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Several previous studies by our group suggest that positive
selection can drive certain (not all) genes to be retained in the
lagging-strand orientation1–3. This is likely the result of mul-

tiple factors including accelerated evolution through replication-
transcription conflicts1–4. Liu and Zhang challenge this view, and
claim that the GC Skew-based method we used for detecting gene
inversions is flawed4. Though the GC skew method does have a
detection limit, we provide new evidence that the fundamental
assumptions of our model, and our general conclusions, are accurate.
We also introduce technical changes that improve the sensitivity of
our method. The resulting high resolution data closely agree with Liu
and Zhang’s phylogeny-based gene inversion data, and indicate that
the trends we originally identified are stronger than they initially
appeared: Across species, 89–96% of lagging-strand genes appear to
be native leading strand genes that changed orientation. Our statis-
tical analyses offer further support for the notion that for some genes,
the lagging-strand orientation can be adaptive.

Inconsistent vocabulary is a source of confusion in this debate.
Liu and Zhang’s phylogeny-based method identifies conserved
orthologs that changed orientation during the divergence of an
ancestral and descendant species. Liu and Zhang refer to all such
events as “inversions” in accordance with common usage. How-
ever, this is distinct from the definition we used1. For clarity, here
we refer to all change-of-orientation events as “flips”. There are
two flip subtypes: The first results in a gene with a negative GC
skew (Fig. 1, upper graphs). We originally called these “inver-
sions”. However, for clarity we now call them “GC skew inver-
sions”. We interpret the negative GC skew as an indication that
the gene in question has physically flipped from its typical
orientation, established over long-term evolution, to the opposing
orientation. In the second sub-type, the flip results in a positive
GC skew (Fig. 1, lower graphs). We describe these events as “GC
skew reversions” as they reproduce the standard positive GC skew
observed across the chromosome, and presumably restore a gene
to its typical orientation. Our method cannot, and was never
intended to identify GC skew reversions. Thus, our paper’s
“inversions” (GC skew inversions) should represent only a subset
of Liu and Zhang’s “inversions” (pooled GC skew reversions and
inversions).

To identify inconsistent data points between the two studies,
we calculated the GC skew for each of the ancestor/descendant
orthologues Liu and Zhang identified (this manuscript’s Supple-
mentary Data 1, 2, 3). These data show that, as expected, many
flips are GC skew inversions, while others are GC skew rever-
sions. This confirms that the differences between Liu and Zhang’s
data and our own4 are entirely appropriate. These data also show
that most “false negative errors” are simply GC skew reversion
events. For example, in the M. penetrans/M. gallisepticum com-
parison, 27/52 flips are GC skew inversions and 22/52 are
reversions, thus explaining 88% (22/25 total) of the perceived
errors. (The remaining discrepancies are discussed below.)
Notably, Liu and Zhang report a particularly low agreement
between the two methods for lagging-to-leading strand flips. The
data show that this is because most lagging-to-leading strand gene
flips are GC skew reversions (Supplementary Data 1, 2, 3).

Liu and Zhang suggest improving our method’s accuracy by
analyzing only 3rd codon position nucleotides (CP3), rather than
whole-gene sequences when calculating the GC skew. We hypo-
thesized that CP3 should be the least reliable source of infor-
mation because these bases can mutate without significant
consequence. Therefore, after a flip that results in a GC skew
inversion, the CP3-based GC skew value should rapidly rise,
preventing detection of the orientation change. We also note that
the positive GC skew of whole chromosome arms is clearly
detected using a sliding window which completely ignores codon
position5. As such, it should be unnecessary or even counter-
productive to examine only CP3 nucleotides. Nevertheless, we
tested Liu and Zhang’s hypothesis by calculating the GC skew
using either the whole-gene sequence, or only nucleotides in the
1st, 2nd, or 3rd codon positions (Supplementary Data 4). We
observe good agreement between the whole-gene and the codon
positions 1 and 2-based data. However, as predicted, there is
lower agreement with the 3rd codon position-based data, espe-
cially for lagging-strand genes (Supplementary Data 4, Fig. 5 in
ref. 1). As we previously showed, the lagging strand is enriched in
GC skew inversions, explaining the latter observation4. Hence the
3rd codon position-based GC skew calculation is the lowest
fidelity method for GC skew inversion detection.
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Interestingly, both CP1 and CP3-based GC skew values are
generally positive, matching the trend across the chromosome
(Fig. 2, Supplementary Data 4). In fact, the magnitude of the GC
skew is greatest for CP1 nucleotides (Fig. 2, top graphs). As CP1
nucleotides are under far higher selection pressure than CP3
nucleotides, these data suggest that GC skew values are more
strongly influenced by replication-related mutation bias than
selection. Additionally, as negative values are almost exclusively
associated with lagging-strand genes, gene flipping to the atypical
orientation appears to be the best explanation for CP1-based GC
skew inversions. Both observations support the validity of our
interpretations and methods.

To further test the validity of our method and conclusions, we
returned to the hypothesis that the CP3-based GC skew value of a
GC skew inversion should rise quickly relative to CP1-based
values due to low selective pressure. If this model is correct, then
the CP3-based GC skew value of most genes should be higher
than the CP1-based value. Indeed, that is exactly what we
observed (Fig. 2, gold versus red columns). This case is particu-
larly clear among lagging-strand genes where the average CP3-
based value is positive while the average CP1-based value remains
negative. These differences are highly significant (Z-test p= 0).
Notably, these data imply that a CP1-based GC skew analysis
should be more accurate than a whole-gene based analysis for
detecting genes that change orientation. Therefore, we re-
calculated the GC skew values for B. subtilis genes using the
CP1-based method (Fig. 2 red versus blue columns). Incredibly,
the new data indicate that nearly all (94%) of the genes currently
on the lagging-strand were encoded on the leading strand
throughout the majority of B. subtilis’ evolutionary history. This
exceeds our original estimate of 64%4. As such, our original data
appears to be generally accurate, if limited in resolution (dis-
cussed below).

Though most of the differences between the GC skew and
phylogeny-based data sets are due to GC skew reversions, some

discrepancies remain. As one possible explanation, we hypothe-
sized that some genes may have changed orientation in the dis-
tant past. In such cases, subsequent mutagenesis could have
erased the negative GC skew value, preventing detection of the
flip. In keeping with this notion, previous work shows that the
closest related ancestor/descendant pair, Mycoplasma penetrans
and Mycoplasma gallisepticum, diverged at least 100M years ago6.
This is based on a 1.8% difference in the 16S rRNA genes between
the ancestor and descendant species, and a 1% rate of change per
50M years6. In further support of this temporal limitation
hypothesis, we observed that the higher-resolution CP1-based GC
skew analysis solved the problem: For the B. lichenformis/B.
subtilis pair, a CP1-based GC skew sign change was apparent in
100% of the flipped ortholog pairs (Supplementary Data 1, right
columns). To ensure that this observation does not reflect a high
false positive rate, we calculated the CP1 GC skew for all single
copy orthologs that did not change orientation (Supplementary
Data 5). In this analysis, the phylogeny-based and GC Skew-based
analyses show 98.4% agreement. As the remaining discrepancies
could reflect an error in either method7, our data imply a false
negative rate of <1%, and false positive rate of <1.6%. These
observations strongly support the validity of the CP1-based GC
skew-based analysis. They also suggest that our original (whole-
gene) method has a lower temporal limitation that reduces
detection of ancient GC skew inversions.

Liu and Zhang also challenge our inference that positive
selection acts more frequently on lagging-strand genes. To further
test our interpretation, we conducted likelihood ratio tests using
the single-nonsynonymous rate models M1a (neutral evolution)

Fig. 1 Comparison of gene “inversion” definitions and detection methods.
The two studies use different definitions of “gene inversion”. For clarity, we
use “Gene Flip” to mean any change-of-orientation event. Gene flips have
two subtypes resulting in a gene having a negative GC Skew (upper graphs)
or a positive GC skew (lower graphs). The Merrikh and Zhang definitions
agree in the first scenario (upper graphs), but conflict in the second (lower
graphs). As both gene orientation and GC skew sign (±) are important
considerations, there are four possible circumstances (numbered 1–4)
indicated under the GC skew plots. In case 1, a natively leading strand gene
(indicated by the positive GC skew) undergoes a flip resulting in a GC skew
inversion. In 2, a natively lagging-strand gene undergoes a flip, also
resulting in a GC skew inversion. In 3, a leading strand gene with a negative
GC skew flips, resulting in a GC skew reversion. In 4, a lagging-strand gene
with a negative GC skew flips, resulting a GC skew reversion.

Fig. 2 GC Skew values for whole-gene regions. Upper graphs: GC skew
values are calculated using whole-gene regions (blue) or only codon
position 1 nucleotides (red) for all B. subtilis genes, leading strand genes
only (Leading), or lagging-strand genes only (Lagging). Genes are sorted
based upon the whole-gene GC skew resulting in the appearance of a curve.
CP1 and CP3-based values are not independently sorted, allowing for direct
comparison between data sets. The average GC skew values (Average)
demonstrate that CP1-based GC skew values (red) are significantly
different for leading versus lagging-strand genes, whereas CP3-based
values (gold) are not. Additionally, CP1-based GC skew values are
significantly different from CP3-based values for lagging-strand genes. Error
bars represent the standard error of the mean. Significance was determined
by the z-test, asterisk symbol (*) indicates p= 0.0. The percentage of
positive CP1-based GC skew values is shown at the bottom of the Leading
and Lagging-strand gene graphs. Lower graphs: Whole-gene (Blue, same
data as upper graphs) versus CP3-based GC skew values are shown.
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and M2a (positive selection) (Fig. 3)8. We found that lagging-
strand genes with a dN/dS value >1 are likely to be under positive
selection (Chi square test p < 0.05) ~2.5 times more frequently
than leading strand genes (Fisher’s exact test p= 0.014) in M.
tuberculosis. We observe a similar ratio in B. subtilis, though the
difference between the leading and lagging-strand genes does not
reach 95% significance (Fig. 3, middle). We also repeated our
previous cross-species analysis, finding that genes with a dN/dS
ratio greater than 1 (Chi square p < 0.05) that better fit the M2a
model are more frequently observed in lagging-strand genes
(Fisher’s exact test p= 0.005, Fig. 3, right). At the 95% confidence
level, we could expect to observe roughly 5 false positive data
points among either the 108 leading or 97 lagging-strand genes
with a dN/dS >1. As we observe 19 and 26, respectively, our
results are well above background. Therefore, these data suggest
that our inference of more frequent positive selection on lagging-
strand genes was accurate.

Liu and Zhang also claim that the equivalent dS of leading and
lagging-strand genes indicate that lagging-strand genes do not
mutate at a faster rate, and that this metric contradicts the
adaptive hypothesis. This is an interesting point as the dS values
in our manuscript are indeed equal for leading and lagging-strand
genes. However, the manuscripts Liu and Zhang cite directly
contradict their claims: both Schroeder et al.9 and Sankar et al.10

reported a higher base substitution rate in lagging-strand genes
(their Figs. 3A, 1D, respectively). Likewise, a recent study con-
firmed the higher mutation rate of lagging-strand genes in E.
coli11. Additionally, there are other interpretations of the equal dS
values that do not contradict our model. The dS represents a
long-term average mutation rate but is uninformative about
short-term variations in spontaneous mutation rates. Our work
shows that short-term variations are a critical concern. We
showed that, when transcribed, lagging-strand alleles have a

higher mutation rate than otherwise identical leading strand
alleles1,2. If leading and lagging-strand genes were equivalent
(expression pattern, gene length, etc.), Liu and Zhang’s inter-
pretation would be reasonable. However, there are major differ-
ences between these groups4,12,13. In Supplementary Fig. 1 (top),
we show how a leading strand gene and a (distinct) lagging-
strand gene could accumulate a similar number of mutations over
the same time period, while having different mutation rates when
transcribed. These profiles are based on mutation rates measured
using Luria-Delbrück fluctuation assays1,2. Here, the lagging-
strand allele has twice the mutation rate of the leading strand
gene when transcribed, but an equal mutation rate when tran-
scriptionally repressed (Supplementary Fig. 1, top). This model
predicts that transcriptional induction is a major factor affecting
the dS. We also demonstrate how a flipping event will alter the
same gene’s mutation rate under an identical induction profile
(Supplementary Fig. 1, bottom). Together, these models reconcile
the equal dS observed in nature with the higher spontaneous
mutation rate of lagging-strand alleles observed in highly con-
trolled laboratory experiments.

Liu and Zhang further propose that a gene’s GC skew value can
become negative due to causes other than gene flipping (GC skew
inversion). If correct, this would indeed undermine the validity of
our method and conclusions. In support of this notion, Liu and
Zhang reference Chen et al.14 who showed that transcription,
translation, and replication-based nucleotide synthesis cost biases
can affect GC and AT skews. Their data suggest that cost bias can
increase a gene’s GC skew with respect to the sense strand,
resulting in negative GC skew values in lagging-strand genes
without physically flipping14. This is testable. If the Chen et al.14

model is correct, cost bias should cause the more mutable CP3-
based GC skew values of lagging-strand genes to be lower than
the CP1-based values. If our model is correct, DNA replication
should universally drive the CP3-based values higher than the
CP1-based values in lagging (and leading) strand genes. Our
analysis in Fig. 2 (gold versus red columns) clearly demonstrates
that the average CP3-based value (gold) is significantly higher
than the CP1-based value (red) in B. subtilis’ lagging-strand genes
(Z-test, p= 0). CP3-based values also tend to be positive in
absolute terms (Fig. 2, Averages). Both observations strongly
support our model. However, Chen et al. observed that low GC
organisms (e.g., B. subtilis) show increased “indifference” toward
amino acid related selection14. Therefore, we performed the same
test in M. tuberculosis (strain H37Rv) which has a high GC
content. Again, we observed the same pattern: Among the total
1579 lagging-strand coding genes, 97% (1531 genes) of CP1-
based GC skew values are negative or equal to zero, versus 2% for
leading strand genes. We also observe that 81% of lagging-strand
genes have a positive CP3-based GC skew value. Accordingly,
CP3-based GC skew values are higher than the CP1-based value
for 95.6% (1510/1579 genes) of lagging-strand genes. Even in E.
coli, which has a low strand bias4, 89% (1759/1978 genes) of
lagging-strand genes have a negative CP1-based GC skew value.
Among them, the CP3-based GC skew is higher than the CP1-
based GC skew in 83% (1463/1759 genes), and 48% (848/1759
genes) of the values are positive. Though this does not contradict
findings of Chen et al.14 the data strongly suggest that the net
effect of all mutational pressures causes the negative GC skew
values of lagging-strand genes to increase, equilibrating at a
positive value. This strongly suggests that replication-related
mutational pressure is the primary factor determining GC skew
values, addressing a long-standing debate in the field15–17. By
extension, gene flipping events appear to be the primary cause of
negative GC skew values.

In summary, we have provided a variety of evidence indicating
that our original GC skew-based gene inversion analysis was

Fig. 3 Lagging-strand genes are more frequently under positive selection.
Likelihood ratio tests (LRTs) were used to compare site models M1a
(neutral model) versus M2a (positive selection model) as a test for positive
selection among genes with a dN/dS ratio >1. The frequency of genes
better fitting the positive selection model at >95% significance are plotted
(# genes under positive selection/total). Positive selection likely acts more
frequently on lagging-strand genes in M. tuberculosis (Fisher’s exact test
p= 0.049). An equivalent analysis is shown for B. subtilis (middle graph,
Fisher’s exact test p= 0.12 for leading versus lagging-strand frequencies).
Multi-species analysis: across species, genes under positive selection are
more frequent in lagging-strand genes, confirming the results of our original
analysis (right graph, Fisher’s exact test p= 0.005).
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generally accurate4. After addressing the semantic conflict over
the term “inversion”, and introducing the concept of “GC skew
reversions”, it became clear that Liu and Zhang’s inversion (i.e.,
flipping) data largely agrees with our original GC skew inversion
data. Most of the false negative errors Liu and Zhang identified in
our analysis simply represent GC skew reversions which we did
not attempt to identify. However, some disputed data points were
not explainable as reversions. These genes appear to have flipped
so long ago (potentially 100M years ago) that subsequent muta-
genesis prevented their detection via the whole-gene GC skew
method. These can be considered false negative data points in our
analysis4. However, the positive GC skew of these genes implies
that they eventually acclimatized to the new orientation. Under
this perspective, they are no longer in an “inverted” state in an
absolute sense (our original usage4), and are therefore not false
negatives. Either way, we largely resolved disparities between Liu
and Zhang’s data and our own by improving the GC skew
method. This new CP1-based analysis accurately identified an
opposing GC skew sign (±) in 100% of the ortholog flips in Liu
and Zhang’s B. licheniformis/B. subtilis comparison, confirming
its accuracy over a roughly 100M year divergence time. This
higher-resolution method also allowed us to determine that the
patterns we originally identified4 appear to be far stronger than
we initially appreciated. Incredibly, nearly all lagging-strand
genes, in bacterial species across the evolutionary tree, may have
originally been encoded on the leading strand.

Regarding our inference of increased positive selection on
lagging-strand genes, we have provided a new statistical analysis
of our original dN/dS data. These results also support our original
conclusion and the adaptive hypothesis. This is consistent with
the observation that convergent mutations, a second indicator of
positive selection, also appear to be more common among
lagging-strand genes1,18. Importantly, Liu and Zhang’s mutation-
selection hypothesis cannot explain the convergent evolution data
or the higher frequency genes under positive selection on the
lagging-strand. As such, it appears that lagging-strand encoding is
adaptive for a subset of current lagging-strand genes. Critically,
these models are not mutually exclusive. We propose that a
combination of neutral evolution and negative selection against
highly transcribed lagging-strand alleles (the mutation-selection
hypothesis), as well as positive selection on a subset of lagging-
strand alleles, drive the organization of the lagging-strand.

Methods
Inference of positive selection. We first compiled the nucleotide sequence
alignment files produced by TimeZone v.1 and published in Ref. 4. Alignments for
genes determined to have a dN/dS value greater than 1 were input into PAML’s
CodeML application. Likeliood ratio tests of models M1a (null hypothesis) versus
M2a (positive selection) were used to determine if each gene is likely under positive
selection at the 95% significance level. CodeML settings were based on established
standards19. The fraction of all leading or all lagging-strand genes inferred to be
under positive selection, and also having a dN/dS ratio >1 were calculated. Only
genes fulfilling both criteria were considered to be under positive selection in our
analysis. Fisher’s exact test was used to determine if the observed frequencies are
significantly different for leading versus lagging-strand genes.

GC skew calculation method comparison. The GC Skew, defined as (G− C)/
(G+ C), was calculated for the leading strand sequence of whole-gene regions or
using only nucleotides corresponding to the 1st, 2nd, or 3rd codon positions.
Python scripts are publicly available at https://github.com/The1stMartian/
GCskewAnalyzer. The Pearson Correlation coefficient was calculated for the
whole-gene average method versus the indicated codon position-specific method
(Supplementary Data 4).

Independent phylogeny-based analysis vs. GC skew analysis. Data are pre-
sented in Supplementary Data 5. The program OrthoFinder 1.0 was used to
identify all single copy orthologs between B. subtilis strain 168 and B. licheniformis
strain ATCC 14580 using default settings. Gene orientations were annotated in
Microsoft Excel based upon the replication origins and termini listed on the DoriC

database5,20. Codon position-based GC skew values were calculated using custom
Python scripts.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The code used in this paper is available at https://github.com/The1stMartian/
GCskewAnalyzer, and all data are available upon request.
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