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Abstract: Shape-memory polymers (SMPs) selectively induced by near-infrared lights of 980 or 808 nm
were synthesized via free radical copolymerization. Methyl methacrylate (MMA) monomer, ethylene
glycol dimethylacrylate (EGDMA) as a cross-linker, and organic complexes of Yb(TTA)2AAPhen
or Nd(TTA)2AAPhen containing a reactive ligand of acrylic acid (AA) were copolymerized in situ.
The dispersion of the organic complexes in the copolymer matrix was highly improved, while
the transparency of the copolymers was negligibly influenced in comparison with the pristine
cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with
the complex loading, while their glass transition temperature, cross-linking level, and mechanical
properties were to some extent reduced. Yb(TTA)2AAPhen and Nd(TTA)2AAPhen provided the
prepared copolymers with selective photothermal effects and shape-memory functions for 980 and
808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency
or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to
the combination of good transparency and selective light wavelength responsivity.
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1. Introduction

Remote-controlled actuating of polymeric materials to drive their own movements or to
manipulate other substances is one rapidly developing area in advanced intelligent materials [1–5].
In comparison with magnetic [2] and electrical fields [5,6] as another two widely reported
non-contact stimuli, light is a precise, localized, and remote energy source [1], while its intensity [7],
wavelength [8–11], irradiation position [10], irradiation frequency [11], and polarization [12–14] can
all be adjusted. Light-responsive polymers thus have attracted increasing interest driven by their
applications in actuators [15], self-walking or self-swimming devices [16], microfluidic chips [17,18],
optical oscillating generators [19,20], and medical devices [21].

Shape-memory polymer (SMP) is a kind of polymer that has the ability to recover from a temporary
shape to its permanent one. Superior to liquid-crystalline polymers [12–15], hydrogels [22–25],
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and carbon nanotube (CNT) or graphene based polymer bilayer films [26–28], SMP provides the
possibility to define its initial and final shapes in an on-demand manner [4,29–31]. A convenient
approach to prepare photo-responsive SMPs is to mix thermally-induced SMPs with photothermal
fillers, which absorb light energy and transfer it into heat [3]. When the increased temperature
resulting from the internally generated heat is above the switching temperatures (Tsws) of such SMP
composites (SMPCs), shape recoveries are triggered. Various substances presenting photothermal
effect have been explored as the functional fillers for SMPCs, especially carbon nanomaterials [7,32] and
noble-metal nanostructures [9,10]. The response wavelength has been reported to be located in UV [33],
visible [9,10], or infrared light regions [7,34]. The assembly of such selectively photo-responsive
SMPCs enables the multi-shape variation upon sequenced light irradiations. The most widely reported
deformation manner is the sequential deployment of conjoint responsive SMPCs with temporary zigzag
shapes [11,35,36]. In addition, selectively photothermal fillers act as the actuating hinge to trigger
the folding of different areas of a SMP film upon switching the irradiation order [37]. To date, light
wavelengths which have been collaboratively used in not only SMPs but other light-induced polymers
include UV–Vis [38], UV–NIR [39], Vis–Vis [37], Vis–NIR [18,26], and radiofrequency (RF)-RF [36].
Recently, our group reported a new photothermal filler system based on rare earth (RE) organic
complexes presenting selective photothermal functions to two NIR lights which are less absorbed by
human tissues [11]. The physical mixing of the prepared Yb(TTA)3Phen and Nd(TTA)3Phen powders
in poly[ethylene-ran-(vinyl acetate)] (EVA) offered the shape recovery upon a NIR-NIR irradiation of
980 and 808 nm, respectively.

SMPs can be used to create a series of deformable, programmable, and shape-memory optical
devices [40–42]. Via creating temporal microstructures on SMPs, the optical properties at both the global
and local levels, especially the transparency, can be switched [40]. Furthermore, Kim et al. reported
a flexible electrode with high transparency, low sheet resistance, and shape-memory capability [41].
If photo-responsive SMPCs are used in the field of smart optical devices, it is of high significance
to maintain the transparency. Therefore, there is a need to improve the dispersion of functional
fillers in the SMP matrix. As far as the aforementioned RE organic complexes are concerned, ligands
with reactive groups have been applied to allow for in situ reactions with elastomers [43,44] and
hydrogels [45]. For example, Zhang and coworkers created a gadolinium organic complex with
double bonds and introduced it into natural rubber during in situ vulcanization [43]. More recently,
Fan et al. [45] developed a europium organic complex also containing double bonds and copolymerized
it with vinyl acetate monomers to prepare a novel luminous hydrogel. Obviously, in comparison with
physical mixing, the in situ reaction as a chemical approach provides a potential path to improve the
dispersion and compatibility of RE organic complexes as photothermal fillers in light-induced SMPs.

Here, acrylic acid (AA) with double bonds was used to prepare reactive Yb and Nd organic
complexes. Selectively responsive SMPs to NIR lights were synthesized subsequently among methyl
methacrylate (MMA) monomer, ethylene glycol dimethylacrylate (EGDMA), and the reactive organic
complexes via in situ copolymerization. The structures and photothermal properties of the functional
and reactive complexes were studied, while the properties and the light-induced shape-memory
performance of the prepared SMPs were evaluated. Finally, we created temporal structures at the
microscale on those SMPs and investigated their feasibility in the field of smart optical devices.

2. Materials and Methods

2.1. Materials

The α-thenoyltrifluoroacetone (HTTA, 222.18, 98%) and 1,10-phenanthroline (Phen, 180.21, 99%)
were purchased from Sinopharm Chemical Reagent Company (Shanghai, China). YbCl3·6H2O (387.50,
99.99%) and NdCl3·6H2O (358.74, 99.99%) were provided by Funing Rare Earth Industrial Company
(Funing, China). Acrylic acid (AA, 72.06, 98%), methyl methacrylate (MMA, 100.12, 98%), ethylene
glycol dimethylacrylate (EGDMA, 198.22, 98%), 2,2′-azobis(2-methylpropionitrile) (AIBN, 164.21,
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99.5%), and N,N-dimethylformamide (DMF, 73.09, 99.5%) were obtained from Aladdin, Shanghai,
China. All chemicals were used without further purification.

2.2. Synthesis of Yb/Nd(TTA)2AAPhen Complexes

YbCl3·6H2O (10 mmol), NdCl3·6H2O (10 mmol), HTTA (20 mmol), AA (10 mmol) and Phen
(10 mmol) were respectively dissolved in 30 mL ethanol. The ethanol solution of YbCl3·6H2O or
NdCl3·6H2O was first poured into a three-necked flask at 60 ◦C in a magnetic stirred water bath.
The ethanol solutions of ligands were subsequently added dropwise. The HTTA and AA solutions
were added together before the Phen solution. The pH value of the mixture was adjusted to 6–7 using
1 mol·L−1 sodium hydroxide ethanol solution, before the reaction of 6 h. Subsequently, the precipitation
was collected using centrifugation (10,000 rpm), before washing with water and ethanol for three times
each and drying in a vacuum oven at 60 ◦C for 12 h.

2.3. In Situ Copolymerization of PMMA-Based Copolymers

Yb(TTA)2AAPhen (0, 0.25, or 0.5 g) or Nd(TTA)2AAPhen (0, 0.25, or 0.5 g) were first dissolved in
DMF (4 g) and sonicated for 30 min. MMA monomer (5 g), EGDMA (0.25 g, 5 phr, parts of product per
hundred parts of MMA) and AIBN (0.03 g, 0.6 phr) were subsequently added to the solution. The whole
solution was prepolymerized in a glass vial (20 mL) at 65 ◦C for 30 min. Subsequently, the prepolymer was
injected into a home-made glass container (L×W × D = 70 mm× 20 mm× 1 mm), which was placed in
an oven at 65 ◦C for further copolymerization. After 12 h, the materials were taken out and then heated
at 65 ◦C for 24 h in a vacuum oven. Three different powder loadings (0, 5, and 10 phr) were used and
the samples were named as cPMMA, PMMA–Yb5, PMMA–Yb10, PMMA–Nd5, and PMMA–Nd10.

2.4. Creation of Temporary Microstructures

Two pieces of Nylon fabrics were pressed against both sides of PMMA-Yb10 or PMMA-Nd10,
and the sandwich-structured materials were placed between two glass plates and fixed using office
clamps. The materials were heated to 150 ◦C in an oven for 10 min and cooled down gradually to room
temperature without manual intervention. The specimens with temporary surface structures were
obtained by removing the clamps, glass plates, and Nylon fabrics (Scheme 1a). In addition, a piece
of PMMA–Yb10 or PMMA–Nd10 specimen was placed onto a hot plate at 150 ◦C for 5 min. A glass
grating (Deli Laser Solution Co. Ltd., Jiangyin, China) with the grating parameter of 3.3 µm was placed
carefully onto the specimen and compressed using a weight of 2 kg. After 10 min, the material was
cooled down to room temperature gradually (Scheme 1b) before the weight and grating were removed.
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2.5. Characterizations

Fourier Transform Infrared Spectroscopy: Fourier transform infrared spectroscopy (FT–IR,
Vector 22, Bruker, Billerica, MA, USA) was used to determine the chemical structures of the prepared
Yb(TTA)2AAPhen and Nd(TTA)2AAPhen as well as the raw materials of AA, HTTA and Phen.
The samples were ground with pottassium bromide (KBr) together and pressed into a testing tablet.

Reflectance and Transmittance Measurements: The reflectance spectra of Yb(TTA)2AAPhen
and Nd(TTA)2AAPhen as well as the transmittance spectra of the copolymers were measured via a
UV–vis–NIR spectrophotometer (UV-3101PC, Shimadzu Corp., Kyoto, Japan), using BaSO4 and air as
the references, respectively.

Thermogravimetric Analysis: In an air flow, the thermal stability of Yb(TTA)2AAPhen and
Nd(TTA)2AAPhen as well as the copolymers were evaluated using thermogravimetric analysis (TGA,
Netzsch SAT 449C, Selb, Germany) scanning from room temperature to 800 ◦C at the heating rate of
10 ◦C·min−1.

Thermal Properties Analysis: Differential scanning calorimetry (DSC, 204 Phoenix, Netzsch, Selb,
Germany) was used to determine the thermal properties of the copolymers. The scanning temperature
increased from room temperature to 150 ◦C, and decreased to −75 ◦C before increasing to 150 ◦C again.
The heating and cooling were conducted under a nitrogen atmosphere at a rate of 10 ◦C·min−1.

X-ray diffraction: The structure characterization of Yb(TTA)2AAPhen and Nd(TTA)2AAPhen
powders as well as the copolymers were performed using a Smartlab (Rigaku, Tokyo, Japn) thin-film
diffractometer employing Cu Kα radiation (λ = 0.15046 nm), with the 2θ angle from 5◦ to 50◦ at the
scanning rate of 10◦·min−1.

Microscopy: The morphology of Yb(TTA)2AAPhen and Nd(TTA)2AAPhen powders as well as the
copolymers were examined using a scanning electron microscope (SEM, JSM-6510, JOEL, Tokyo, Japan)
equipped with a NORAN System 7 EDX detector (Thermo Fisher Scientific, Pittsburgh, PA, USA).

Photothermal Effect: The NIR lights of 980 and 808 nm were generated respectively by a laser
diode driver (KS3-11312-912, BWT Co., Beijing, China) and a laser driver (FC-808-10W, Xinchanye Co.,
Changchun, China). The sample temperatures were measured using a hand-held infrared camera
(Xintest Company, Dongguan, China). The power density was determined using an optical
power/energy meter (Model 1918-R, Irvine, CA, USA) equipped with a thermopile detector
(Model 818P-020-12, Newport).

Swelling Experiments: A piece of the sample with the mass of m1 was cut and immersed in DMF.
After 72 h, the sample was removed from the solvent, while the mass (m2) was immediately measured
in the swollen state after cleaning the extra solvent using a piece of tissue. The swollen sample was
heated at 60 ◦C again until completely dry to obtain the final weight (m3). The gel content (G) was
given by m3/m1 × 100%. The swelling degree (Q) was calculated using Equation (1). The ρ1 and ρ2

were the specific densities of the swelling solvent of DMF and PMMA.

Q =

[
1 + ρ2·

(
m2

m1·ρ1
− 1

ρ1

)]
× 100% (1)

The cross-linking density ([XLD]s in moles per cubic centimeters) of the cross-linked copolymers
was determined using the Flory-Rehner equation (Equation (2)) [46].

[XLD]s =
ln(1−VR) + VR + χV2

R

2Vs(0.5VR −V
1
3

R )
(2)

where VR = m3
m3+(m2−m3)

ρ2
ρ1

was the volume fraction of epoxy network in the swollen sample. Vs was

the molar volume of solvent, and χwas the solvent-polymer interaction parameter (0.50) [47].
Mechanical Properties: A flexural test instrument (MZ-2000c, Mingzhu Testing Machinery Co.,

Jiangdu, China) was used to perform the flexural test experiment via a three-point bending setup with
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a 30-mm span. The applied strain rate was 1.5 mm·s−1. The sample dimension was L × W × D =
60 mm × 15 mm × 0.9 mm. The flexural yield strength and flexural modulus were obtained based on
the yielding point.

Shape-Memory Effect: The shape-memory effect was determined on the basis of angle variation.
The test specimens were placed onto a hot plate at 150 ◦C. After 5 min, the specimens were completely
folded to 90◦ against a perpendicular glass plate tightly and kept for another 5 min before gradual
cooling to room temperature. Upon the irradiation of NIR light to the bended corner, the instantaneous
angles, θ, between the real-time location and the primary location of the moving leg were characterized
with the error of ±2◦. The shape recovery ratio, Rr, was determined as Rr = θ/90◦ × 100%.

3. Results and Discussion

3.1. Structure and Properties of Yb(TTA)2AAPhen and Nd(TTA)2AAPhen

To determine the chemical structures of Yb(TTA)2AAPhen and Nd(TTA)2AAPhen, FTIR spectra
of the two RE complexes and the ligands are shown in Figure 1a. Three peaks related to the
characteristic ring stretching vibration of Phen were located at 734, 852 and 1561 cm−1, which after
coordination shifted to 713, 843 and 1542 cm−1 in Yb(TTA)2AAPhen and 716, 843 and 1537 cm−1

in Nd(TTA)2AAPhen, respectively [11,48]. The typical –C=C– (1618 cm−1) and –C=O– (1638 cm−1)
stretching vibrations of AA varied to 1605 and 1633 cm−1 in Yb(TTA)2AAPhen as well as 1602 and
1625 cm−1 in Nd(TTA)2AAPhen [49]. The peaks at 1642 and 1663 cm−1, which were assigned to the
–C=O– stretching vibration of HTTA, also contributed to the typical peaks in Nd(TTA)2AAPhen and
Yb(TTA)2AAPhen [48]. It is worth mentioning that HTTA stands for α-thenoyltrifluoroacetone. During
the formation of organic complexes, the hydrogen atom of the enol isomer of HTTA was off because of
acid dissociation, generating TTA as the real ligand.
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Figure 1. (a) FTIR spectra of AA, Phen, HTTA, Yb(TTA)2AAPhen and Nd(TTA)2AAPhen powders;
(b) TGA curves in air flow of Yb(TTA)2AAPhen and Nd(TTA)2AAPhen powders; (c,d) Chemical
structures of (c) Yb(TTA)2AAPhen and (d) Nd(TTA)2AAPhen.
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The TGA curves of Yb(TTA)2AAPhen and Nd(TTA)2AAPhen are illustrated in Figure 1b.
The theoretical values of weight percentage of each component in Yb(TTA)2AAPhen and
Nd(TTA)2AAPhen were calculated to be Yb: 19.5%, TTA: 50.1%, Phen: 22.3%, AA: 8.1% as well
as Nd: 16.8%, TTA: 51.7%, Phen: 23.1%, AA: 8.4%. A slight weight loss initiating from 191 and
185 ◦C for Yb(TTA)2AAPhen and Nd(TTA)2AAPhen, respectively, was noticed, as shown in the
insert figure, which was related to the decomposition of ligand AA in both samples [49]. Beginning
from 270 and 247 ◦C, the second degradation attributing to the decomposition of ligand TTA took
place, while the third degradation stepping from 464 and 441 ◦C resulted from the decomposition of
ligand Phen. Similar to the reported Yb(TTA)3Phen and Nd(TTA)3Phen [11], the thermal resistance of
Yb(TTA)2AAPhen was better than Nd(TTA)2AAPhen. The smaller atom radius may contribute to a
stronger coordination connection. In addition, the weight losses within the last two degradation steps
were close to 50% and 20%, respectively, which coincided with the mass fractions of TTA and Phen
in Yb(TTA)2AAPhen and Nd(TTA)2AAPhen. The weight loss within the first degradation step was
smaller than the theoretical weight ratio of AA because the following degradation of TTA resulted in
an evident inflection point and retarded the measurements of its real ratio. The chemical structures of
the two RE complexes, thus, are shown in Figure 1c,d on the basis of FTIR and TGA results.

As a selectively responsive photothermal filler, the investigation on energy conversion route is of
great importance. To demonstrate whether the complexes can absorb NIR lights with specific wavelengths,
the reflection spectra of HTTA, Phen, YbCl3, NdCl3, Yb(TTA)2AAPhen and Nd(TTA)2AAPhen were
detected as presented in Figure 2a,b. An absorption peak at 1126 nm was observed in both
Yb(TTA)2AAPhen and Nd(TTA)2AAPhen, which superposed on the typical absorption peaks of 1119
and 1142 nm from HTTA and Phen, respectively, further indicating the successful coordination. More
importantly, an obvious absorption peak of Yb(TTA)2AAPhen was located at 975 nm (Figure 2a),
which can be related to the level transition from 2I7/2 to 2F5/2, while Nd(TTA)2AAPhen exhibited
a clear peak at 804 nm (Figure 2b), which was contributed by the level transition from 4I9/2 to
4F5/2. More peaks were observed for Nd(TTA)2AAPhen due to its more energy levels. The peaks
at 875, 749, 684, 629, 520, and 468 nm were respectively attributed to the lever transitions of 4I9/2
→ 4F3/2, 4I9/2 → 4F7/2, 4I9/2 → 4F9/2, 4I9/2 → 4H11/2, 4I9/2 → 4G5/2, 4I9/2 → 4G7/2, and 4I9/2 →
4G11/2. No peaks around 808 and 980 nm were observed for Yb(TTA)2AAPhen and Nd(TTA)2AAPhen,
indicating that Yb(TTA)2AAPhen and Nd(TTA)2AAPhen were discriminately sensitive to 980 and
808 nm. Therefore, as expected, Yb(TTA)2AAPhen and Nd(TTA)2AAPhen powders presented the
selective photothermal effects upon the irradiations of 980 and 808 nm, respectively (Figure 2c,d), i.e.,
the temperatures of Yb(TTA)2AAPhen and Nd(TTA)2AAPhen varied upon different light wavelengths
(980 and 808 nm) and power densities (0.2, 0.3 and 0.4 W·cm−2). Under the irradiation of 980 nm
light with a power density of 0.2 W·cm−2, the temperature of Yb(TTA)2AAPhen increased from room
temperature to 66 ◦C in 60 s, while increasing the power density to 0.3 and 0.4 W·cm−2 resulted in
higher balanced temperatures at 76 and 102 ◦C (Figure 2c). Nd(TTA)2AAPhen, however, exhibited a
neglected temperature change upon 980 nm light irradiation. On the other hand, Yb(TTA)2AAPhen
showed no photothermal effect upon NIR light of 808 nm, while an obvious temperature increase to
55, 89, and 128 ◦C was observed for Nd(TTA)2AAPhen upon the irradiation of a certain NIR light with
the power densities of 0.2, 0.3 and 0.4 W·cm−2 in 60 s (Figure 2d).
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Figure 2. (a) Reflection spectra of Phen, HTTA, YbCl3 and Yb(TTA)2AAPhen; (b) Reflection spectra of
Phen, HTTA, NdCl3 and Nd(TTA)2AAPhen; (c,d) The temperature increase of the powders with time
upon the irradiations of (c) 980 and (d) 808 nm NIR light.

3.2. Structure and Properties of Light-Induced SMPs

The introduction of reactive double bonds through ligand AA into the prepared complexes
was expected to enable a free radical copolymerization with MMA monomers and EGDMA as the
cross-linker (Scheme 2). The filler dispersion was expected to be highly improved, which was verified
using XRD characterization first (Figure 3a). The pristine complexes exhibited evident strong peaks
and negligible amorphous scattering, indicating their highly crystalline structures. After in situ
copolymerization, PMMA–Yb10 and PMMA–Nd10 both presented broad scatterings resulting from
the amorphous PMMA matrix, while the typical crystal reflections generated by the complexes were
absent, suggesting the disappearance of their primary crystalline structures. SEM and EDX were
further conducted. As shown in Figure 3b,c, the pristine Yb(TTA)2AAPhen and Nd(TTA)2AAPhen
presented powder-shaped and sheet-shaped structures with sizes up to ~20 µm. The in situ reaction as
a chemical approach significantly improved their dispersions, i.e., almost no powders were observed
from SEM images (Figure 3d,g). Besides, the Yb and Nd element signals dispersed uniformly as
determined from the EDX mapping results, strongly demonstrating the homogenous existence of
Yb(TTA)2AAPhen and Nd(TTA)2AAPhen in the copolymer matrix (Figure 3f,i).
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The effects of the dangling organic complexes on the thermal and mechanical properties of the
prepared copolymers were investigated. As shown in Table 1, the flexural yield strength and flexural
modulus of PMMA–Yb and PMMA–Nd decreased with complex loadings. The incorporation of
10 phr Yb(TTA)2AAPhen resulted in the reductions of 26% and 24% in flexural yield strength and
flexural modulus, while Nd(TTA)2AAPhen of 10 phr contributed to reductions of 35% and 38% as
well. DSC results, as shown in Figure 4a,b, were used to determine the Tg of the prepared copolymers.
The introduction of organic complexes caused a variation of ~10 ◦C in their Tgs. More specifically,
the overall tendency was that the copolymers possessed lower Tgs than the pristine cPMMA. The gel
content (G) and swelling ratio (Q) of cPMMA as well as SMPs containing different amounts of
RE organic complexes were measured (Table 1). The dense network was achieved in cPMMA as
determined by its high G of 99.3% and low Q of 169%. The in situ reaction with Yb(TTA)2AAPhen and
Nd(TTA)2AAPhen reduced the cross-linking level, i.e., the values of G and Q gradually reduced and
increased, respectively. It should be noted that a G over 90% demonstrated the generation of enough
netpoints in a polymer matrix after in situ reaction [50]. The [XLD]s was also calculated based on
the swelling experiment, while the data clearly showed a reduction in cross-linking density (Table 1).
It was expected that the steric hindrance resulting from the organic complex should increase the chain
stiffness and as a result the modulus and Tg. However, the large dangling group also retarded the
copolymerization of EGDBA as the cross-linker and resultantly facilitated the formation of a loose
network. The decrease in cross-linking density provided the prepared copolymers good chain mobility
than the pristine cPMMA, reducing the modulus and Tg.
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Table 1. Composition, mechanical, thermal properties of PMMA-copolymers.

Sample
name

σ a E b Tg
c G d Q e [XLD]s

f Td,5
g Td,50

h Td,90
i

MPa GPa ◦C % % mmol cm−3 ◦C ◦C ◦C

cPMMA 45.5 ± 2.4 2.1 ± 0.1 86 99.3 ± 0.2% 169 ± 3% 0.62 ± 0.06 227 304 335
PMMA-Yb5 41.4 ± 2.9 1.9 ± 0.2 87 94.7 ± 0.8% 198 ± 13% 0.26 ± 0.07 206 374 400

PMMA-Yb10 33.5 ± 5.2 1.6 ± 0.2 78 92.5 ± 1.2% 207 ± 2% 0.19 ± 0.02 202 380 418
PMMA-Nd5 35.3 ± 3.9 1.6 ± 0.2 73 94.9 ± 0.5% 202 ± 5% 0.23 ± 0.02 194 374 412
PMMA-Nd10 29.4 ± 2.1 1.3 ± 0.2 82 93.1 ± 0.6% 213 ± 23% 0.19 ± 0.10 195 379 421

a, b: Flexural yield strength (σ) and flexural modulus (E) measured from the three-point bending test at room
temperature. c: Glass transition temperature determined from DSC characterization; d, e: Gel content (G) and
swelling ratio (Q) obtained from swelling experiments; f: Cross-linking density [XLD]s calculated from swelling
experiments; g–i: Temperatures at 5%, 50%, and 90% weight loss, determined from TGA curves.
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(c) PMMA–Yb and (d) PMMA–Nd copolymers, in addition to cPMMA.

As illustrated by the TGA curves in Figure 4c,d, the degradation initiated earlier for the
copolymers containing complexes possibly due to AA decomposition, i.e., the temperature at the
5% weight loss decreased from 227 ◦C for cPMMA to 206, 202, 194 and 195 ◦C for PMMA–Yb5,
PMMA–Yb10, PMMA–Nd5, and PMMA–Nd10, respectively. Upon increasing the temperature further,
the thermal resistance of the copolymers was evidently improved with the aid of organic complexes to
increase chain stiffness. A great increase of 70–80 ◦C in the temperature at the 50% weight loss was
observed, while the temperatures at the 90% weight loss of the copolymers were 65–86 ◦C higher than
cPMMA. Besides, thermal resistance was positively correlated to complex loadings.

The discriminated absorptivity of the synthesized polymers was investigated using UVPC to
ensure that the in situ reaction did not influence the certain absorption peaks as behaved by the
complexes themselves (Figure 5a,b). In comparison with air as the reference, the cPMMA specimen with
the thickness of 1.0 ± 0.1 mm presented good transmittance between 60% and 80% in the visible light
range (400–800 nm). Because of the good dispersion resulting from the in situ reaction, the dangling
organic complexes varied the transmittance negligibly, while the ligands of TTA and Phen highly
increased the absorption in the UV light range (200–400 nm). More importantly, Yb(TTA)2AAPhen
and Nd(TTA)2AAPhen, as expected, generated new peaks located at 975 and 802 nm, respectively,
compared to pristine cPMMA. Higher loading increased the peak intensity, i.e., the transmittance at
975 nm decreased from 83.6% for cPMMA to 80.6% and 77.3% for PMMA–Yb5, and PMMA–Yb10,
respectively. At the wavelength of 802 nm, cPMMA, PMMA–Nd5, and PMMA–Nd10 exhibited
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a gradually decreased transmittance from 79.2 to 69.2% and 62.7% as well. Due to such certain
absorption peaks, the prepared polymers also presented selective photothermal effects upon the NIR
light irradiation of 980 or 808 nm, as shown in Figure 5c,d. The NIR light of 980 nm was unable to cause
the temperature raise of cPMMA and PMMA–Nd10, while PMMA–Yb5 and PMMA–Yb10 were heated
in a linear manner with the power density, i.e., their temperatures increased from room temperature to
82 and 126 ◦C at the power density of 3.2 W·cm−1 (Figure 5c). Similarly, the NIR light of 808 nm did
not increase the temperature of cPMMA and PMMA–Yb10 because of the absent photothermal filler.
PMMA–Nd5 and PMMA–Nd10, however, can increase their temperatures at 1.5 W·cm−1 to 64 and
127 ◦C (Figure 5d).
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Figure 5. (a,b) Transmittance spectra of (a) PMMA–Yb and (b) PMMA–Nd samples with the thickness
of ~1 mm; (c,d) Temperature vs. power density curves of PMMA copolymers upon the irradiation of
(c) 980 and (d) 808 nm; (e,f) Recovery ratio of PMMA copolymers upon the irradiation of (e) 980 and
(f) 808 nm.

The light-induced shape recovery ratio (Rr) highly relied on the suitable light wavelength and
power density, which dominated the indirectly generated temperature (Figure 5e,f). The PMMA–Nd10
and PMMA–Yb10 did not initiate their deformations at 980 and 808 nm, and cPMMA did not present
shape recovery either. Good shape recovery (91% and 94%) occurred only for PMMA-Yb10 and
PMMA–Nd10 when the power densities of the NIR lights of 980 and 808 nm went beyond 3.2 and
1.5 W·cm−2, where the measured temperatures were higher than their Tgs. Quantitative results
and the qualitative photos, as shown in Figure 5e,f, indicated that the in situ copolymerization of
Yb(TTA)2AAPhen and Nd(TTA)2AAPhen enabled the SMPs to recover from temporary shape upon
selective NIR light irradiations. It is worth mentioning that since the temperature increase not only
depended on the filler content but the light intensity as well, increasing the light power density was
expected to trigger the shape recovery of PMMA–Yb5 and PMMA–Nd5 ultimately, which was not
further investigated.



Polymers 2017, 9, 181 11 of 15

3.3. Applications in Smart Optical Devices

In addition to the macroscale shape deformation under the exposure towards certain NIR lights,
the recoveries of the microstructures on PMMA–Yb10 and PMMA–Nd10 surfaces were also explored.
The good transparency resulted from the fact that in situ copolymerization highly improved the
dispersion of RE organic complexes with a high loading of 10 phr in the polymer matrix offered the
opportunity to create smart optical devices. It is difficult for other conventional photothermal fillers to
achieve such neglected influence on the transparency.

Two pieces of Nylon fabrics (shown in the inserted image in Figure 6a) were first compressed
onto the two sides of PMMA–Yb10 or PMMA–Nd10 at a high temperature of 150 ◦C, which was over
their Tg (see Scheme 1). Because of the appearance of the temporary rough surfaces, the transmittance
of PMMA–Yb10 decreased from 69.0 to 45.7% at the wavelength of 600 nm for an instance (Figure 6a),
while the sample became opaque (Figure 6c) in comparison with the original status (Figure 6b). Heating
up to 150 ◦C triggered the complete recovery of the surface topography and the sample transparency
(Figure 6d). The transmittance at the wavelength of 600 nm also increased to 68.4%, suggesting
a recovery ratio of 99% (Figure 6a). Here, upon the precise irradiation of 980 nm NIR light onto
the on-demand area of the compressively deformed PMMA–Yb10, a localized shape recovery was
achieved as indicated by the yellow circle and the scene behind appeared (Figure 6e). Similar selective
microstructure recovery was also observed for PMMA–Nd10 upon the irradiation of 808 nm NIR light
(Figure 6f–i). As reported by a previous research, a 3 × 3 array of ITO heaters was used to realize the
sequential recovery of different regions of an EVA film with a compressively deformed microprism
array [40]. By contrast, the usage of a selectively photo-responsive SMP obviously achieved the remote
and precise control of the shape recovery at randomly localized areas.
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Figure 6. (a) Transmittance curves of PMMA-Yb10 and PMMA–Nd10 with the original, temporary,
and recovered surface topographies. The inserted image presents the topography of the used Nylon
fabric. (b–i) Photos of (b–e) PMMA-Yb10 and (f–i) PMMA–Nd10 with the (b,f) original, (c,g) temporary,
(d,h) recovered, and (e,i) locally recovered surface topography.

Smart soft grating devices have also been reported, resulting from a deformation of surface
structures at the micro-/nanoscale [42,51]. Further, instead of fabricating the temporary opaque
sample, a glass grating with the grating parameter of 3.3 µm was used to create grating structures at
the microscale on PMMA–Yb10 and PMMA–Nd10, for the purpose of fabricating light-induced soft
grating devices. As shown in Figure 7a–d, the temporary grating structures on PMMA–Yb10 (Figure 7a)
or PMMA–Nd10 (Figure 7c) disappeared upon 150 ◦C, while the diffraction patterns also vanished,
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generating round halos (Figure 7b,d). Such transparent soft grating materials with the capability of
selectively photo-responsive shape-memory effect can be assembled to prepare smart grating devices.
As shown in Figure 7e,h, after the temporary grating microstructures were created on PMMA–Yb10
and PMMA–Nd10 separately, the two specimens were layered together at a 90 degree angle. A lattice
diffraction pattern, thus, was achieved. Upon irradiation at 980 nm, the grating structures on the
front PMMA–Yb10 layer disappeared, while the PMMA–Nd10 layer on the back were not affected,
diffracting the light into a perpendicular diffraction strip (Figure 7f). The subsequent irradiation of
808 nm penetrated the front PMMA–Yb10 layer and resulted in the complete vanishing of the grating
structures on PMMA–Nd10 and the appearance of a halo pattern (Figure 7g). Switching the irradiation
order varied the evolution procedure of the diffraction patterns. The NIR light of 808 nm, which did
not trigger the shape recovery of the front PMMA–Yb10, caused the disappearance of the grating
structures on PMMA–Nd10, while the parallel diffraction strip was achieved (Figure 7i). The 980 nm
light finally led to the halo pattern due to the shape recovery on the front PMMA–Yb10 (Figure 7j).
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4. Conclusions 

Via free radical copolymerization, shape-memory polymers selectively responsive to NIR lights 
of 980 or 808 nm were synthesized. The usage of acrylic acid containing double bonds offered the 
prepared Yb(TTA)2AAPhen and Nd(TTA)2AAPhen reactivity with methyl methacrylate monomers 
and ethylene glycol dimethylacrylate. Increasing the contents of organic complexes enhanced the 
thermal resistance of the copolymers, but caused a reduction in glass transition temperature, cross-
link density, and mechanical properties. The transparency, however, was not affected evidently. 
Further, the discriminated absorptivity of the complexes close to the wavelengths of 980 and 808 nm 
provided the copolymers with the selective photothermal effect and shape-memory capability. 
Finally, smart optical devices were created which can switch the localized transparency or the 
diffraction evolution procedures. Further work should focus on the development of other organic 
complexes containing different reactive ligands and the in situ synthesis of other NIR light-induced 
SMPs.  
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Figure 7. (a–d) OM images and diffraction patterns of (a,b) PMMA–Yb10 and (c,d) PMMA–Nd10 with
the (a,c) temporary gratings and (b,d) recovered surfaces. (e–j) Schematic diagrams and diffraction
patterns of the cross-stacked PMMA–Yb10 (front) and PMMA–Nd (back) with temporary grating
structures upon different irradiations of 980 or 808 nm NIR light.

4. Conclusions

Via free radical copolymerization, shape-memory polymers selectively responsive to NIR lights
of 980 or 808 nm were synthesized. The usage of acrylic acid containing double bonds offered the
prepared Yb(TTA)2AAPhen and Nd(TTA)2AAPhen reactivity with methyl methacrylate monomers
and ethylene glycol dimethylacrylate. Increasing the contents of organic complexes enhanced the
thermal resistance of the copolymers, but caused a reduction in glass transition temperature, cross-link
density, and mechanical properties. The transparency, however, was not affected evidently. Further,
the discriminated absorptivity of the complexes close to the wavelengths of 980 and 808 nm provided
the copolymers with the selective photothermal effect and shape-memory capability. Finally, smart
optical devices were created which can switch the localized transparency or the diffraction evolution
procedures. Further work should focus on the development of other organic complexes containing
different reactive ligands and the in situ synthesis of other NIR light-induced SMPs.
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