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Abstract

Background: Outbreaks of poliomyelitis in African countries that were previously free of wild-type poliovirus cost the Global
Polio Eradication Initiative US$850 million during 2003–2009, and have limited the ability of the program to focus on
endemic countries. A quantitative understanding of the factors that predict the distribution and timing of outbreaks will
enable their prevention and facilitate the completion of global eradication.

Methods and Findings: Children with poliomyelitis in Africa from 1 January 2003 to 31 December 2010 were identified
through routine surveillance of cases of acute flaccid paralysis, and separate outbreaks associated with importation of wild-
type poliovirus were defined using the genetic relatedness of these viruses in the VP1/2A region. Potential explanatory
variables were examined for their association with the number, size, and duration of poliomyelitis outbreaks in 6-mo periods
using multivariable regression analysis. The predictive ability of 6-mo-ahead forecasts of poliomyelitis outbreaks in each
country based on the regression model was assessed. A total of 142 genetically distinct outbreaks of poliomyelitis were
recorded in 25 African countries, resulting in 1–228 cases (median of two cases). The estimated number of people arriving
from infected countries and ,5-y childhood mortality were independently associated with the number of outbreaks.
Immunisation coverage based on the reported vaccination history of children with non-polio acute flaccid paralysis was
associated with the duration and size of each outbreak, as well as the number of outbreaks. Six-month-ahead forecasts of
the number of outbreaks in a country or region changed over time and had a predictive ability of 82%.

Conclusions: Outbreaks of poliomyelitis resulted primarily from continued transmission in Nigeria and the poor
immunisation status of populations in neighbouring countries. From 1 January 2010 to 30 June 2011, reduced transmission
in Nigeria and increased incidence in reinfected countries in west and central Africa have changed the geographical risk of
polio outbreaks, and will require careful immunisation planning to limit onward spread.
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Introduction

The success of the oral poliovirus vaccine (OPV) in eliminating

polio in the Americas led to a commitment by the governments of

the world to eradicate polio at the World Health Assembly in

1988. Since that time, widespread use of OPV has reduced the

number of children paralysed by polio from an estimated 350,000

in 1988 to just 1,606 in 2009 [1]. Early estimates of incidence in

the African continent are affected by substantial under-reporting;

however, 4,546 cases were reported in Africa in 1988, and by 2009

this was reduced to 693 cases [2]. This decrease in reported cases

has been accompanied by a marked reduction in the geographic

extent of endemic areas, such that by 2006 just four countries had

yet to interrupt indigenous wild-type poliovirus transmission

worldwide, and in Africa only Nigeria was endemic for polio.

Transmission has been persistent in those countries, and onward

spread to previously polio-free areas has presented significant

challenges to the Global Polio Eradication Initiative (GPEI).

Continued circulation of wild polioviruses in Nigeria and India

led to reinfection of 19 African countries in 2009 alone [1], and

cost the GPEI nearly US$150 million that year. Four of the

reinfected countries (Angola, Chad, the Democratic Republic of

the Congo [DRC], and Sudan) were considered to have re-

established poliovirus transmission, requiring eradication efforts

and resources proportionate to those in the endemic countries [3].

Efforts to control poliovirus in these reinfected countries have

continued in 2010 with some success, notably in Sudan [4].

Despite the reported successes, importation of poliovirus to polio-

free countries has continued. For example, the importation of

poliovirus to the Congo in 2010 caused the first outbreak of

poliomyelitis in that country in 10 y, resulting in approximately

554 cases [5]. Development of the GPEI Strategic Plan 2010–2012

builds upon lessons learnt during previous experiences, and

includes novel approaches to interrupting poliovirus transmission

and preventing outbreaks [6]. The analysis presented here is part

of the framework within the Strategic Plan to use statistical and

mathematical models to aid decision making.

The risk of an importation of wild-type poliovirus into a

country (where an importation is a case of poliomyelitis for which

the associated poliovirus in a stool sample has a genetic sequence

distinct from cases already indentified in that country) is likely to

be influenced by exposure to poliovirus circulating in other

countries and the immunity profile of the local population [7].

Environmental and demographic characteristics related to

crowding, population movement, and sanitation are also likely

to play a role. The relative importance of different population

characteristics, and the effect of routine immunisation and

supplementary immunisation activities (SIAs) on the number

and size of outbreaks experienced by a country, have not been

formally assessed or quantified. Here we use detailed surveillance

data from 56 countries in Africa to identify the most important

risk factors for an outbreak, and to identify those variables

associated with a reduced number of outbreaks and rapid

interruption of the imported wild virus. Furthermore, we examine

the predictive ability of a statistical model based on these

variables to identify countries and regions at risk of an outbreak

6 mo ahead of time.

Methods

Description of the Data
Outbreaks of poliomyelitis that occurred on the African

continent between 1 January 2003 and 31 December 2010 were

identified through routine surveillance of cases of acute flaccid

paralysis (AFP). All countries reported cases of AFP through a

network of health care workers to achieve a minimum surveillance

standard of one non-polio AFP case per 100,000 children under

15 y of age. A case of poliomyelitis was confirmed when wild-type

poliovirus was isolated from at least one of two stool samples

collected from each child with AFP. Outbreaks were defined on

the basis of their genetic identity and their location. The serotype,

genotype, and cluster were investigated by the US Centers for

Disease Control and Prevention and the World Health Organi-

zation (WHO) to define epidemiologically linked cases, where the

presence of different capsid proteins defined the serotype [8],

.85% nucleotide similarity of the VP1/2A interval defined the

genotype [9], and independent transmission pathways determined

by evolutionary divergence defined the cluster [10,11]. An

outbreak was defined as one or more cases of poliomyelitis within

a country that had never previously reported other cases

genetically linked to that cluster. Even a single child with AFP

and wild-type poliovirus in stool samples was considered an

outbreak if associated with a unique genetic cluster of poliovirus,

because each reported case of paralysis is likely to be associated

with several hundred or more asymptomatic or unreported

infections [12]. Only outbreaks of wild-type virus were considered;

vaccine-derived poliovirus outbreaks were excluded from the

analysis.

Spread of a virus cluster across a country border resulted in the

recording of the associated cases as a new outbreak in the newly

affected country. The DRC, Ethiopia, and Sudan were split into

regions because of their size and because immunisation activities

were often carried out in discrete regions smaller than the size of

the country. Additionally, the reported number of OPV doses

varied considerably between these regions, as a result of the

different vaccination schedules, coverage of the population

through routine vaccination services, and socio-economic factors

(see Text S1). In these countries, spread of a cluster from one

region to the next was regarded as a new outbreak.

Explanatory variables were generated at a country level or a

regional level (DRC, Ethiopia, and Sudan) and grouped into 6-mo

intervals to account for changes over time. Explanatory variables

that were tested in the model included those related to population

immunity and underlying characteristics such as population

density, childhood mortality, and indices of poverty that may

influence outbreak susceptibility. Measures of population immu-

nity included country-specific estimates of routine coverage from

WHO/United Nations Children’s Fund (the proportion of

children who have received three or more doses of trivalent

OPV by their second birthday through routine immunisation), and

the proportion of children aged 0–4 y old who received three or

more doses of OPV of any type, obtained from non-polio AFP

records. The reported vaccination status of children under 5 y of

age who had AFP and from whom two adequate stool samples

were collected but without any poliovirus isolated (referred to as

non-polio AFP cases) was assumed to reflect the vaccination status

of the rest of the community, based on previous research [13,14].

A variable termed ‘‘poliovirus exposure’’ (l) was used to

describe exposure in a given country to wild-type poliovirus due

to movement of people from other countries with circulating

poliovirus. Four data sources approximating population move-

ment between African countries and from the remaining endemic

countries (Afghanistan, India, Nigeria, and Pakistan) were

examined for their association with poliomyelitis outbreaks.

These sources describe the number of passengers on flights in

2008 [15], permanent migrants in 2001 [16], tourists in 2004

[17], and the population size of each pair of countries scaled by

the physical distances between their capital cities (also known as a

Prevention of Poliomyelitis Outbreaks in Africa
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gravity model [18]; see Text S1). Poliovirus exposure in a given 6-

mo period t experienced by country j from country i was

calculated as

lj,t~
Xn

i~1

mi,jxi,t{1, ð1Þ

where mi,j is the reported number of individuals in each dataset

who moved from i to j (or other approximation), xi,t{1 is the

number of poliomyelitis cases reported in country i during the

preceding 6-mo period, and n is the number of countries. In other

words, the incidence in country i at t21 was multiplied by the

reported number of movements from i to j, and this value was

summed for all countries in Africa to obtain the total poliovirus

exposure in country j. In addition, the contribution of specific

regions or countries to poliovirus exposure was examined by

calculating this measure separately for exposure from Nigeria,

from other countries in Africa, and from Afghanistan, India, and

Pakistan (the remaining endemic countries outside of Africa).

Poliovirus exposure from the previous 7–12 and 13–18 mo was

also examined to explore time-varying effects. Six-month

intervals were chosen for this analysis to maximise temporal

resolution but at the same time ensure that estimates of vaccine

coverage were based on a sufficient number of children with AFP.

Statistical Analysis
Regression models were used to identify factors associated with

the number of wild poliovirus outbreaks reported by a country or

region for every 6 mo of the study period, the duration of these

outbreaks, and their size. A Poisson mixed effects regression model

was used to identify factors associated with the number of

outbreaks from 1 July 2004 to 31 December 2010. A mixed effects

model structure was used to account for multiple observations per

country. A Poisson log-normal mixed effects model, which

accounts for overdispersion of the number of outbreaks, was also

tested, and the predictive ability of both models compared [19].

Outbreaks that began prior to 1 July 2004 were excluded from the

analysis as there were no data on population immunity or

poliovirus exposure prior to 18 mo before this time period

(January 2003 was the first available time point for the data).

Explanatory variables significant (p,0.2) at a univariable level

were incrementally added to the multivariable model if the

Akaike’s information criterion (AIC) reduced significantly in value,

known as a stepwise addition approach [19]. Interactions were

tested between variables in the multivariable model, and all

variables were tested for their inclusion and interactions with

variables in the final model. 95% confidence intervals (CIs) for the

model fit were calculated from the standard error (SE) of the fixed

effects. Models were implemented in the software STATA (version

11.0).

The regression analysis of the number of outbreaks included

only variables from previous time periods, and so it was possible to

forecast the number of outbreaks expected in a country 6 mo

ahead of time. The predictive accuracy of these forecasts was

estimated using prospective sampling, where the longitudinal data

used to estimate regression model parameters were truncated and

forecasts of the next 6 mo compared with observed data [20]. Six-

month-ahead predictions were made for 1 July–31 December

2007 onwards. For each model prediction, the limits of the

prediction interval were obtained from the 2.5 and 97.5 percentiles

of the negative binomial distribution, with mean equal to the

model prediction and variance equal to the sum of the variance of

the model prediction and the variance around the expected value

associated with a Poisson distribution [21]. Receiver operator

characteristic analysis was used to assess the accuracy of the

predictions, where the area under the curve (AUC) was estimated

using a binormal parametric model [22]. The estimated value of

the AUC is equivalent to the probability that a randomly drawn

country where an outbreak was detected had a greater predictive

value than a randomly drawn country where no outbreak was

detected. The AUC value should at least be greater than 0.50

(which would indicate that the model is no better than random),

and values above 0.80 indicate a good predictive ability [23,24].

The Poisson model and the Poisson log-normal model were tested

for their predictive ability. By way of comparison, the number of

outbreaks per country in the previous 3 y was used as a measure of

historical propensity for outbreaks and used to predict whether an

outbreak would occur in the current 6 mo (other time periods

were also explored; see Text S1). To predict likely outbreaks in the

period 1 January–30 June 2011, data on outbreaks from the period

1 July 2004 to 31 December 2010 were used in the regression

model to estimate coefficients, and these coefficients were

combined with predictors as measured in the preceding 6 mo.

Factors associated with the duration of outbreaks were modelled

using a Cox proportional-hazards model with censoring to account

for ongoing outbreaks [25]. The duration of an outbreak was

defined as the time (in days) from the first to the last case of an

outbreak. Outbreaks were declared over when there were no

epidemiologically linked cases in the country or region for at least

6 mo after the last case; otherwise, outbreaks were assumed to be

ongoing. Factors affecting the size of an outbreak were investigated

using a censored negative binomial generalised linear model, as

the variance was larger than the mean size of outbreaks [26]. For

analyses of outbreak duration and size, those that began between 1

July 2003 and 31 June 2010 were included in the analysis.

Results

Distribution of the Size and Geographic Extent of
Poliomyelitis Outbreaks in Africa

Between 1 July 2003 and 31 December 2010 there were 25

countries in Africa that reported an outbreak of polio, corre-

sponding to 137 outbreaks. When these outbreaks were further

divided into the regions within Ethiopia, Sudan, and DRC, this

corresponded to 142 outbreaks; the rest of the analysis refers to

these data. The median size of outbreaks was two cases (range 1–

228; Figure 1A), and the median duration of outbreaks was 39 d

when not accounting for censoring. Four outbreaks with cases

reported after 1 July 2010 were classified as ongoing outbreaks that

were censored. Eighty-one outbreaks (57%) consisted of more than

one case of poliomyelitis, and the median duration of these

outbreaks was 158 d. After correcting for censoring, the Kaplan-

Meier estimates of the median duration of the 81 multiple-case

outbreaks was 163 d (Figure 1B).

The average number of outbreaks experienced by each country

or region declined with physical distance from Nigeria (Figure 2A).

Cameroon, Chad, and Niger, all bordering Nigeria, reported nine

or more outbreaks each during the study period, and Niger

reported 33 outbreaks, of which 21 were single cases. Benin, also

bordering Nigeria, reported seven outbreaks during the study

period. Further away from Nigeria, Mali, Burkina Faso, and the

Central African Republic reported five or more outbreaks each.

Eight countries—Botswana, Burundi, the Congo, Eritrea, Maur-

itania, Namibia, Sierra Leone, and Somalia—reported only one

outbreak during the study period (further details are given in Text

S1). South Sudan, south DRC, northeast Ethiopia, and southeast

Ethiopia reported one outbreak each during the study period.

Prevention of Poliomyelitis Outbreaks in Africa
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Factors Associated with the Risk of Outbreaks
Fifteen explanatory variables were associated (p,0.2) with the

number of outbreaks in the univariable analysis, and were used to

develop the multivariable model (Table 1). The final Poisson

mixed effects regression model retained five explanatory variables

(Table 2). These included the measure of exposure to wild-type

polioviruses based on the distribution of children with poliomyelitis

in the preceding 6 mo and migration from affected countries.

Poliovirus exposure measured by the number of permanent

migrants moving between countries was found to provide a better

fit to the data than exposure terms based on the movement of

tourists, flight data, or physical distance. If exposure was higher in

the previous 6 mo than 18 mo ago, there was an additional

increase in risk. Countries physically bordering Nigeria (Benin,

Chad, Niger, and Cameroon), with poor immunisation coverage

(based on AFP data) and high child mortality also had an increased

risk of an outbreak.

Niger, Chad, and Cameroon reported more than nine

outbreaks, and this was replicated in the model, although Mali

had more outbreaks than expected (9 compared with 5.31;

Figure 2B). In west Africa, there were generally slightly more

reported outbreaks than expected from the model. For example,

the Ivory Coast reported two outbreaks and the model expectation

was 1.32 outbreaks. For Eritrea, Gabon, Equatorial Guinea, and

countries south of DRC, which did not report outbreaks during

the study, the model expectation was that each would have had at

least one outbreak. Countries in north Africa (Algeria, Egypt,

Libya, Morocco, and Tunisia) reported no outbreaks, which was

similar to what was expected in the model. The temporal fit of the

number of outbreaks showed a large number of outbreaks in the

second halves of 2004 and 2008, and a reduction in outbreaks

during 2007 and 2010 (Figure 2C). However, the large number of

outbreaks observed from mid-2008 to 2009 and the ten outbreaks

observed in 2010 were not replicated in the model. The 95% CI of

the model fit included the reported number of outbreaks, but the

CIs were wide, particularly when a large number of outbreaks was

observed.

When routine vaccination coverage in the preceding 6 mo was

included in the regression model instead of vaccine coverage based

on the reports for non-polio AFP cases, the fit of the model

worsened (AIC of the model was 553.82 compared to 548.06; see

Text S1). However, routine coverage was correlated with the

proportion of non-polio AFP cases reporting at least three doses of

OPV (correlation coefficient 0.54, p,0.001; see Text S1).

Forecasting the Number of Outbreaks in Africa
The AUC of the Poisson regression model was 0.82 (SE = 0.03),

indicating a good predictive ability for the number of future

outbreaks. In other words, 82% of the time for a randomly selected

country (or region) and period where an outbreak was observed,

the predicted number of outbreaks was greater than any other

randomly selected country (or region) and period where no

outbreak was observed. The Poisson log-normal mixed effects

regression model had a reduced predictive ability of 0.77

(SE = 0.05), despite an improved fit to the data (AIC of the

Poisson log-normal model was 528.39 compared to 548.06).

Therefore, the rest of the analyses are based on results from the

Poisson regression model. The model that used the number of

outbreaks in the previous 3 y as a predictor for outbreaks in the

current 6 mo had a predictive ability of 0.76 (SE = 0.04). The

model of historical propensity can predict outbreaks only in

countries that have previously reported an outbreak, whereas the

Poisson regression model predicts the risk of an outbreak based

upon values of the parameters and coefficients. Inspecting the

predictive map for 2010 shows that Niger, Chad, and Cameroon

were predicted to have the highest chance of an outbreak, but only

Niger and Chad reported outbreaks within the 6-mo period

(Figure 3A). Mali and Senegal reported two or more outbreaks but

were predicted to have fewer outbreaks than either Niger or Chad.

In the second half of 2010 the Congo and Uganda were predicted

to have an increased risk when compared to the previous time

period, and an outbreak was reported in both countries during this

time. The predicted increase in risk in countries south of DRC

(Angola, Zambia, and Rwanda, for example) in 2010 has not been

associated with any reported outbreaks to date (although Angola

has persistent transmission from a previous outbreak). The

temporal trends illustrate that the model was able to predict the

decrease in outbreaks in the first half of 2007, both halves of 2009,

and the second half of 2010 when compared to previous time

periods, and predicted the increase in outbreaks in the second

halves of 2007 and 2008 (Figure 3B). For all time periods, the 95%

prediction intervals include the observed number of outbreaks,

and, with the exception of 2011, the prediction intervals decrease

in size with the addition of more data.

Based on data prior to 1 January 2011, the predicted number of

outbreaks in Africa from 1 January to 31 June 2011 was 9.10 (95%

prediction interval = 2–19 outbreaks). The nine countries with the

highest predicted risk were, starting with the highest, Niger,

Angola, Mali, Central African Republic, the Congo, Uganda,

Figure 1. Distribution of the size and duration of outbreaks in
Africa 2003–2010. (A) Size of outbreaks. (B) Duration of outbreaks.
Where no epidemiologically linked cases have been detected in the last
6 mo the final size is reported. If cases have been recently (1 July–31
December 2010) detected, the size and duration are censored. All
censored outbreaks are denoted by the blue tick marks in the Kaplan-
Meier curve (B).
doi:10.1371/journal.pmed.1001109.g001
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Zambia, Rwanda, and Cameroon. As of 12 July 2011, five

countries had reported outbreaks: Côte d’Ivoire, Guinea, Gabon,

Mali, and Niger [27].

Factors Associated with the Duration and Size of an
Outbreak

Of the 137 outbreaks recorded prior to 1 July 2010, 133 (97%)

were fully observed and the remainder were right censored (i.e.,

were regarded as ongoing outbreaks). The hazard ratio of a Cox

proportional-hazards model represents the effect of a unit change

in the explanatory variable on the frequency of the outcome,

which in this case is the last case of an outbreak. Higher

vaccination coverage in the 6 mo prior to an outbreak and sharing

a border with Nigeria were both associated with shorter and

smaller outbreaks (Tables 3 and 4). In addition, an annual AFP

rate greater than two cases per 100,000 children under 15 y of age

was associated with smaller outbreaks (Table 3).

Discussion

In this paper we demonstrate a clear link between vaccination

coverage and population movement from endemic regions and the

risk of outbreaks of poliomyelitis in Africa. Significant temporal

and geographic variation in the number of reported outbreaks is

explained by changes in population immunity and exposure to

wild poliovirus imported by travellers from affected countries.

Notably, a model incorporating population movement propor-

tional to the number of permanent migrants was found to fit the

data better than models based on physical distance, tourism, or

flight data. The identified risk factors are sufficient to describe the

scale and geographic distribution polio outbreaks in Africa 6 mo in

Figure 2. Distribution of the risk of poliomyelitis outbreaks in Africa. (A) The number of poliomyelitis outbreaks reported for each country in
Africa between 1 July 2004 and 31 December 2010. (B) The expected number of poliomyelitis outbreaks for each country in Africa based on the fit of
the Poisson mixed effects model. (C) The temporal fit of the Poisson mixed effects model, where error bars show the 95% CIs, and the reported
number of outbreaks for each 6-mo period.
doi:10.1371/journal.pmed.1001109.g002
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advance with a predictive ability of 82%. Given the resource

constraints frequently faced by the eradication programme,

planning SIAs on the basis of a statistical model that describes

evolving risk is therefore a useful supplement to expert review of

epidemiological and vaccination data. Indeed, the statistical model

presented here has been used to help plan SIAs in Africa that are

described in the GPEI Strategic Plan for 2010–2012 [6].

Furthermore, a 6-mo forecast based on current AFP data can be

a helpful aid to the planning of preventive SIAs despite the time

taken to analyse the data and the 6-wk lead time required to

ensure that sufficient vaccine stocks are available from pharma-

ceutical companies (personal communication, M. Shirely, United

Nations Children’s Fund). As an example, AFP data up to 31

December 2010 were available for analysis on 25 January 2011

and were used to predict likely outbreaks from 1 January–30 June

2011. The results from the predictive risk model were commu-

nicated to WHO immunisation planners on 16 February 2011.

Our analysis highlights how the geographical risk of poliomy-

elitis outbreaks has changed over time, particularly in 2010 and

2011, moving from countries surrounding Nigeria to countries

bordering those with re-established transmission. This predicted

change in risk has been followed by outbreaks in the Congo and

Uganda during the period 1 July–31 December 2010. In order to

prevent future outbreaks, it is vital that poliovirus transmission is

Table 1. Univariate analysis of variables associated with the number of poliomyelitis outbreaks in Africa from 1 January 2004 to 31
December 2010.

Description Data Source Incidence Risk Ratio p-Value

Median 2.5th Percentile CI 97.5th Percentile CI

Estimates of poliomyelitis exposure

Using data on international migrants from all African
countries; 1 unit increase (when logged)

[16]; WHO 1.61 1.36 1.87 ,0.001

Using data on international migrants from Nigeria; 1 unit
increase (when logged)

[16]; WHO 1.36 1.19 1.53 ,0.001

Using data on international migrants from Asia; 1 unit
increase (logged)

[16]; WHO 0.94 0.81 1.02 0.27

Using data on international migrants: exposure 6 mo
ago from all African countries was higher than that
18 mo ago (versus lower)

[16]; WHO 2.67 1.80 3.91 ,0.001

Using data on international tourism from Nigeria only;
1 unit increase (when logged)a

[17]; WHO 1.22 1.10 1.35 ,0.001

Using distance between capital cities from all African
countries; 1 unit increase (logged)

WHO 1.45 1.20 1.71 ,0.001

Using distance between capital cities from Nigeria;
1 unit increase (logged)

WHO 1.43 1.13 1.58 ,0.001

Country borders Nigeria (versus does not) — 13.37 4.82 29.56 ,0.001

Estimates of population immunity

10% increase in the percentage of non-polio AFP
cases reporting three or more doses of OPV

WHO 0.81 0.68 0.91 ,0.001

10% increase in the percentage of children reporting
three doses of the OPV through routine coverage

UN/WHO 0.85 0.72 0.99 0.03

Median number of OPV doses reported in non-polio
AFP cases; 1 unit increase

WHO 0.85 0.71 1.03 0.1

10% increase in the percentage of non-polio AFP
cases reporting no doses of OPV

WHO 1.26 0.98 1.62 0.06

Other factors

10% increase in percentage of the population
aged 0–14 y

[33] 5.62 2.20 14.33 ,0.001

Country reported a ,5-y mortality rate greater than
150 deaths per 1,000 at-risk population (versus lower)

UN 2.88 1.24 6.71 ,0.001

10% increase in the percentage of the population
below the poverty line (country definitions vary)

[33] 1.08 0.87 1.35 0.55

Density of population (people per km2); 1 unit increase [33] 0.99 0.99 1.00 0.07

Population size; 1 unit increase (logged) [33] 1.37 0.86 2.20 0.15

Number of AFP cases reported per country in children
under 5 y; 1 unit increase

WHO 1.00 1.00 1.00 0.81

AFP rate (cases per 100,000 population aged 0–14 y);
1 unit increase

WHO 0.96 0.78 1.19 0.71

n = 622 from 56 countries.
aNo tourists were reported from Nigeria for nine countries, all of which are comparatively small in population size. To include these countries in the analysis 0.5 was
added to the number of tourists before multiplying by the incidence in Nigeria and log-transforming the data.

doi:10.1371/journal.pmed.1001109.t001
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Table 2. Final multivariable Poisson mixed effects model describing variables associated with the number of poliomyelitis
outbreaks in Africa from 1 January 2004 to 31 December 2010.

Description of Risk Factor Incidence Risk Ratio p-Value
Standard Deviation
of Random Effect

Median
2.5th
Percentile CI

97.5th
Percentile CI

Poliomyelitis exposure from all African countries; 1 unit
increase (when logged)

1.33 1.15 1.54 ,0.001 N/A

Poliomyelitis exposure in previous 6 mo was higher than
exposure 18 mo ago (versus lower)

1.91 1.27 2.87 0.002 N/A

Country borders Nigeria (versus does not) 5.39 2.69 10.78 ,0.001 N/A

10% increase in the percentage of non-polio AFP cases
reporting three or more doses of OPV

0.85 0.75 0.97 0.013 0.71

Country reported a ,5-y mortality rate greater than
150 deaths per 1,000 at-risk population (versus lower)

2.3 1.3 4.08 0.004 N/A

n = 622 from 56 countries; AIC = 548.06.
N/A, not applicable.
doi:10.1371/journal.pmed.1001109.t002

Figure 3. Six-month-ahead predictions and comparison to the observed number of outbreaks. (A) Predictions from 1 January 2010 to 30
June 2011 are illustrated from left to right, along with the observed number of outbreaks for the first and second halves of 2010. (B) The temporal
predictions from 2007 (red lines) and the prediction intervals (dashed red lines) are illustrated. The observed number of outbreaks for each 6-mo
period are overlaid (black lines). The predictive ability of the model was estimated to be 82%. Years (e.g., 2010) indicate the first half of the year (1
January–30 June); years plus 0.5 (e.g., 2010.5) indicate the second half of the year (1 July–31 December).
doi:10.1371/journal.pmed.1001109.g003
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halted in these reinfected countries, as well as in Nigeria.

Predictions in 2011 have overestimated the risk in countries south

of DRC; with additional longitudinal data the apparent reduced

risk may adjust.

Poliovirus exposure estimated from migration and polio

incidence accounted for much of the spatial heterogeneity in the

number of expected outbreaks per country. In addition, countries

bordering Nigeria had a higher number of outbreaks than those

not sharing a border. Much of this increased risk will be due to

additional local population movement that occurs in addition to

that captured by the migration database. We also examined

alternative measures of population movement, including interna-

tional flight and tourism data. However, we found movement that

was assumed to be proportional to the number of permanent

migrants provided the best fit to the data, presumably because

permanent migration is related to broader patterns of cross-border

and international travel that is not captured by these other

measures. Inclusion of a variable describing changes in exposure to

poliovirus over the preceding 18 mo further improved the model

fit, presumably capturing aspects of wild-type poliovirus dynamics

that are not described by other variables. This may include

naturally acquired immunity from the many asymptomatic

infections that occur during an outbreak but are not detected

using AFP surveillance.

The ability of our study to estimate the impact of routine

immunisation and SIAs on population immunity was limited

because estimates of routine coverage are known to be measured

with error [28], and new methods for surveillance of SIA coverage

were only introduced in 2009 [29]. Estimates of trivalent and

monovalent OPV effectiveness against poliomyelitis in Nigeria

have been used to examine the level and trends in immunity

against each poliovirus serotype [13]. Using estimates of immunity

derived in this way was not possible here because of the absence of

accurate estimates of vaccine effectiveness for most countries in

Africa.

An association of ,5-y mortality greater than 150 deaths per

1,000 live births with a higher risk of poliomyelitis outbreaks is

likely to be indicative of poor sanitary conditions, poverty, high

population density, and poor access to health care and nutrition.

These factors contribute both to high childhood mortality and

poliomyelitis susceptibility [30,31]. Many countries in Africa have

reported an improvement in childhood mortality rates [32], and so

susceptibility to outbreaks may be further limited through

investment in health care and living conditions.

A limitation of our study is the use of a statistical model that

may not capture some of the important non-linearities of

poliovirus transmission as eradication is approached. For example,

increasing population immunity above a critical vaccination

threshold results in herd immunity and could eliminate the risk

of polio outbreaks. The log-linear form of the Poisson regression

model does not capture these kinds of thresholds. However, no

such thresholds were apparent in the data at a country level. The

analysis relies on relatively consistent reporting rates for non-polio

AFP, as this appears to provide the best estimate of population

immunity. Unfortunately, not all countries reported a consistently

high AFP rate, which will introduce uncertainties in the analysis.

In addition, estimates of human migration and poliovirus exposure

across Africa were shown to be associated with polio outbreaks,

but there is likely to be much temporal variation in human

movement patterns that was not captured in the available data.

This could explain why the magnitudes of the polio outbreaks in

mid-2004 and mid-2008 were not fully captured by the model, and

why the westward spread of polio from Nigeria in 2008 and 2009

was not completely replicated in the model. Other sources of

movement patterns within Africa are required to fully capture this

important determinant of disease transmission.

Table 3. Final multivariable Cox proportional-hazards survival model describing variables associated with outbreak duration.

Description of Risk Factor Hazard Ratio p-Value

Median 2.5th Percentile CI 97.5th Percentile CI

10% increase in the percentage of non-polio AFP reporting
three or more doses of OPV

1.14 1.03 1.26 0.011

Country borders Nigeria (versus does not) 1.58 1.11 2.24 0.010

n = 136 observations; log-likelihood = 2532.25.
The hazard ratio represents the effect of a unit change in the explanatory variable on the frequency of the outcome, which in this case is the last case of an outbreak. If
the hazard ratio for a variable is greater than 1.00, an increase in the variable results in an increase of the hazard. In other words, when the value of the variable
increases, an outbreak is expected to be of a shorter duration.
doi:10.1371/journal.pmed.1001109.t003

Table 4. Final multivariable negative binomial model describing variables associated with the number of cases reported during an
outbreak.

Variable Incidence Risk Ratio p-Value

Median 2.5th Percentile CI 97.5th Percentile CI

10% increase in the percentage of non-polio AFP cases reporting
three or more doses of OPV

0.85 0.76 0.96 0.032

Country borders Nigeria (versus does not) 0.41 0.27 0.63 ,0.001

AFP rate is greater than two cases per 100,000 population
aged 0–14 y (versus less than)

0.49 0.30 0.80 ,0.001

n = 135; log-likelihood = 2385.7.
doi:10.1371/journal.pmed.1001109.t004
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Countries bordering Nigeria experienced more frequent

outbreaks, but in general these were reduced in duration and size

compared with outbreaks in other countries in Africa. This

association could be explained by unmeasured increases in

population immunity following exposure to wild-type poliovirus.

If natural exposure to poliovirus is the cause of the reduced risk,

outbreak size in these countries should be carefully monitored as

the incidence in Nigeria reduces. Serological surveys for antibodies

to poliovirus within populations in Africa would also supplement

current surveillance for AFP and poliovirus in understanding polio

epidemiology.

Although there is always an element of uncertainty and chance

in the distribution of infectious disease outbreaks, this study

highlights that poliomyelitis outbreaks in Africa are largely

governed by the extent of immunity in the population, population

movement, and exposure to infection. Planning SIA campaigns

based on evolving risk may reduce the number of outbreaks by

responding to increased risk prior to an outbreak occurring. As the

incidence of polio in Nigeria has remained very low in 2010 and

2011, there may be a unique opportunity to eliminate polio from

Africa in the near-term through targeted vaccination informed by

appropriate predictive models.
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Editors’ Summary

Background. During the first half of the 20th century, polio
(poliomyelitis) was one of the most feared infectious diseases
in industrialized countries, paralyzing thousands of young
children every year. The virus that causes polio enters the
human body through ingestion of contaminated water or
food, multiplies in the gut, and is shed through the feces
(stool) into the environment, where it spreads rapidly if
sanitation or personal hygiene is poor. Most people infected
with poliovirus have no symptoms, but about one in 200
infected people develop paralytic polio, in which poliovirus
invades and destroys the nerve cells that control the arm and
leg muscles, leading to acute flaccid paralysis (AFP; limb
paralysis). In the worst cases, poliovirus paralyzes the
muscles involved in breathing, which can be fatal unless
patients are helped to breathe with an ‘‘iron lung’’ or
ventilator. There is no cure for paralytic polio, and although
AFP usually lasts less than two weeks, some patients never
regain full use of their limbs.

Why Was This Study Done? From 1955 onwards, routine
polio vaccination rapidly reduced or eliminated wild polio
(polio occurring through natural infection) in developed
countries, but the disease remained common in developing
countries. Consequently, in 1988, the Global Polio
Eradication Initiative was launched. Between 1988 and
2009, routine vaccination and supplementary immunization
activities (additional doses of polio vaccine given to all
young children on national immunization days) reduced the
annual number of children paralyzed by polio from 350,000
to about 1,600 and the number of countries where polio is
endemic (always present) from 125 to four. Unfortunately,
continued circulation of wild polioviruses in Nigeria and India
resulted in reinfection of 19 African countries in 2009 and re-
establishment of polio transmission in four countries. A
better understanding of the factors that affect the
distribution and timing of wild polio outbreaks might help
experts prevent such outbreaks and could facilitate global
polio eradication. Here, the researchers develop a statistical
model of the spread of wild polioviruses in Africa and assess
its ability to predict polio outbreaks in individual African
countries.

What Did the Researchers Do and Find? The researchers
used routine AFP surveillance to identify children who
developed polio in Africa between 2003 and 2010. They
determined whether each case was associated with the
importation of wild poliovirus based on genetic analysis the
polioviruses and then used ‘‘multivariable regression
analysis’’ to identify factors associated with the number,
size, and duration of polio outbreaks. During the study
period, 142 genetically distinct polio outbreaks (involving
one to 228 cases) were recorded in 25 African countries, with
the average number of outbreaks in each country declining
with reduced population movements from each infected
country. The estimated number of people migrating into a
country from an infected country was associated with the

number of outbreaks in that country. Thus, countries with a
high rate of immigration from Nigeria and other countries
where polio is still endemic had more polio outbreaks than
countries with less immigration from these countries. A
country’s mortality rate for children under 5 years of age (an
indicator of sanitary conditions and access to health care)
was also associated with the number of outbreaks, and
immunization coverage was associated with the size,
duration, and number of outbreaks. Finally, in 82% of
instances, for a randomly selected country where an
outbreak was observed, the statistical model predicted six
months ahead of time more outbreaks for that country than
for any randomly selected country where there were no
outbreaks. That is, the model’s predictive ability was 82%.

What Do These Findings Mean? These findings indicate
that outbreaks of polio in Africa over the study period
resulted mainly from continued transmission in Nigeria and
other countries that reported polio cases and from poor
immunization status. They also highlight how the
geographical risk of polio is changing over time in Africa.
Importantly, the risk factors included by the researchers in
their statistical model are sufficient to describe the scale and
geographical distribution of polio outbreaks in Africa six
months in advance with a high predictive ability. Although
the accuracy of the predictions made by the model is limited
by the structure of the model and by the data fed into it, the
information provided by this and other predictive models
should help the Global Polio Eradication Initiative plan its
future immunization and surveillance campaigns and should
facilitate the elimination of polio from Africa.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001109.

N The Global Polio Eradication Initiative provides information
about polio and about global efforts to eradicate the
disease; its website includes links to videos about global
polio elimination efforts

N The World Health Organization provides information about
polio and attempts to eradicate the disease (in several
languages)

N The US Centers for Disease Control and Prevention
provides information about polio vaccination

N The UK National Health Service Choices website has
information on polio

N MedlinePlus provides links to more resources on polio (in
English and Spanish)

N Personal stories about polio are available through the
British Polio Fellowship Heritage Project; the National
Museum of American History ‘‘Whatever happened to
polio?’’ website includes an archive of polio-related
pictures
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