaling pathway and SCH, confirming the findings of
bioinformatic research (Figure 5C). Recent research showed
that quercetin and b-sitosterol therapy triggered the p53
signaling pathway (17–19). Taken together, the current
findings reveal a link between SCH therapy and the regulation
of the p53 signaling pathway in TNBC cells.
Frontiers in Oncology | www.frontiersin.org 5
SCH Activates DNA Damage and Impairs
DNA Damage Repair in TNBC Cells
Stimulation of p53-mediated transcription is a crucial cellular
reaction to DNA damage, culminating in cell-cycle arrest and
reduced cell proliferation (20). Thus, we assessed the impact of
SCH on DNA damage by the comet assay. SCH treatment
B

C

D

A

FIGURE 1 | SCH inhibits TNBC cell growth, migration, and invasion. (A) TNBC cells were cultured with varying dosages of SCH for 3, 6, 9, 12, and 15 days and
stained via crystal violet (media were replenished every third day). (B) The quantification of the clonogenic survival assay is shown as mean ± S.D. from three
independent experiments. Representative images of the migration (C) and invasion (D) after SCH treatment. Scale bar, 100 µm. Results exhibited as mean ± S.D.
from three separate trials. “ns”, not significant, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
August 2022 | Volume 12 | Article 882784
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significantly increased DNA damage in a dose-dependent manner,
as measured by the percentage of DNA in the tails (Figure 6A).
Next, the effects of quercetin and b-sitosterol on DNA damage in
TNBC cells were determined. InMDA-MB-231 cells, compared to
Frontiers in Oncology | www.frontiersin.org 6
a single drug, the combination of quercetin and b-sitosterol
induced a strong synergistic induction of DNA damage
(Figure 6B). At the molecular level, we conducted immunoblot
analysis to evaluate the effects of SCH and its active ingredients
B

C

A

FIGURE 2 | SCH activates TNBC cell apoptosis. (A) Apoptotic cell death was evaluated via flow cytometric analysis subsequently DAPI and FITC-Annexin V staining
in cells treated with varying dosages of SCH. (B) The % of Annexin V+/PI- (early apoptotic cells, lower right), Annexin V+/PI+ (late apoptotic cells, upper right),
Annexin V-/PI- (viable cells, lower left), and Annexin V+/PI+ (necrotic cells, upper left) cells are displayed. Columns epitomize the % of Annexin V-positive TNBC cells.
“ns,” not significant, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test). (C) TNBC cells were treated with varying dosages of SCH for 24 h and then subjected to
an immunoblotting analysis.
TABLE 1 | Bioactive Compounds of SCH.

Molecule ID Molecule Name OB (%) DL

MOL000358 beta-sitosterol 36.91 0.75
MOL000098 quercetin 46.43 0.28
August 2022 | Volume 12 | Article 88
OB, oral bioavailability. DL drug likeness.
2784

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. A Novel DNA Damage Agent.
quercetin and b-sitosterol on the expression of DNA damage
response and repair proteins. In MDA-MB-231 cells treated with
SCH for 24 h, DNA damage response proteins (p-H2AXser139, p-
ATMser1981, p-CHK1ser345, p-ATRser428, and p-p53ser15) were
Frontiers in Oncology | www.frontiersin.org 7
activated, while FANCD2 (involved in DNA inter-strand cross-
link repair) and RAD51 (involved in DNA double-strand break
repair) were downregulated (Figure 7A). To further investigate
the suppression of DNA double-strand damage repair by SCH, we
B

C

D

A

FIGURE 3 | The combination of quercetin and b-sitosterol induces synergistic growth inhibitory effects on TNBC cells. (A) TNBC cells were simultaneously treated with
quercetin and/or b-sitosterol for 48 h. Cell viability was measured via CCK-8 assay and depicted as the percentage of viable cells in the experimental group relative to than in the
control group. Results are presented as mean ± S.D. from three separate trials. (B) The combined effect of quercetin and beta-sitosterol was gauged with the aid of CalcuSyn
software. Heatmaps depict the combination index (CI). Representative images of the migration (C) and invasion (D) after quercetin and/or b-sitosterol treatment with Transwell
assay. Scale bar, 100 µm. Results exhibited as mean ± S.D. from three separate trials. “ns,” not significant, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
August 2022 | Volume 12 | Article 882784
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also evaluated the efficacy of the combination of SCH and olaparib
(a PARP inhibitor) against TNBC (Figure S5). The combination
of olaparib and SCH caused “synthetic lethality” by inducing the
accumulation of single- and double-strand breaks simultaneously.
Furthermore, compared to a single drug, quercetin and b-
sitosterol induced substantial synergistic activation of DNA
damage response proteins and inhibition of DNA damage repair
proteins in MDA-MB-231 cells (Figure 7B). Together, these
findings suggest that SCH suppresses TNBC progression via the
synergistic ability of quercetin and b-sitosterol to induce DNA
damage and restrain DNA damage repair.
Frontiers in Oncology | www.frontiersin.org 8
Quercetin and b-Sitosterol Synergize to
Suppress TNBC Tumor Growth In Vivo
After establishing that quercetin and b-sitosterol synergize to inhibit
TNBC cell proliferation and survival in vitro, we evaluated their in
vivo efficacy in a human breast cancer xenograft mouse model. After
tumor establishment, themice were treated with vehicle, quercetin, b-
sitosterol, or a combination of quercetin and b-sitosterol. We found
that the tumors in mice treated with a combination of quercetin and
b-sitosterol were much smaller than the tumors in animals treated
with a single agent (quercetin or b-sitosterol) (Figures 8A, B). All of
the treatments were well tolerated (Figure S6). Furthermore,
B

C

A

FIGURE 4 | The combo treatment of quercetin and b-sitosterol synergistically increases TNBC cell apoptosis. (A) Apoptotic cell death was assessed by flow
cytometric analysis following DAPI and FITC-Annexin V staining in cells treated with quercetin and/or b-sitosterol for 48 h. (B) The % of Annexin V+/PI- (early
apoptotic cells, lower right), Annexin V+/PI+ (late apoptotic cells, upper right), Annexin V-/PI- (viable cells, lower left), and Annexin V+/PI+ (necrotic cells, upper left)
cells are shown. Columns represent the percentages of Annexin V-positive TNBC cells. “ns,” not significant, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
(C) TNBC cells were treated with quercetin and/or b-sitosterol for 24 h and then subjected to an immunoblotting analysis.
August 2022 | Volume 12 | Article 882784
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immunoblotting of tumor lysates confirmed the in vivo impacts of
quercetin and b-sitosterol on DNA damage and repair pathways
(Figure 8C). H&E and IHC analysis demonstrated that a
combination of quercetin and b-sitosterol treatment induced more
tumor necrosis and DNA damage than a single treatment (Figure
S7). These findings suggest that quercetin and b-sitosterol inhibited
TNBC cell proliferation in vivo by inducing DNA damage in a
synergistic way.
Frontiers in Oncology | www.frontiersin.org 9
DISCUSSION

TNBC patients tend to have worse morbidity than other subtypes
due to significant molecular heterogeneity and metastatic
potential, a lack of effective targeted treatments, and a strong
predisposition to multidrug resistance (21). DNA-damaging
agents, such as PARP inhibitors, cisplatin, and carboplatin,
have long been used to treat TNBC and have been shown to
B

C

A

FIGURE 5 | Bioinformatic analysis and transcriptome analysis divulge latent targets of SCH. (A) C–T network of SCH. The green ellipse represents target genes.
The purple rectangle, orange diamond, and yellow triangle stand for compounds. KEGG pathway enrichment scrutiny of target genes of SCH from online
database (B) and transcriptome analysis (C). Pathways with attuned P-value <0.05 are shown.
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B

A

FIGURE 6 | SCH treatment induces DNA damage via the synergistic effect of quercetin and b-sitosterol. (A) Comet assay (scale bar, 100 mm) was executed to
appraise DNA damage in TNBC cells administered with varying dosages of SCH for 48 h. (B) Comet assay (scale bar, 100 mm) was performed to evaluate DNA
damage in TNBC cells treated with quercetin and/or b-sitosterol for 48 h. The DNA quantification in the tail from three separate trials is revealed as mean ± S.D., ns-
not significant, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
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dramatically improve patient survival. Our results revealed that
SCH inhibited TNBC tumor growth in vivo and in vitro by
causing DNA damage and suppressing DNA repair. This finding
is useful as it provides a novel multitarget DNA-damaging agent
for patients with advanced TNBC who have developed
multidrug resistance.

SCH has been shown to have anticancer effects on
hepatocellular carcinoma, gastric cancer, nasopharyngeal
carcinoma, luminal breast cancer, and other cancers (9, 11,
22–25). We first observed the suppressive effect of SCH on
TNBC cell proliferation, migration, and invasion, as well as the
induction of cell death, in the current study. Moreover, SCH
dramatically decreased tumor growth in TNBC xenograft
mouse models, which was consistent with the in vitro data.
Through network pharmacology and RNA sequencing
analyses, two important constituents of SCH, quercetin and
b-sitosterol, were found, and a putative relationship between
SCH and the p53 signaling pathway was identified. The
activation of the tumor-suppressor p53 is regarded as the
major mechanism of apoptosis induced by DNA damage
(26). We thus focused on the association between SCH and
DNA damage and found that SCH treatment caused substantial
DNA damage. Furthermore, immunoblotting revealed that
Frontiers in Oncology | www.frontiersin.org 11
after SCH therapy, DNA damage response proteins were
activated, whereas DNA repair proteins were inhibited. These
findings suggest that SCH could be used as a novel DNA-
damaging agent to treat TNBC.

SCH has a variety of components, and we used HPLC and
TLC to identify quercetin and b-sitosterol. Our data showed that
the combination treatment of quercetin and b-sitosterol led to
the synergistic suppression of cell viability, along with induction
of apoptosis and caspase activation. Quercetin suppresses tumor
progression through a variety of mechanisms, including
antioxidative activity, growth inhibition, apoptosis induction,
reduced inflammation, and angiogenesis inhibition (27–34). b-
Sitosterol is a plant-derived compound that has anticancer
properties in the context of breast, prostate, colon, and lung
cancer. According to recent research, b-sitosterol disrupts the
cell cycle, regulates multiple signaling pathways, and has effects
on apoptosis, proliferation, survival, invasion, angiogenesis,
metastasis, and inflammation (35–39). However, the effects of
quercetin and b-sitosterol on DNA damage have yet to be fully
explored. In the current study, we found that when quercetin and
b-sitosterol were administered together, there was a larger
increase in DNA damage and a larger reduction in DNA repair
than when they were given separately.
BA

FIGURE 7 | SCH and its key ingredients, quercetin and b-sitosterol, activate DNA damage response pathways and suppress DNA repair pathways. MDA-MB-231-
whole-cell lysates administrated with varying concentrations of SCH (A), quercetin and/or b-sitosterol (B) for 24 h were obtained and subsequently subjected to
immunoblotting analysis and explored with the designated antibodies.
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Previously, only a few studies have examined the underlying
mechanism of SCH for oncotherapy. Our findings reveal that
SCH appears to target DNA damage mechanisms. The proteins
transmitting signals from DNA damage and cell-cycle
checkpoints to DNA repair pathways consist of ataxia-
telangiectasia mutated (ATM), ATM- and Rad3-related (ATR),
CHK1, H2AX, RAD51, and FANCD2. ATM is recruited to
double-strand breaks (DSBs) and executes checkpoint
signaling. ATR is activated by replication stress, during which
it facilitates fork stabilization and restart. CHK1 and H2AX are
Frontiers in Oncology | www.frontiersin.org 12
effector kinases that function downstream of ATR and ATM.
RAD51 is directly involved in the DSB repair processes of
homologous recombination. The activation of FANCD2 marks
the major activation switch for the FA pathway in the process of
inter-strand cross-link repair (40, 41). In cells treated with SCH,
there was a considerable increase in the phosphorylation of
CHK1, H2AX, ATM, and ATR, culminating in the activation
of p53, which supports our theory. Moreover, SCH
downregulated the expression of FANCD2 and RAD51 at the
same time, causing further DNA damage.
B

C

A

FIGURE 8 | Combination therapy leads to significant tumor regression in vivo. (A) Nude mice were subcutaneously injected with MDA-MB-231 cells. Representative
images show the dissected tumors in distinct treatment groups as specified at the endpoint. (B) The tumor growth curve of xenografts treated with vehicle or
quercetin or b-sitosterol or combination. The data presented as mean ± S.E.M. n = 5 for each group. ***P < 0.001 (one-way ANOVA, with Turkey’s multiple-
comparison tests). (C) The tumor lysates were collected, and the protein profusion was established by immunoblotting analysis.
August 2022 | Volume 12 | Article 882784

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. A Novel DNA Damage Agent.
Approximately 50%–60% of TNBCs will exhibit homologous
recombination deficiency (HRD) due to the genetic or epigenetic
inactivation of one or more HR pathway genes (42). HRD is
associated with vulnerability to DNA-damaging agents like
anthracyclines and platinum chemotherapeutic agents or
PARP inhibitors (43). Our study found that SCH caused
apoptosis in TNBC cells by inducing double-strand DNA
damage and blocking DNA damage repair. Simultaneously,
additional research demonstrated that SCH and olaparib had a
synergistic impact. In the future, we could administer SCH as a
sensitizer combined with platinum-based chemotherapeutic
agents or PARP inhibitors to treat advanced refractory TNBC.
The ability of SCH to sensitize cancer cells to anticancer agents
or defeat drug resistance is yet to be verified by clinical trials.

In summary, our findings highlight the antitumor effect of
SCH therapy in TNBC, which is mediated by improvement of
Frontiers in Oncology | www.frontiersin.org 13
the DNA damage response and impairment of the repair
pathway, and revealed the strong synergistic effect of the
combination of quercetin and b-sitosterol (Figure 9). The
current study provides a rationale for the future application of
SCH in TNBC patients. Furthermore, the finding that SCH
sensitizes TNBC cells to olaparib suggests that there may be
value in combining SCH with other DNA-damaging agents to
treat TNBC, which requires extensive research.
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