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ABSTRACT Candidate Phyla Radiation (CPR) bacteria and nanoarchaea populate
most ecosystems but are rarely detected in soil. We concentrated particles of less
than 0.2mm in size from grassland soil, enabling targeted metagenomic analysis of
these organisms, which are almost totally unexplored in largely oxic environments
such as soil. We recovered a diversity of CPR bacterial and some archaeal sequ-
ences but no sequences from other cellular organisms. The sampled sequences
include Doudnabacteria (SM2F11) and Pacearchaeota, organisms rarely reported in
soil, as well as Saccharibacteria, Parcubacteria, and Microgenomates. CPR and arch-
aea of the phyla Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota,
and Nanohaloarchaeota (DPANN) were enriched 100- to 1,000-fold compared to
that in bulk soil, in which we estimate each of these organisms comprises approxi-
mately 1 to 100 cells per gram of soil. Like most CPR and DPANN sequenced to
date, we predict these microorganisms live symbiotic anaerobic lifestyles. However,
Saccharibacteria, Parcubacteria, and Doudnabacteria genomes sampled here also
harbor ubiquinol oxidase operons that may have been acquired from other bacte-
ria, likely during adaptation to aerobic soil environments. We conclude that CPR
bacteria and DPANN archaea are part of the rare soil biosphere and harbor unique
metabolic platforms that potentially evolved to live symbiotically under relatively
oxic conditions.

IMPORTANCE Here, we investigated overlooked microbes in soil, Candidate Phyla Radiation
(CPR) bacteria and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and
Nanohaloarchaeota (DPANN) archaea, by size fractionating small particles from soil, an
approach typically used for the recovery of viral metagenomes. Concentration of these
small cells (,0.2mm) allowed us to identify these organisms as part of the rare soil bio-
sphere and to sample genomes that were absent from non-size-fractionated metage-
nomes. We found that some of these predicted symbionts, which have been largely
studied in anaerobic systems, have acquired aerobic capacity via lateral transfer that
may enable adaptation to oxic soil environments. We estimate that there are approxi-
mately 1 to 100 cells of each of these lineages per gram of soil, highlighting that the
approach provides a window into the rare soil biosphere and its associated genetic
potential.
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Interactions among soil microorganisms impact biogeochemical cycling and overall
ecosystem function. A recent metagenomic analysis of soil microbial communities

revealed that many steps of key reaction pathways central to transformations in soil
are partitioned among coexisting organisms (1). Other interactions are mediated by
molecules such as vitamins and antimicrobial compounds (2–4). Furthermore, there is
the potential for a variety of symbiotic interactions, including those that involve obli-
gate reliance on coexisting organisms, for even the most basic requirements (5, 6).
Candidate Phyla Radiation (CPR) bacteria and DPANN archaea (an acronym of the
names of the first included phyla: Diapherotrites, Parvarchaeota, Aenigmarchaeota,
Nanoarchaeota, and Nanohaloarchaeota) are detected across ecosystems and are often
predicted to be obligate anaerobic (epi)symbionts that depend on other organisms for
basic cellular building blocks (5, 7, 8). However, CPR bacteria and DPANN archaea have
rarely been studied in relatively oxic environments or identified in soil (1, 9, 10).
Genome-resolved metagenomic analyses circumvent the limitations of isolation-based
methods that fail for organisms unable to grow alone and for bacteria that evade
detection by primers used in 16S rRNA gene surveys (11); yet, there are few reports of
CPR metagenome-assembled genomes (MAGs) from soil (12–15) almost certainly
because of the rarity of these bacteria.

Prior studies of groundwater have taken advantage of the observation that CPR
bacteria have ultrasmall cells that pass through 0.2-mm filters and enable genome re-
covery for these organisms (11). Studies of other systems reveal that size fractionation
of particles prior to sequencing impacts the composition and function of metage-
nomes (16). However, to our knowledge, studies of 0.2-mm filtrates from soil have
focused on viromes and have not assessed their microbial contents (17–19). Here, we
took advantage of the expected very small sizes of CPR bacteria and DPANN archaeal
cells (20) to concentrate them from soil. Thus, we could test the hypothesis that these
anaerobic organisms are understudied parts of the rare soil biosphere, where they may
have evolved pathways to persist in relatively oxic environments. We sequenced con-
centrated soil effluent that had passed through a 0.2-mm filter used to remove larger
cells and recovered a diversity of bacterial and archaeal sequences.

We sampled rhizosphere-associated soil from the top 10 cm of an annual grassland
from the Hopland Research and Extension Center in February 2018. For a subset of the
soil samples, we added a potassium citrate-based buffer and collected the effluent,
which was passed through a 0.2-mm filter, concentrated, and treated with DNase to
remove extracellular DNA that could have derived from larger lysed cells (Fig. 1a; see
also Text S1 in the supplemental material) (21, 22). To evaluate enrichment, bulk DNA
was extracted from the same soil samples for whole-community shotgun DNA sequenc-
ing, generating what are here referred to as “bulk metagenomes.” Approximately 20
Gbp of sequence was obtained from each of six concentrates and two bulk samples. In
addition to recovering viral sequences and mobile elements from these small-particle-
concentrate metagenomes, we reconstructed sequences from CPR and nanoarchaeal
genomes. From these data, we resolved 26 draft genomes that were .70% complete
(estimated using a CPR-specific single copy gene set [11]), with ,10% contamination
derived from either CPR or DPANN. No CPR or DPANN genomes were recovered from
the bulk metagenomes.

Sequences from cells of ,0.2mm in size were almost exclusively from 15 lineages
of CPR bacteria and one DPANN archaeal phylum (Fig. 2; see also Fig. S1). Importantly,
CPR and DPANN sequences were completely absent in bulk metagenome samples and
were only detectable at very low, if any, coverage via read mapping to assembled
sequences from the small-size-fraction metagenomes (Fig. 1c). Furthermore, from the
74 bacterial 16S rRNA sequences recovered from the concentrate metagenomes, all
of which were assigned to CPR lineages, we predict that more than half (42 16S rRNA
gene sequences) would not have been detected using standard amplicon sequenc-
ing primers. Notable was the phylum-level diversity of CPR lineages in the concen-
trate metagenomes. Previously, a genome of TM7 (Saccharibacteria) was reported
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from the same soil but sampled at less than 1� coverage from bulk soil (6), and
Microgenomates and Parcubacteria have been genomically sampled at low abundance
(13, 23). To our knowledge, this is one of very few reports of Pacearchaeota and
Doudnabacteria (14, 15) in soil and the first report of a novel clade of Saccharibacteria.

FIG 1 Enrichment and metabolic profiles of CPR bacteria in soil concentrate metagenomes. (a) Method for concentration of small particles from soil for
metagenomic sequencing (top) compared to sample preparation methods for bulk soil metagenomes (bottom). (b) Heat map showing relative abundance
of 26 organisms by phylum across bulk metagenomes and concentrate metagenomes. Sac, Saccharibacteria; Mic, Microgenomates; Dou, Doudnabacteria;
Par, Parcubacteria; Pac, Pacearchaeota. (c) Coverage-based metrics showing recovery and enrichment in all concentrates combined relative to that in bulk
fractions, combined as boxplots. (Left) Breadth of coverage of scaffolds comprising each genome (bin) in the bulk fraction. (Right) Enrichment factor (i.e.,
relative abundance of a scaffold from the concentrate metagenome over a scaffold’s bulk metagenome relative abundance) for each genome. (d)
Metabolic analysis of each genome, including (i) presence of each of three glycolysis genes that are highly conserved among CPR bacteria, (ii) genes
involved in the electron transport chain (NADH dehydrogenase; ctaB, heme O synthase [EC 2.5.1.141]; PPA, inorganic pyrophosphatase [EC 3.6.1.1]; sdhA,
succinate dehydrogenase/fumarate reductase, flavoprotein subunit [EC 1.3.5.1 1.3.5.4]), and (iii) percentage completeness (grayscale) of F-type ATPase, the TCA
cycle (tricarboxylic acid cycle), and pathways for amino acid biosynthesis (AA), lipid biosynthesis (Lip), purine biosynthesis (Pur), and pyrimidine biosynthesis (Pyr).

CPR Bacteria and Nanoarchaea in Soil

July/August 2021 Volume 6 Issue 4 e01205-20 msystems.asm.org 3

https://msystems.asm.org


FIG 2 Soil CPR phylogeny and cytochrome operon synteny. Sequences assembled from the small concentrate
metagenomes are shown in purple. (a) RpS3 tree of CPR bacteria rooted using RpS3 sequences that were

(Continued on next page)
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Comparing sequence coverage from concentrates to that from the bulk metage-
nomes, we calculate that filtration enriched the relative abundance of genomes by 100
to 1,000� (Fig. 1c). We approximate, given the relative abundances of the most- and
least-abundant CPR genomes in each of the bulk and concentrate metagenomes, that
CPR cells may comprise on the order of 1 to 100 cells per gram of soil. Given estimates
of 109 microbial cells per gram of soil, this would equate to, at maximum, ;1025% of
microbial cells in a gram of soil (Text S1).

Given the unique challenges of the soil environment for microbes, we next assessed
whether these soil CPR and DPANN organisms exhibited similar traits to those of their
counterparts in other environments. Recent studies show that CPR bacteria generally
appear to have the capacity for glycolysis and fermentation (24) but often lack complete
pathways to synthesize nucleotides de novo and have many gaps in metabolism that sug-
gest an obligate symbiotic lifestyle (8). We find that most of the genomes from this sam-
pling effort encode the three central glycolysis enzymes reportedly found in nearly all
CPR bacteria: triose phosphate isomerase (TIM), glyceraldehyde 3-phosphate (GAPDH),
and phosphoglycerate kinase (PGK) (24). The genomes also contain few if any tricarbox-
ylic acid (TCA) cycle genes and lack the vast majority of genes of the electron transport
chain and for synthesis of lipids and nucleotides (Fig. 1d), suggesting they live anaerobic
lifestyles and depend on resources from other organisms (8). However, we identified
an operon encoding a multisubunit cytochrome bo3 ubiquinol terminal oxidase in
three Doudnabacteria genomes, eight Saccharibacteria genomes, and one Parcubacteria
sequence as well as in unbinned CPR phylum sequences from the concentrate metage-
nomes. We then performed a synteny analysis (Fig. 2c) to compare these loci to a related
one from the first Saccharibacteria genome described from soil, Candidatus Teamsevenus
rhizospherense (6). The comparison shows a gene order for the cyo operon identical to
that in the highly studied Escherichia coli K-12 operon (25) and in the T. rhizospherense ge-
nome (6), although some CPR loci were incomplete due to assembly fragmentation.
Several CPR loci also included an open reading frame (ORF) annotated as an oxidoreduc-
tase or a conserved hypothetical protein. While the genomes recovered do not contain
quinone biosynthesis genes, the combination of this ubiquinol oxidase and the associ-
ated oxidoreductase (Fig. 2c), which often co-occur in genomes encoding an NADH
dehydrogenase and, to varied completeness, F-type ATPase (Fig. 1d), suggests the
possibility of some aerobic respiratory capacity. Perhaps, some form of aerobic respiration
may be common in soil-associated Saccharibacteria specifically and perhaps in soil CPR
more broadly. We thus hypothesize that this operon may confer an adaptive advantage for
CPR bacteria to live in aerophilic environments such as surface soil.

Next, we generated a maximum-likelihood tree of subunit 1 (CyoB) of the cyo operon
to test whether the operon exhibited a pattern of vertical inheritance in our CPR genomes
(Text S1; Fig. 2b). This analysis suggests that this gene cluster has been laterally transferred
from other bacteria, such as Proteobacteria or Chlamydiae, into these CPR bacteria at least
once, with perhaps different origins for gene clusters in Parcubacteria and Doudnabacteria
from those in Saccharibacteria. Furthermore, based on CyoB phylogeny, the sequences
from T. rhizospherense appear more closely related to Saccharibacteria sequences from this
study than to the RpS3 phylogeny, which may further underscore local adaptation to soil.

Here, we conducted a targeted study of CPR bacteria and nanoarchaea in a soil ecosys-
tem to expand our understanding of rare soil-dwelling microbes. Using typical sequencing

FIG 2 Legend (Continued)
assembled from bulk metagenomes, in light blue. Blue triangles denote draft genome recovered. Nodes with
bootstrap values greater than or equal to 0.95 are marked as filled black circles. (b) Phylogenetic relationships
of cytochrome bo3 ubiquinol terminal oxidase subunit I across bacterial phyla. Circles overlaid on nodes
correspond to support values (unfilled, .0.50; filled, .0.70). *, the placement of T. rhizospherense CyoB (b) and
its operon in (c) (6). Brackets next to tree tips correspond to phyla by color (green, Parcubacteria; blue,
Doudnabacteria; orange, Saccharibacteria) and to sequence order in the synteny diagram (c). Tree rooted using
a heme-copper oxidase superfamily member, the nitric oxide reductase (NorB). (c) Synteny diagram of
cytochrome ubiquinol oxidase operon genes (cyoA, cyoB, cyoC, cyoD, and cyoE) with operon from E. coli K-12 as
a reference. Scale bars correspond to the average number of substitutions per site across alignment.
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allocations for soil metagenomics, we were only able to recover genomes for these under-
studied community members through size fractionating of buffered soil. Our results indi-
cate that CPR bacteria and DPANN archaea are relatively rare in soil, as they can be diffi-
cult to recover with typical metagenomic sequencing allotments.

While the precise ecological roles of these organisms remain unclear, their predicted
requirement for interaction with nearby community members to satisfy their metabolic
needs and their previously reported close physical association with other cells (5, 7) sug-
gest that they may play still undescribed roles in soil microbial interaction networks.

The ability to selectively filter soil solutions to recover CPR and DPANN genomes
suggests that either these organisms attach to larger microbial cells and the associa-
tion can be physically disrupted or they are, at times, not attached to other cells. The
approach enabled us to sample genetic inventories of rare soil-adapted microbes and
uncover numerous genes and pathways, some of which likely evolved to handle sym-
biotic lifestyles under relatively oxic conditions. Specifically, we expanded the known
diversity of genes and pathways in soil-adapted CPR bacteria and found that these
inventories could explain the presence of these organisms, widely understood to be
anaerobic, in soil. More generally, our approach provides a route to expand the known
diversity of genes and pathways in the soil biosphere.

Data availability. Curated genomes described in this study are available from
ggKbase (https://ggkbase.berkeley.edu/soilcpr; please note that it is necessary to
register for an account by provision of an email address before download) and are
available under NCBI BioProject accession number PRJNA744897. NCBI accession
numbers for metagenome-assembled genomes are provided in Table S2B.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, TIF file, 1.4 MB.
TABLE S1, TIF file, 0.6 MB.
TABLE S2, XLSX file, 0.1 MB.
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