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Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR) genes, mainly MLH1 and MSH2. Most
of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements
in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on
average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLHI and MSH2
genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic
point mutations in the MLHI, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6
in one of the patients analysed (1.6% frequency). This deletion was confirmed and localised by long-range PCR. The breakpoints
of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was
a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and
showed that large deletions or duplications in MLHI and MSH2 genes are low-frequency mutational events in Southern Italian

patients with an inherited predisposition to colon cancer.

1. Introduction

Hereditary nonpolyposis colorectal cancer (HNPCC; also
known as Lynch syndrome) is an autosomal dominant
disorder characterised by colorectal cancer [1] that accounts
for 3-5% of all colorectal cancers. Affected individuals have
approximately 60-80% lifetime risk of developing colorectal
cancer and women with Lynch syndrome have 54% risk of
developing endometrial cancer [2]. It is associated with germ-
line mutations in the DNA mismatch repair (MMR) genes,
mainly MLHI and MSH2 [3]. Mutations in MSH6 [4], PMS2
[5], and MLH3 [6] are less common. Recently, a germ-line
point mutation in MSH3 was found to be associated with
the Lynch syndrome phenotype [7]. Inactivation of the MMR

complex manifests microsatellite instability (MSI), which is
detected in tumour tissue [8].

The majority of mutations in the MMR genes so
far identified are missense, nonsense, or small inser-
tions/deletions  [http://www.insight-group.org/mutations
mutations]. Depending on the population studied, large
genomic rearrangements of the MMR genes constitute
various proportions of the germ-line mutations that
predispose to HNPCC [9-11]. Moreover, it seems that large
genomic rearrangements occur more frequently in some
populations than in others [11, 12]. The relative incidence of
genomic rearrangements among Lynch Syndrome families
appears to vary from 5-20% [13]. A systematic study
on genomic rearrangement in Lynch Syndrome showed



that MLHI and MSH2 are the most frequently targeted
MMR genes for this type of mutation [14]. Furthermore,
molecular characterisation of the breakpoints involved in
large rearrangements within MLHI and MSH2 genes showed
that the majority are caused by homologous recombination
between Alu repeats [15-17]. These mutations are not
usually detected by conventional methods of mutation
analysis, such as denaturing high-performance liquid
chromatography (DHPLC) and direct DNA sequencing, but
they are detectable by a simple and robust technique such
as the Multiplex Ligation-Probe Dependent Amplification
(MLPA) [18, 19] assay.

As little is known about the frequency of large rearrange-
ments in the MLHI and MSH2 genes to Lynch syndrome
in Italian population, the aim of our study was to assess the
contribution of large genomic rearrangements in these two
genes in a well-characterised series of 63 Southern Italian
patients affected by Lynch Syndrome.

2. Materials and Methods

2.1. Patients. Sixty-three families of Italian origin, 56 families
classified according to the Amsterdam criteria [20] and 7
atypical Lynch families selected according to MSI high status
(MSI-H) [20], without germ-line pathogenic point mutations
in the MLH1, MSH2, or MSH6 genes, were recruited from
several health centres in Campania (Southern Italy).

All patients received genetic counselling and gave their
written informed consent to participate in this study.

2.2. Isolation of Genomic DNA. Total genomic DNA was
extracted from 4mL peripheral blood lymphocytes using
a Nucleon BACC2 Kit (Amersham Life Science) and from
tumour tissues and surgical margins by standard methods
[21].

2.3. Multiplex  Ligation-Dependent Probe Amplification
(MLPA). MLPA was performed using the SALSA MLPA
P003-B1 ML H1/MSH2 kit (MRC-Holland, The Netherlands)
according to the manufacturer’s instructions. Fragment
analysis was conducted on an ABI Prism 3130 Genetic
Analyser using GeneMapper software (Applied Biosystems,
Foster City, CA, USA). Migration of fragments was
calculated by comparison to the GeneScan LIZ-500 size
standard (Applied Biosystems, Foster City, CA, USA).
Peak areas were then exported to a Microsoft spreadsheet
(www.MLPA.com) and calculations were done according
to the method described by Taylor and colleagues [22]. A
30-50% decrease in the peak area(s) indicated a deletion of
the corresponding exon(s), while a 30-50% increase in the
peak area(s) indicated a duplication of the corresponding
exon(s). MLPA results were confirmed in at least two
independent experiments.

2.4. DNA Amplification and Microsatellite Analysis. The MSI
status was confirmed with a fluorescent multiplex system [23]
comprising six mononucleotide repeats (BAT-25, BAT-26,
BAT-40, NR-21, NR-24, and TGFRII) and four dinucleotide
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repeats (D2S123, D5S346, D175250, and D18S58). 20 ng
of DNA extracted by tumor tissue and peripheral blood
lymphocytes were amplified in 25 yL reaction volume using
the CC-MSI Kit (Ab Analitica, Padova, Italy), in according to
manufacture instructions. The PCR products were analysed
by capillary electrophoresis analysis using an ABI Prism
3130 Genetic Analyser (Applied Biosystems, Foster City, CA,
USA).

2.5. RNA Analysis of MSH2 Gene. RNA was extracted from
4mL peripheral blood lymphocytes using a Trizol reagent
by standard methods (Quiagen). cDNA was synthesised
using SuperScript II RT (Invitrogen by Life Technologies)
and amplified with primers that produced a 598-bp frag-
ment (2cFP 5'-GGCTCTCCTCATCCAGATTG and 2cRP
5'-AAGATCTGGGAATCGACGAA) spanning exons 4-7 of
the messenger RNA. The PCR products were analysed on a
2% agarose gel and visualised by ethidium bromide staining.

2.6. Long-Range Polymerase Chain Reaction and Breakpoint
Analysis. 500 ng of genomic DNA was amplified in a 50 yL-
reaction volume using 2.75 mM Mg"*, 500 uM of each dNTP,
2U of Expand Long Template PCR System (Expand Long
Template Buffer 2; Roche Diagnostics), and 300 nM of each
primer. Primers were designed between exon 5 and intron
7 of the MSH2 gene. This region was amplified in four PCR
fragments. The same forward oligonucleotide (5FP) was used
in each reaction with a different reverse oligonucleotide, each
approximately 1000 bp apart (Table 1). Cycling conditions
were as follows: 94°C for 2 min, followed by 10 cycles con-
sisting of 94°C for 10 sec, 60°C for 30 sec (—0.5°C/cycle) and
68°C for 15 min, followed by 25 cycles consisting of 94°C for
15 sec, 57°C for 30 sec, and 68°C for 15 min (+20 sec/cycle),
and finishing with one cycle at 68°C for 7 min.

All oligonucleotides were designed using Primer3 Soft-
ware (http://frodo.wi.mit.edu/primer3/) and checked using
the Basic Local Alignment Search Tool program (BLAST,
http://blast.ncbi.nlm.nih.gov/Blast.cgi).

2.7. Sequencing Analysis. The PCR products were sequenced
in both the forward and reverse directions using an ABI Prism
3100 Genetic Analyser (Applied Biosystems, Foster City, CA,
USA).

2.8. In Silico Analysis. The nucleotide sequences of the
genomic MSH2 region (NG_007110.1) were analysed with
the RepeatMasker program (http://repeatmasker.org/) using
the default settings. Sequence comparisons in RepeatMasker
were performed by the program cross_match [24].

3. Results

3.1. Detection of Large Genomic Rearrangements in the MSH2
and MLHI Genes by MLPA. MLPA analysis on 63 unrelated
patients identified a deletion in the MSH2 gene in one patient
only (1.6%) (Figure 1). This deletion removed exon 6, which
is located between the small intron 5 and the large intron
6. The exon 6 deletion was confirmed at the RNA level by
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TABLE 1: Primer sequences used for long-range PCR to characterise the breakpoints of the MSH2 exon 6 deletion.

Primer Sequence Nucleotide position (NG_007110.1) Amplicon size (bp)
5FP GGATATTGCAGCAGTCAGAGCCC 11258-11280

7RP AGAGTGAGTCACCACCACCAACT 26890-26913 15657 bp
6RPI AGCTTTTCTGGAGGCCATAGGCA 24694-24717 13459 bp
6RPi AGTCTGGTCCAAGGATCACCAGCA 23620-23644 12386 bp
6RPh TCGTCGGTGGAAGAGGTGGCT 22565-22586 11328 bp
6RPg AGCCCATGAAGAGAGCTGACACC 21580-21603 10345 bp

RT/PCR sequencing of a fragment with a lower molecular
weight. The deletion was identified in a 39-year-old man with
a family history of colorectal cancer, who had developed a
tubulovillous adenoma with small fragments of mucinous
adenocarcinoma in the rectum, approximately 75 cm from
the anus. The same deletion was also detected in his 33-
year-old brother. Although the brother was asymptomatic,
endoscopy revealed an adenocarcinoma located proximal to
the hepatic flexure (Figure 2).

3.2. Microsatellite Analysis. MSI analysis was performed on
DNA extracted from tumour tissues (adenocarcinoma), and
surgical margins of both patients (the proband and his
brother) carrying the MSH2 exon 6 deletion. Both patients
were found to have an MSI-H status, with instability at all
markers analysed (data not shown).

3.3. Breakpoint Characterisation of the MSH2 Exon 6 Deletion.
The breakpoints of the exon 6 deletion within the MSH2
gene were characterised by analysing the intragenic regions
between exon 5 and exon 7. This region was amplified
using region-specific oligonucleotides, as described in the
Materials and Methods section. One forward primer located
in exon 5, and different reverse primers starting in exon 7
were used. Abnormal fragment products of 3804, 2731, 1673
and 690 bp were amplified from the patients DNA but not
from the DNA of the healthy control using the primer pairs
5FP/6RPI, 5FP/6RPi, 5FP/6RPh, and 5FP/6RPg, respectively.
No amplification products were obtained using the primer
pair 5FP/7 RP.

As shown in Figure 3, sequence analysis of the 690-
bp amplification product obtained using the primer pair
5FP/6RPg revealed the loss of a 9655-bp genomic region.
The 5' breakpoint is located in intron 5, in a strech
of 11 nucleotides located 1,535-1,525nt before the first
nucleotide of exon 6. The 3’ breakpoint is located in
intron 6, in an identical sequence of 11 nucleotides located
5,325-5,315nt before the first nucleotide of exon 7. The
exact breakpoints could not be ascertained because of the
presence of an identical 11-bp sequences at both ends.
This deletion ¢.942+(346-356)_1077-(5323-5313)del, alter-
natively NC_000002.11:g.47641903_47651558del, is named
in accordance with the mutation nomenclature instructions
provided by the HGVS (http://www.hgvs.org/); it creates a
premature stop codon and the formation of a truncated
protein.

3.4. In Silico Analysis. Using the RepeatMasker program, the
5' and 3’ breakpoints of the 9655-bp deletion were found
to lie within the 26-bp core sequence of two Alu elements,
which share 96% homology and differ by only one nucleotide.
Both Alu elements belong to the AluSx subfamily and were
269 bp and 310bp, respectively. Homology analysis of the
AluSx sequences included in the deletion was performed
using BLAST analysis (Figure 4).

The entire MSH2 gene was also analysed by RepeatMasker
program, as already described in the literature [25], to verify
the presence of repeat sequences. In this study, a total of 190
repeat sequences, including 106 Alu-type SINE sequences, 19
L1-type LINE sequences, 12 simple repeat sequences, and 12
LTR sequences were identified, and their positions on the
gene defined. Of these, 32 Alu-type SINE sequences, one
L1-type LINE sequence, one LTR, and three simple repeat
sequences were located in the genomic region between exons
5and 7.

4. Discussion

The Lynch syndrome, caused primarily by germ-line point
mutations within MMR genes, is also associated with large
rearrangements that account for 5-20% of all mutations.
Here, we report the results of our screening for large rear-
rangements in the MLHI and MSH2 genes in a cohort of 63
Southern Italian patients who were negative for pathogenic
point mutations in the MLHI1, MSH2, and MSH6 genes. We
identified one large rearrangement in the MSH2 gene and
none in the MLHI gene. Therefore, large rearrangements in
the MLHI and MSH2 genes occur at a low frequency in our
patient cohort (1.6%).

The rearrangement in MSH2 identified in this study
caused a large deletion that removed exon 6 and was
detected in two patients from the same family who met the
Amsterdam-1 criteria. The two affected brothers presented
colorectal cancer with early-onset, before 40 years of age.
Other family members were also affected (not tested in
this study) and presented with the same phenotype (Figure
2). DNA extracted from the tumour tissues of the two
patients showed an MSI-H status, with instability at all
markers analysed. The novel deletion is 9,655bp long and
extends from a region 346bp downstream of exon 5 to
5323 bp upstream of exon 7. The exact breakpoints could
not be ascertained because of the presence of identical 11-
bp sequences at both ends; in fact using the RepeatMasker
program, the breakpoints of this deletion were found to lie
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FIGURE 1: MLPA analysis reveals a candidate genomic rearrangement in the MSH2 gene. (a)The electropherogram of the DNA patient: the
arrow shows half the level of amplification of exon 6 in the carrier subject. (b) The electropherogram of the DNA healthy control: the arrow
shows normal level of amplification of exon 6.

CRC 40

. . .
CRC 39 CRC 34 CRC 38

FIGURE 2: Family pedigree of the patient with the large MSH2 gene deletion. Symbols and abbreviations used are denoted as follows. Arrows:
analysed members of family; black symbol: colorectal cancer; CRC, colorectal cancer. Number next to diagnosis denote age at oneset; o: not

detected.
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FIGURE 3: Confirmation and characterisation of the MSH2 exon 6 deletion. (a) Agarose gel electrophoresis (1.5%) of the long-range PCR
product obtained using the forward primer located in exon 5 (5FP) and the reverse primers located in intron 6 (6RPg) (as described in the
text); DNA Molecular Weight Marker IIT (Roche) used. An abnormal 690 bp fragment was obtained for our patient. (b) Sequence analysis

of the truncated 690-bp PCR amplicon reveals the loss of a 9,655-bp ge
strech of 11 nucleotides common to both introns 5 and 6.
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FIGURE 4: Detailed characteristics of Alu-mediated MSH2 exon 6 del
deletion is located between two AluSX elements in introns 5 and 6. (b)
identical in both introns at the breakpoint.

within the 26-bp core of two AluSx sequences that share 96%
homology. As these two AluSx sequences were found to differ
by only one nucleotide, it is possible that recombination could
occur at this sequence. Therefore, we speculated that the
MSH?2 rearrangement is most likely an Alu-Alu homologous
recombination event that deletes approximately 9.5 kb of the
MSH2 genomic region encompassing exon 6.

The complete deletion of exon 6 has been previously
reported to cause Lynch syndrome in a Dutch family
[26], however the deletion was classified as resulting from
nonhomologous recombination, as the breakpoints did not
fall in Alu sequences. The breakpoint characterised in this
study therefore demonstrates that we have identified a novel
deletion.

The MSH2 and MLH]I genes are known to have a high
density of Alu sequences, 34% and 21%, respectively, several
large rearrangements in this gene have been reported [16,
27]. However, given the high frequency with which these
repetitive sequences occur within these two genes, we would
expect the overall incidence of large rearrangements in our
cohort to be much higher than that identified. Therefore, it
is reasonable to hypothesise that Alu-mediated homologous

nomic region. The breakpoints highlighted in yellow are located in a

AluSx
Intron 6

Intron 6

TTGCGGGGACAGGGTTTC
[REARNARRY!

GACAGGGTTTC

ACCATGTTGGCCAGGTT
FLTEEEEEETErn |
GCCATGTTGGCCAGGCT

etion. (a) Scheme of the MSH2 deletion showing that the 9655-bp
Alignment of the two AluSX elements reveals a core 11-bp sequence

recombination could also cause intragenic rearrangements,
such as translocations or inversions, that are not always
detectable with the MLPA assay used in this study. MLPA
is used for detecting copy number changes in genomic
DNA and can only detect large deletions or duplications.
Inability to detect intragenic rearrangements could in part
explain the low frequency of these molecular alterations in
our cohort. Moreover, it is noteworthy that an exceptionally
low frequency of large rearrangements in the MLHI and
MSH?2 genes (<1.5%) was also reported in a study of the
Spanish population [11]; indeed, due to historical inheritage
Spaniards share a common genetic pool with the Southern
Italian population. In contrast, other studies performed
especially on populations of Northern-Europe (including
Northern Italy population) have reported an increasingly
higher frequency of large rearrangements in these two genes
[28, 29], with a recent study of Slovak HNPCC [12] reporting
a frequency of 25%. Moreover, differences in the frequency
of large rearrangements are also seen in other Alu-rich genes
that are responsible for hereditary diseases, such as BRCAI,
and BRCA2, STK11, depending on the population analysed
[30, 31]. Therefore, based on these informations the Alu



sequences may be regarded as passive elements that serve as
favourable substrates for recombination and the molecular
mechanism that promotes recombination events remains to
be clarified.

Beyond possible explanations about the low frequency
of large rearrangements in our population, it should be
highlighted that the majority of patients with Lynch syn-
drome tested in this study do not have a mutation in the
MMR genes most frequently mutated. It is also important to
emphasize that our families were selected on the basis of the
Amsterdam clinical criteria and MSI-H, thus there is good
evidence that all affected have a strong genetic component
to early development of cancer. We therefore suggest that
some undiscovered genetic mechanism in Lynch syndrome
patients is yet to be investigated. Recently, it has been shown
that unclassified genetic variants in MMR genes can behave
as low-risk alleles that contribute to the risk of colon cancer
in Lynch syndrome families when interacting together or
with other low-risk alleles in other MMR genes [7, 32].
Furthermore, it is also possible that the existence of other
as yet undiscovered genes may confer susceptibility to colon
cancer in Lynch syndrome families. The EPCAM gene in
addition to MMR genes has already been associated HNPCC
phenotype [33] as well as MYH in addition to APC gene has
been associated FAP phenotype [34]. Recently, association
studies have identified a number of loci that appear confer
more increases in colon cancer risk [35, 36]. Further studies
are needed to better identify the underlying genetic risk
factors associated with disease in these families.

5. Conclusions

This paper is the first significant study on contribution of
large MLHI and MSH2 genomic rearrangements in Southern
Italian Lynch syndrome patients, negative for point mutation
in MMR genes. Our results enlarge the spectrum of large
rearrangements in MSH2 genes and at the same time indicate
that these genomic rearrangements seem to be a less frequent
mutational event in our population. Nonetheless, we believe
that the detection of large rearrangements in the MLHI and
MSH?2 genes should be included in the routine testing for
Lynch syndrome, especially considering the simplicity of the
MLPA assay.
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