
Journal of Industrial Microbiology and Biotechnology, 2021, 48, kuab003

DOI: 10.1093/jimb/kuab003
Advance access publication date: 25 January 2021

Natural Products – Review

Heterologous production of cyanobacterial compounds
Dipesh Dhakal , Manyun Chen, Hendrik Luesch , Yousong Ding

Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
Correspondence should be addressed to: Hendrik Luesch at luesch@cop.ufl.edu and Yousong Ding at yding@cop.ufl.edu

Abstract: Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Im-
portantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have
unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds
based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are
silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting
the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli,
Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been
increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent ad-
vances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging
strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications
of synthetic biology tools in the discovery of new cyanobacterial natural products.
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Introduction
Cyanobacteria are a phylum of photosynthetic prokaryotes that
possess exceptional adaptability in almost all environmental
niches. They can survive in diverse conditions varying from
Antarctic Dry Valleys to Atacama Desert (Friedmann & Kibler,
1980; Wierzchos et al., 2006) and hot springs near volcanic zones
(Teece et al., 2020, 3). In addition, they can exist as symbionts or
commensals associated with other animals and plants (Demay
et al., 2019; Mazard et al., 2016; Thuan et al., 2019). Accom-
panying their ecological plasticity, cyanobacteria demonstrate
notable metabolic versatility (Xiong et al., 2017), particularly the
production of a number of structurally and functionally diverse
metabolites (Fig. 1). These compounds possess a wide array
of bioactivities, such as antibacterial, antifungal antiviral, and
antitumor activities (Cai et al., 2017; Mason et al., 1982; Salvador-
Reyes & Luesch, 2015; Shishido et al., 2015). In addition, they
possess antimalarial (Linington et al., 2009), anti-inflammatory
(Choi et al., 2012; Montaser et al., 2013), insecticidal (Becher &
Jüttner, 2005), antimetabolic (Brilisauer et al., 2019), and allelo-
pathic properties (Leão et al., 2010). On the other hand, due to
the toxicity to humans, plants, and animals, the toxins produced
by cyanobacteria, named cyanotoxins (Carmichael, 1992), have
attained increasing public attention. The broad bioactivity spec-
trum of cyanobacterial natural products (NPs) highlights the
importance to further explore the cyanobacterial resource for
applications.

Cyanobacterial NP drug discovery and development has
focused primarily on three aspects, the discovery of novel com-
pounds, the assessment of bioactivities through in vitro and in
vivo studies, and the detailed exploration of the mechanism of
action on the molecular level (Liang et al., 2019; Salvador-Reyes
& Luesch, 2015; Tan & Phyo, 2020). Cyanobacterial NPs possess
novel bioactivities of biomedical relevance (Al-Awadhi et al.,
2018, 2020; Lee et al., 2011; Pereira et al., 2012). In addition to the

exploration of un- or less-studied resources, the metabolomics-
based approach that is based on reference compounds as
potential biomarkers for the identification of molecular finger-
prints determining particular bioactivities has recently become
useful in finding new chemical diversities with versatile acti-
vities (Kuehnbaum & Britz-McKibbin, 2013). More recently, the
genome centric approach, or the bottom-up approach, which that
combines functional genomics and bioinformatics to associate
genomic context called biosynthetic gene clusters (BGCs) to
potential chemical entities, has been increasingly used to unravel
the biosynthetic capabilities of cyanobacteria (Dittmann et al.,
2015). Alongwith the rapid growth of cyanobacterial genome data,
diverse bioinformatics tools such as antiSMASH (Blin et al., 2019),
PRISM (Skinnider et al., 2015), and RODEO (Tietz et al., 2017) have
enabled identifying the cyanobacterial BGCs of different com-
pound families. Furthermore, the availability of a global repository
of microbial BGCs provides another useful resource for accurate
prediction and analysis of the cyanobacterial BGCs (Kautsar et al.,
2020; Navarro-Muñoz et al., 2020). These resources open new
opportunities to cyanobacterial NP research using the bottom-up
approach.

Cyanobacterial BGCs encode mainly polyketides (PKs) and
peptides, but also pharmaceutically important compounds
of other families, for example, terpenes, alkaloids, and lipids
(Fig. 1) (Demay et al., 2019; Dittmann et al., 2015). Among known
cyanobacterial NPs, the majority (66 per cent) belong to the
peptide family. Peptide molecules are biosynthesized from both
nonribosomal and ribosomal origins through the actions of
nonribosomal peptide synthetases (NRPSs) and ribosomally
synthesized and post-translationally modified peptides (RiPPs)
biosynthetic machinery, respectively (Sieber & Marahiel, 2005;
Ortega & van der Donk, 2016; Hudson & Mitchell, 2018). Simi-
larly, acyl-CoA building blocks are processed through sequential
decarboxylative condensations by polyketide synthases (PKSs) to
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Fig. 1. Chemical structures of representative cyanobacterial compounds that have been heterologously produced. Compounds are grouped and
colored according to structural families.

generate PKs (Dhakal et al., 2019; Smith & Tsai, 2007; Mishra
et al., 2019). Furthermore, some cyanobacterial NPs are derived
from hybrid biosynthetic systems. The increased understanding
of cyanobacterial NP biosynthesis facilitates the discovery with
the bottom-up approach.

One major challenge in cyanobacterial NP research using
the bottom-up approach is that the majority of identified BGCs
are silent. Many engineering approaches, such as traditional
strain mutagenesis and screening and rational metabolic en-
gineering, have been developed to activate the silent BGCs of
other bacterial phyla, for example, actinomycetes. However,
these approaches have barely been used for the discovery of
cyanobacterial NPs as most of cyanobacterial strains are slow
growers and/or genetically less amenable (Berla et al., 2013;
Santos-Merino et al., 2019). As such, a large number of potentially
novel and bioactive compounds are yet to be characterized from
cyanobacteria. For example, comparative genome analysis of
diverse Moorea species revealed 30–45 BGCs in each genome,
whereas only a few compounds have been isolated from each
strain (Leao et al., 2017). On the other hand, the mobilization
of one BGC into a suitable heterologous host has been an ef-
fective means for not only producing the encoded compound
but also redesigning genetic contents for generating NP analogs
or optimizing production yield (Huo et al., 2019; Zhang et al.,
2019). Herein, we present recent advances in heterologous
expression of cyanobacterial NPs in both noncyanobacterial
hosts, including Escherichia coli, yeast and Streptomyces, and
model cyanobacterial strains. Furthermore, we discuss different
metabolic engineering and synthetic biology tools for assembling
BGCs, crafting production platforms, and optimizing productivity
at the transcriptional, post-transcriptional, and translational
levels.

Heterologous Expression
of Cyanobacterial NPs
So far, a limited number of cyanobacterial NPs of several families
have been produced in non-native hosts (Fig. 1, Table 1). These
hosts include the Gram-negative bacterium E. coli (Ongley et al.,
2013; Schmidt et al., 2005), the Gram-positive bacterium Strepto-
myces venezuelae (Kim et al., 2012), genetically amenable model
cyanobacterial strains (Taton et al., 2020; Videau et al., 2016, 2020;
Yang et al., 2018), and yeast (Park et al., 2019).

Metabolic Engineering and Synthetic
Biology Toolkits for Heterologous
Production of Cyanobacterial Compounds
Recent advances in metabolic engineering approaches and ap-
plications of synthetic biology tools have revolutionized the dis-
covery of NPs from both native and heterologous hosts (Smanski
et al., 2016). The major thrust for the heterologous production of
cyanobacterial NPs can be directed to the cloning and assembly
of BGCs, selection and optimization of heterologous hosts, and
transcriptional and translational tuning of BGC expression.

Cloning and Assembly of BGCs
An initial and fundamental aspect for the heterologous pro-
duction of any NP is to transfer genetic materials into one
heterologous host. The assembly and cloning steps include the
insertion of one desired BGC in one suitable vector. The vector
utilizing the homologous recombination for integrating the de-
sired DNA fragment into the neutral site I (NSI) has been a robust
and most popular approach for cyanobacterial genetic engineer-
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Table 1. List of cyanobacterial compounds that have been heterologously produced

Name Types Native producer Heterologous host

Cloning
method/BGC

size (kb)

Yield in
heterologous

host References

Hapalosin PK/NRP Fischerella sp. PCC
9431

E. coli BAP1 DiPAC/23 ∼0.45-fold of
native
producer

D’Agostino Gulder
(2018)

4-O-Demethylbarbamide PK/NRP M. producens S. venezuelae
DHS2001

RDL/26 <1 μg/l Kim et al. (2012)

Anabaenopeptins NRP N. punctiforme PCC
73102

E. coli DiPAC/28.1 >100-fold of
native
producer

Greunke et al. (2018)

Patellamide,
ulithiyacyclamide and
eptidemnamide

RiPP Prochloron spp. E. coli Rosetta (DE3) RDL/- DM Donia et al. (2006)

Patellamide A and C RiPP P. didemnid E. coli BL21(DE3) pLys GLBC/11 DM Schmidt et al. (2005)
Patellamide D and

ascidiacyclamide
RiPP P. didemnid E. coli DH10B RDL/30 80–100 ng/ml Long et al. (2005)

Trukamide RiPP Prochloron spp. E. coli TOP10 RDL/11 DM Donia et al. (2008)
Anacyclamides RiPP Anabaena sp. 90 E. coli TOP10 RDL/11 0.5-fold of native

producer
Leikoski et al. (2010)

Microviridins RiPP Microcystis
UOWOCC MRC

E. coli Epi300 GLBC/- 20–7280 ng/ml Ziemert et al. (2008)

Microviridin L RiPP M. aeruginosa
NIES843

E. coli BL21 RDL/6.5 DM Weiz et al. (2011)

Perchlorosins RiPP Prochlorococcus
MIT9313

E. coli BL21 Gold RDL/- DM Tang & van der Donk
(2012)

Lyngbyatoxin A NRP M. producta Anabaena sp. PCC
7120

TAR/11.3 ∼ 3.2 mg/l Videau et al. (2016)

E. coli GB05-MtaA RDL/11.3 ∼25.6 mg/l Ongley et al. (2013)
M. producta, Anabaena sp. PCC

7120
RDL/- ∼313 ng/mg DCW Videau et al. (2020)

Pendolmycin NRP M. producta, M.
thermotolerans
SCSIO 00652

Anabaena sp. PCC
7120

RDL/- ∼200 ng/mg DCW Videau et al. (2020)

Teleocidins NRP M. producta, S.
blastmyceticus
NBRC 12747

Anabaena sp. PCC
7120

RDL/- ∼1 mg/mg DCW Videau et al. (2020)

Cryptomaldamide PK/NRP M. producens JHB Anabaena sp. PCC
7120

TAR/28.7 ∼26 mg/l Taton et al. (2020)

Shinorine NRP Fischerella sp.
PCC9339

Synechocystis sp.
PCC6803

RDL/4.3 ∼ 0.71 mg/l Yang et al. (2018)

N. punctiforme S. cerevisiae
CEN.PK2−1C

RDL/6.5 31.0 mg/l Park et al. (2019)

Hapalindole H, and
12-epi hapalindole U

Alkaloids Fischerella ambigua
UTEX 1903

Synechococcus sp.
UTEX 2973

RDL/42 ∼3 mg/l Knoot et al. (2019)

Mycosporine-
ornithine/mycosporine-
lysine

NRP C. stagnale PCC
7417

E. coli BL21(DE3) RDL/6.2 DM Katoch et al. (2016)

Mycosporine-
ycospdeoxygadusolyl-
ornithine)

NRP Nostoc flagelliforme Anabaena PCC 7120 RDL/8.2 DM Shang et al. (2018)

[d-Asp3] microcystin-LR PK/NRP M. aeruginosa PCC
7806

E. coli GB05-MtaA GLBC/55 ∼65 μg/l Liu et al. (2017)

[d-Asp3, DMAdda5]
microcystin-LR

PK/NRP M. aeruginosa PCC
7806

E. coli GB05-MtaA GLBC/NA DM Liu et al. (2019)

Scytonemin Alkaloid N. punctiforme ATCC
29133

E. coli BL21(DE3) RDL/20kb 8.9 mg/l Malla & Sommer
(2014)

M producta: Moorea producens; M thermotolerans: Marinactinospora thermotolerans; M. aeruginosa: Microcystis aeruginosa; RDL: restriction digestion and ligation;
GLBC: genomic library-based cloning; DCW: dry cell weight; DM: detected by mass spectrometry or NMR spectroscopy; -: no information available.

ing (Hitchcock et al., 2020). The NSI is a functionally neutral
location in cyanobacterial genomes where the integration of
heterologous DNA causes no noticeable phenotypic change at
least under the relevant growth conditions (Ng et al., 2015).
But recently there is growing interest in developing new vec-
tors for cyanobacterial engineering particularly for transferring

cyanobacterial BGCs for heterologous expression. Hence, replica-
tive plasmids based on two major origins of replication RSF1010
(Scherzinger et al., 1984) or pMB1 (Rosano & Ceccarelli, 2014) have
been widely used for cyanobacterial genetic engineering, while
different integration plasmids based on Tn5-1063 and Tn5-1058
have also been developed (Cohen et al., 1998). Furthermore,



4 | Journal of Industrial Microbiology and Biotechnology, 2021, Vol. 48, kuab003

Fig. 2. Primary approaches for cloning and assembling cyanobacterial BGCs of different sizes for heterologous expression. BGCs can be PCR amplified
and ligated in a suitable vector (A) or directly assembled with the vector (B). The genomic library is generated and the clone carrying an entire BGC can
be directly expressed. Alternatively, multiple clones can be recombined to generate a complete BGC by approaches such as Red-ET in E. coli (C) or TAR
in yeast (D). gDNA: genomic DNA. In figure C, outside rectangles in orange, red, and green indicate different bacterial cells.

chromosomal integration vectors carrying standard prefix (e.g.,
promoters and ribosome binding sites, RBS) and suffix sequences
(e.g., transcriptional terminators) suitable for BioBrick-based
cloning have been designed (Kim et al., 2017; Vogel et al., 2017).

Generally, shuttle vectors (replicative plasmids) that include E.
coli plasmid replicons (pMB1) and endogenous plasmid segments
have commonly been used for cyanobacterial genetic engineer-
ing. However, endogenous plasmids are often large, difficult for
further engineering, and specific only to certain cyanobacterial
species, limiting their wide use (Jin et al., 2018; Taton et al.,
2014). In contrast, one non-native replicon RSF1010 exhibits a
broad host range (Bishe et al., 2019). The first RSF1010-based
shuttle vector pPMQAK1 enabled the generation of different
recombinant constructs for biochemical characterization of
cyanobacterial enzymes (Huang et al., 2010). The pPMQAK1
vector has a low copy number (∼ 10–20 copies per cell in E. coli),
and a high copy number variant pSCB-YFP was later developed
with the putative replicon of the plasmid pCC5.2 and the origin
of replication of pMB1 from E. coli (Jin et al., 2018). This vector
was used for genetic manipulation of Synechocystis sp. PCC6803,
but its wide applications in engineering different cyanobacterial
strains have not been validated (Jin et al., 2018). Furthermore,
the CYANO-VECTOR assembly portal was developed to organize
various module elements of one vector and facilitate the in silico
construction of plasmids (Taton et al., 2014). Similarly, a versatile
system called CyanoGate based on the Plant Golden Gate MoClo
kit was recently developed and the resulting constructs were used
to engineer two cyanobacterial species, Synechocystis sp. PCC 6803
and Synechococcus elongatus UTEX 2973 (Vasudevan et al., 2019).

Generally, the expression of cyanobacterial compounds in a
heterologous host is initiated by capturing the BGCs of cyanobac-
terial NPs from the genomic DNAs of native producers. This has
been supported by the ease to obtain microbial whole-genome
sequence, the accurate bioinformatic prediction of BGCs from
genome sequences, and the availability of genetic tools (Albarano
et al., 2020). Primary approaches for cloning and assembling BGCs
of different sizes for heterologous expression are shown in Fig. 2.
For the BGCs of small size, they can be directly cloned from native
producers by conventional restriction digestion and ligation ap-
proach. This approach has demonstrated successes in the cloning

of several cyanobacterial BGCs, for example, mycosporine-like
amino acids (MAAs) from Cylindrospermum stagnale PCC7417
(Katoch et al., 2016), shinorine from Fischerella sp. PCC9339 (Yang
et al., 2018), prochlorosins from Prochlorococcus sp. MIT9313 (Tang
& van der Donk, 2012), and hapalindoles from F. ambigua UTEX
1903 (Knoot et al., 2019). Direct pathway cloning (DiPaC) is an
effective homology-based assembly strategy for cloning small-
to medium-sized BGCs (Fig. 2). This approach was utilized for
the heterologous production of anabaenopeptins from Nostoc
punctiforme (Greunke et al., 2018). Similarly, the combination of
DiPaC and sequence- and ligation-independent cloning led to the
efficient capture of the hapalosin BGC from Fischerella sp. PCC
9431 (D’Agostino & Gulder, 2018) (Fig. 2).

Another routine approach for cloning and assembling BGCs
relies on the generation of genomic libraries of native producers
using vectors of various capturing capacity such as fosmids
(∼40 kb), cosmids (∼45 kb), bacterial artificial chromosomes
BACs (∼200 kb) and P1 derived artificial chromosomes PACs
(111–300 kb) (Fig. 2). Clones carrying the BGCs are selected from
the libraries by polymerase chain reaction (PCR) or southern
blotting. The positive clones are sequenced to provide concrete
information about the putative BGCs. This approach has led to the
characterization of the BGCs of diverse cyanobacterial NPs, such
as nostophycin from Nostoc sp. strain 152 (Fewer et al., 2011), hec-
tochlorin from Lyngbya majuscula (Ramaswamy et al., 2007), and
microviridin from Microcystis aeruginosa NIES843 (Ziemert et al.,
2010). Importantly, BGC-containing fosmids can be used directly
for heterologous production, exemplified by the expression of the
BGCs of lyngbyatoxin from Moorea producens (Ongley et al., 2013),
microcystins fromM. aeruginosa (Liu et al., 2017) and patellamides
from Prochloron didemnid (Schmidt et al., 2005) (Fig. 2).

For the mobilization of a large DNA segment for heterolo-
gous expression, homologous recombination-based approaches
such as lambda red (λ/Red) recombination in E. coli (Datsenko
& Wanner, 2000) and transformation associated recombination
(TAR) in Saccharomyces cerevisiae (Kouprina & Larionov, 2016)
can be very efficient (Fig. 2). For example, the microcystin gene
cluster from M. aeruginosa PCC 7806 was assembled by Red/ET
recombineering and expressed in E. coli to yield a significant
titer of [d-Asp3] microcystin-LR and microcystin-LR [66] (Fig. 2).
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Similarly, the TAR approach was used to mobilize the lyngbya-
toxin BGC captured in the vector pPJAV633 into a customized
and replicative vector pPJAV550 (optimized for the TAR-mediated
capture of cyanobacterial BGCs) (Videau et al., 2016) (Fig. 2D).
This same approach also assembled the cryptomaldamide BGC
from M. producens JHB in a customized vector pAM5571 (Taton
et al., 2020) (Fig. 2D), where different overlapping fragments of the
cryptomaldamide BGC were first PCR amplified from an isolated
chromosomal DNA template. On the other hand, direct capture of
one entire cyanobacterial BGC from chromosomal DNA by Red/ET
recombineering or TAR has not been reported yet, probably due
to the challenge of attaining high quality and amount of large
cyanobacterial genomic DNA fragments. Finally, as the cost of
DNA synthesis is expected to continuously drop, the synthesis of
entire BGCs will become economically viable for the heterologous
production of cyanobacterial NPs in the coming years.

The assembled BGCs should be transferred into host cells for
expression. Formany conventionalmicrobial strains, the transfor-
mation can be mediated by conjugation, protoplast transforma-
tion, or electroporation. On the other hand, some cyanobacterial
hosts are naturally competent for the introduction of genetic
materials, called natural transformation (Onai et al., 2004). In
general, the conjugation and electroporation are facilitated by
extrachromosomal genetic elements such as various replicative
plasmids, whereas the natural transformation uptakes and
integrates DNA fragments into the neutral sites of cyanobacterial
genomes (Wijffels et al., 2013). In addition to gene overexpression,
the natural transformation has been used for systematic gene
inactivation in various cyanobacteria (Frigaard et al., 2004).

Selection of Heterologous Hosts
for Producing Cyanobacterial NPs
The selection of suitable production chassis is the most crucial
aspect of successful heterologous production. A good host can
be fast-growing and easy for genetic manipulation and handling
in the laboratory or industrial processes. However, the successful
expression of a BGC also requires effective protein expression
and the availability of biosynthetic precursors and cofactors to
accomplish all biosynthetic steps (Zhang et al., 2019). There have
been significant efforts for selecting and optimizing suitable het-
erologous hosts for the successful expression of cyanobacterial
NPs (Fig. 3).

E. coli is among themost widely used hosts for the heterologous
expression of BGCs of diverse NP families (Pfeifer et al., 2001;
Watanabe et al., 2006; Zhang et al., 2018), due to its easy and flexi-
ble culturing, fast growth, cost-effectiveness, andwell-established
genetic manipulation tools (Kaur et al., 2018; Sanchez-Garcia
et al., 2016). Not surprisingly, many cyanobacterial BGCs have
been expressed in E. coli (Table 1, Figs 1 and 3), including mul-
tiple RiPPs (e.g., patellamide and microviridins), MAAs, the NRP
lyngbyatoxin, and the NRP-PK hybrid microcystins (Liu et al.,
2017; Long et al., 2005; Ongley et al., 2013; Schmidt et al., 2005;
Ziemert et al., 2008). Similar to E. coli, Saccharomyces cerevisiae
demonstrates many good features as the chassis for the hetero-
logous expression of diverse NPs (Fig. 3) (Bond & Tang, 2019),
such as artemisinic acid and taxadiene (Ding et al., 2014; Kung
et al., 2018). However, only one cyanobacterial BGC, the shi-
norine BGC from N. punctiforme, has been expressed in yeast
after multiple host engineering efforts (Fig. 3B) (Park et al., 2019).
Actinomycetes are the most prominent source of NPs (Nguyen
et al. 2020) [98], and multiple model Streptomyces strains (e.g., S.
albus and S. coelicolor) have served as excellent hosts for the ex-

pression of BGCs from other actinomycete strains (Myronovskyi
& Luzhetskyy 2019). However, the use of this type of hosts for the
expression of cyanobacterial BGCs has so far succeeded only with
the production of one barbamide analog at trace levels (Figs 1
and 3) (Kim et al., 2012).

Multiple model cyanobacterial species represent another
type of promising chassis for the heterologous production of
cyanobacterial NPs. Model cyanobacterial strains are considered
as a sustainable platform for biotechnological applications due
to their capacities of photosynthesis, N-fixation, and autotroph
(Machado & Atsumi, 2012; Roulet et al., 2018). Recent advances
in genomics and metabolomics of cyanobacterial strains along
with the development of precise genetic engineering approaches
provide additional opportunities for exploring them as a promis-
ing platform for chemical production (Lin & Pakrasi, 2019; Oliver
et al., 2016). Importantly, the similar genetic backgrounds of
cyanobacterial hosts can potentially lead to a higher success
rate in the expression of cyanobacterial BGCs (Fig. 3). Indeed, the
heterologous expression of lyngbyatoxin BGC has been accom-
plished in the cyanobacterial host Anabaena sp. PCC 7120 (Fig. 2),
with a titer comparable to the native producer M. producens
(Videau et al., 2016). Although the total yield of lyngbyatoxin
A was higher in E. coli, this noncyanobacterial host led to the
accumulation of significant amounts of biosynthetic intermedi-
ates N-methyl-l-valyl-l-tryptophan and indolactam V (Ongley
et al., 2013; Videau et al., 2016). The complete conversion of
biosynthetic precursors to the final product indicated that the
lyngbyatoxin BGC has a balanced expression of individual genes
in Anabaena sp. PCC 7120 (Videau et al., 2016). More recently,
the heterologous expression of the cryptomaldamide BGC was
attempted in two cyanobacterial strains Synechococcus elongatus
PCC 7942 and Anabaena sp. PCC 7120 (Fig. 1). No targeted product
was identified from the transformed S. elongatus PCC 7942, but a
significant titer (∼15 mg/g biomass dry weight) was detected in
engineered Anabaena sp. PCC 7120 (Taton et al., 2020).

Engineering Heterologous Hosts
for Optimizing the Productivity
To enhance the productivity of target molecules, heterologous
hosts can be engineered, mainly through the elimination of
competitive pathways and/or the increased supply of appropriate
precursors/cofactors (Fig. 3A). Common engineering strategies
include the deletion of native BGCs, proteases and nucleases, and
the addition of chromosomal integration elements for easing the
introduction of genetic materials, precursor pathway genes and
other key genes (Fig. 3A), for example, those encoding versatile
phosphopantetheinyl transferases (PPTases). Of note, the PPTase
is essential to produce the holo-thiolation domains of PKSs and
NRPSs, which we will discuss more later. E. coli and S. cerevisiae do
not encode any prominent secondary metabolite BGCs, leading
to a clean NP background for easy detection of expressed foreign
compounds. On the other hand, the optimal production of NPs
in these two hosts often require the engineered production of
essential building blocks and cofactors and the expression of key
exogenous enzymes such as PPTases (Harvey et al., 2012; Pfeifer
et al., 2001) (Fig. 3A). In contrast, extensive deletion of native BGCs
in model Streptomyces hosts have created chassis with a clean
background for heterologous production, for example, S. coelicolor
(Gomez-Escribano & Bibb. 2011), S. avermitilis (Komatsu et al.,
2010), S. chattanoogensis (Bu et al., 2019), and S. albus (Myronovskyi
et al., 2018). However, these engineered Streptomyces hosts have
not been tested for the expression of any cyanobacterial BGCs yet.
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Fig. 3. (A) Currently available heterologous hosts as E. coli, yeast, Streptomyces, and cyanobacteria strains for cyanobacterial NP production and major
approaches for host engineering. PAM: photospacer adjacent motif; SgRNA: synthetic guise RNA. (B) The overproduction of shinorine in yeast included
multicopy delta integration of biosynthetic genes, the overexpression of xylose assimilation genes (XL1, XL2, and XL3) from Scheffersomyces stipites, and
the modulation of the pentose phosphate pathway through deleting TAL1 and overexpressing STB5 and TKL1 to overproduce the biosynthetic
precursor sedoheptulose 7-phosphate (S7P).

An excellent example of host engineering employed for over-
production of the cyanobacterial NP is that of shinorine in Sac-
charomyces cerevisiae (Park et al., 2019) (Fig. 3B). The shinorine BGC
genes from N. punctiforme were cloned in a suitable expression
vector and then subjected to the integration of multiple copies at
the Ty retrotransposon delta sites in the yeast genome by homo-
logous recombination (Shi et al., 2016). Subsequently, three xylose
assimilation genes from Scheffersomyces stipites, including XYL1–3
encoding xylose reductase, xylose dehydrogenase, and xylose ki-
nase, respectively, were introduced the yeast to convert xylose as
a carbon source into xylulose-5-phosphate (X5P). X5P enters the
pentose phosphate pathway (PPP), leading to the elevated level of
sedoheptulose 7-phosphate (S7P) that is an important precursor
for the shinorine biosynthesis. The cellular pool of S7Pwas further
enhanced by overexpression of STB5 (a transcriptional activator
of PPP) and TKL1 (a transketolase reversibly connecting PPP with
the glycolysis) and deletion of TAL1 (a transaldolase mediating
the interconversion of S7P and glyceraldehyde 3-phosphate in

PPP) by the CRISPR/Cas9 approach (Park et al., 2019). The final en-
gineered yeast produced 31.0 mg/l of shinorine in the optimized
medium containing 8 g/l of xylose and 12 g/l of glucose (Park
et al., 2019), demonstrating the power of host engineering for the
heterologous production of cyanobacterial NPs.

PPTases catalyze post-translational phosphopantetheinylation
of thiolation domains of modular and iterative synthases, such as
fatty acid synthases, PKSs and NRPSs (Beld et al., 2014), thereby
producing catalytically active enzymes (Lambalot et al., 1996).
Since the endogenous PPTases of one heterologous host may not
be promiscuous toward noncognate thiolation substrates (Pfeifer
et al., 2001), the expression of an exogenous catalytically versatile
PPTase is crucial for the production of PKs,NRPs, and their hybrids
(Bond & Tang, 2019; Siewers et al., 2009) (Fig. 3A). For example,
the gene of a promiscuous PPTase from the myxobacterium
Stigmatella aurantiaca (MtaA) was integrated into the chromosome
of E. coli GB2005 to create E. coli GB05-MtaA, which successfully
expressed the microcystin BGC to produce multiple analogs (Liu
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Fig. 4. (A) An overview of four major approaches for transcriptional of BGC expression, including the use of different promoters and terminators,
sigma factor engineering and CRISPR interference with a deactivated Cas9 (dCas9). P: promoter; T: terminator; RNAP: RNA polymerase. (B) Selected
examples that tuned the expression of cyanobacterial BGCs using promoters or terminators in E. coli or cyanobacterial strains. Pn: native promoter.
Dashed arrows and lines indicate additional biosynthetic genes of the BGCs.

et al., 2017, 2019). To gain useful insights into the catalytic per-
formance of cyanobacterial PPTases, we recently characterized
the substrate scopes of 6 enzymes with 11 thiolation domains
of known and silent BGCs from cyanobacterial and Streptomyces
strains (Yang et al., 2017). Biochemical and genetic studies un-
covered that the PPTase from Anabaena sp. PCC7120 (APPTase)
rivals the widely used surfactin PPTase (Sfp) in terms of substrate
flexibility. Furthermore, the coexpression of APPTase supported
the heterologous expression of the shinorine BGC of Fischerella sp.
PCC9339 in Synechocystis sp. PCC6803 (Yang et al., 2018).

The recent development of robust genome engineering ap-
proaches such as CRISPR-Cas further facilitates host engineering
to improve the productivity of expressed NPs, including those
from cyanobacterial BGCs (Wright et al., 2016; Mougiakos et al.,
2018). The CRISPR-Cas9 approach has been developed primarily
for creating markerless gene deletion, supporting genome engi-
neering and transcriptional regulation. The use of CRISPR-Cas
systems to engineering E. coli, yeast and Streptomyces strains have
been reviewed previously (Alberti & Corre, 2019; Didovyk et al.,
2016; Jakočiūnas et al., 2016; Stovicek et al., 2017). Particularly, the
CRISPR/Cas9 based gene inactivation has been already utilized
during heterologous production of shinorine in yeast (Park et al.,
2019) as mentioned previously. However, their applications in
engineering cyanobacterial strains remain poorly explored. One
potential reason is that the off-target cleavage can generate a
number of illegitimate colonies. There is a significant technical
difficulty in screening and validating desired mutants from a
high number of relatively slow-growing cyanobacterial transfor-
mants without a selection marker. However, it may be possible
to tackle this limitation by encoding two spacers, instead of one,
for targeting the desired genomic region, which can improve the
success rate in markerless gene deletion as shown in engineering
Anabaena sp. PCC 7120 (Niu et al., 2019). Another hindrance is
that the expression of Cas9 appears to be toxic in some cyanobac-
teria, such as S. elongatus UTEX 2973 (Wendt et al., 2016). The
mechanism by which Cas9 causes toxicity remains unclear,
but it is suspected that CRISPR-Cas9 engineering has off-target
effects and may negatively influence growth-essential genes.
The Cas9 system requires two separate RNA strands, CRISPR
RNA (crRNA) that encodes guide sequence, and trans-activating
crRNA (tracrRNA). Interestingly, the use of Cas12a (formerly
known as Cpf1), which requires only the tracrRNA, seemingly
bypasses the Cas9-related toxicity issue in many species (Ungerer
& Pakrasi, 2016). Indeed, the CRISPR/Cas12a engineering has
been used to efficiently obtain segregated double recombinant

Anabaena sp. PCC 7120 clones for the heterologous production of
cryptomaldamide (Yang et al., 2018).

Transcriptional Tuning of BGC Expression
Fine-tuning of the expression level of biosynthetic genes is a
proven strategy for improving the productivity of targeted NPs
in native or heterologous hosts (Dhakal & Sohng, 2017; Xu et al.,
2020). The use of different promoters can readily manipulate the
gene expression at the transcription level (Fig. 4). For example,
the T7 promoter has high strength and is most commonly used
for driving gene expression in E. coli (Hawley & McClure, 1983).
Indeed, the discovery, engineering and characterization of ef-
fective promoters have been the focus of metabolic engineering
research for overproducing NPs in different microbes, which has
been well-reviewed elsewhere (Blazeck & Alper, 2013; Jin et al.,
2019; Tang et al., 2020).

Cyanobacterial promoters can be classified into three major
types. Type I promoters contain both −10 consensus element
(5′-TATAAT-3′) and −35 element (5′-TTGACA-3′), while those of
type II have only the −10 element. Type III promoters do not
contain both consensus regions and are regulated by type III
sigma (σ ) factors in response to various stresses and stimuli. The
σ factor is one critical component of the RNA polymerase (RNAP)
holoenzyme and confers promoter selectivity. In E. coli, there are
seven σ factors. Among them, the σ70 primarily controls the tran-
scription of housekeeping genes, while the σ54 regulates nitrogen
metabolism. Cyanobacteria have a conserved σ70 homolog, SigA,
but no σ54, highlighting that the transcription of cyanobacterial
genes in native hosts is controlled in different ways than E. coli
(Srivastava et al., 2020). Furthermore, the cyanobacterial RNAP
consists of α2ββ ′γ subunits, different withmost eubacterial coun-
terparts that include α2ββ ′ subunits (Kansara & Sukhodolets,
2011; Srivastava et al., 2020). The differences in core transcription
machinery, as well as ancillary factors (e.g., the Crp binding sites),
suggest the use of promoters compatible with selected hosts for
the heterologous expression of cyanobacterial BGCs (Ebright &
Busby, 1995; Gordon & Pfleger, 2018) (Fig. 4A, Table 1). For example,
the production of microcystin-LR and [d-Asp3] microcystin-LR in
E. coli GB05-MtaA was achieved by replacing the native promoter
of the microcystin BGC from M. aeruginosa PCC 7806 with the T7
promoter (Liu et al., 2017, 2019), while the patellamide BGC was
refactored by controlling the expression of each gene under the
T7 promoter in E. coli Rosetta (DE3) (Donia et al., 2006) (Fig. 4B).
Furthermore, the tetracycline-inducible promoter PtetO has been
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used to control the expression of the microcystin and lyngbya-
toxin BGCs in E. coli (Liu et al., 2017; Ongley et al., 2013) (Fig. 4B). On
the other hand, the Philmus group expressed all 12 sigma factors
of Anabaena sp. PCC 7120 in E. coli and observed that four of them
elevated the transcriptional rate from cyanobacterial promoters
(Wells et al., 2018), suggesting that sigma factor engineering
could be a strategy for tuning the heterologous expression of
cyanobacterial BGCs in a heterologous host (Fig. 4A).

In cyanobacterial hosts, the transcriptional control of BGC
expression can be achieved using constitutive and inducible
promoters. Some notable inducible promoters include the high-
light responsive psbA promoter, the nitrate/nitrite-inducible nirA
promoter, the copper-regulated petE promoter, and the nickel-
responsive nrsA promoter (Ma et al., 2014). PrnpB and Pcpc560 are
two strong constitutive promoters in Synechocystis sp. PCC 6803
(Englund et al., 2016; Wang et al., 2018), while the Philmus group
characterized the transcriptional performance of multiple consti-
tutive promoters of cyanobacterial BGCs inAnabaena sp. PCC 7120
(Videau et al., 2016). In addition, diverse heterologous promoters
have been tested for controlling gene expression in cyanobacteria.
The cyanobacterial RNAP does not recognize the T7 promoter
(Temme et al., 2012), making many widely used promoters in E.
coli such as λPL, λPR, and PLac incompatible with cyanobacterial
hosts (Huang and Lindblad, 2013). On the other hand, the IPTG
inducible promoters (e.g., Ptrc, PLlacO1, PconII, PJ23101, and
PJ23119) supported gene expression in cyanobacteria (Huang and
Lindblad, 2013). However, one known major drawback of these
promoters is their leaky expression (Geerts et al., 1995), making
it important to characterize their performance in each cyanobac-
terial host. Nonetheless, these known native and heterologous
promoters provide opportunities to tune the BGC expression in
cyanobacteria (Fig. 4B). For example, three promoters with varied
strengths, including PrnpB, Pcpc560 and the synthetic promoter
Ptrc, were utilized for controlling the expression of the shinorine
BGC in Synechocystis sp. PCC 6803 (Yang et al., 2018). Similarly,
the constitutive promoter glnA (PglnA) and inducible promoters
PpetE and PnirA have been used for the heterologous production
of lyngbyatoxin A in Anabaena sp. PCC 7120 (Videau et al., 2016).

In addition to the use of different promoters, transcriptional
tuning can be achieved with transcriptional terminators. The
use of high-capacity terminators has been shown to increase the
flux in a heterologous metabolic pathway (Curran et al., 2013).
In bacteria, the transcriptional termination is rho-dependent
or -independent, and cyanobacteria utilize the latter (Nudler &
Gottesman, 2002). Two different rho-independent terminators
including the early transcription terminator of bacteriophage T7
(Brahamsha & Haselkorn, 1991) and the terminator of rrnB gene
(Geerts et al., 1995) have been utilized individually or in combina-
tion to control gene transcription in cyanobacteria (Huang et al.,
2010). For example, the combination of promoter refactoring and
the E. coli rrnB T1 terminator was utilized for the heterologous
production of hapalindoles in Synechococcus elongatus UTEX 2973
(Knoot et al., 2019) (Fig. 4B). On the other hand, the evaluation
of 12 promoters, 20 RBSs, and 8 terminators in the endogenous
plasmids of Synechocystis sp. PCC 6803 revealed a ∼8,000-fold
induction range. Importantly, significant incompatibility was ob-
served between promoters and noncognate RBSs (Liu & Pakrasi,
2018). These results demonstrated many future opportunities to
optimize the metabolic flux and compound production by using
different promoter-RBS-terminator sets.

Recently, CRISPR-Cas9 based approaches have been utilized to
engineer diverse organisms at multiple levels. For example, the
use of a catalytically inactive Cas9 (dCas9), which lacks endonu-

cleolytic activity, can effectively suppress the transcription of any
gene of interest when coexpressed with a target-specific sgRNA,
named CRISPR interference (CRISPRi) (Qi et al., 2013) (Fig. 4A).
When targeting the transcriptional activators/repressors, this
new technique was further named as CRISPR activation (CRISPRa)
or CRISPR repression (CRISPRr) (Tian et al., 2017). The CRISPRi
approach has been used for dynamically regulating the metabolic
flux in Synechococcus sp. PCC 7002 (Gordon et al., 2016) and par-
tial repression of up to six genes in the acyl-ACP-consuming
pathway in Synechocystis sp. PCC 6803 (Kaczmarzyk et al.,
2018). We expect that these approaches can also be use-
ful for tuning the heterologous expression of cyanobacterial
BGCs.

Translational Tuning of BGC Expression
The rate of protein production from an mRNA transcript also
depends on the strength of an RBS in recruiting ribosomes for
translation (Fig. 5). The position and sequence of a given RBS
significantly influence translational efficiency. The use of native
and engineered RBSs for the control of BGC expression has been
demonstrated in many organisms (e.g., E. coli) (Wang et al., 2012;
Jeschek et al., 2017). In addition, several thermodynamic models
have been developed to predict the translational efficiency of
native and designed RBSs in diverse microorganisms (Espah
Borujeni et al., 2014), such as the RBS calculator (Salis et al.,
2009), the RBS designer (Na & Lee, 2010) and the UTR designer
(Seo et al., 2015). Similarly, the RBS element can influence protein
expression in cyanobacteria. For example, the use of an altered
RBS for tuning the expression of limonene synthase led to a
13-fold production increase in Synechococcus elongatus PCC 7942
(Wang, Liu et al., 2016). Several RBS sequences from the BioBrick
Registry of standard biological parts and 20 native cyanobacterial
RBS elements have been characterized to control the translation
in Synechocystis sp. PCC 6803 (Englund et al., 2016; Liu & Pakrasi,
2018). In addition, the application of designed RBS sequences
using the RBS calculator enhanced the production of bisabolene
in Synechocystis sp. PCC 6803 (Sebesta & Peebles, 2020), indicating
the promise of this approach. However, in cyanobacteria, the RBS
engineering for translational tuning remains less developed in
comparison with other model organisms.

In addition to the RBS engineering, the tuning of protein ex-
pression can further be achieved at the post-transcriptional level
by RNA-based approaches (Fig. 5) such as riboswitch (Ma et al.,
2014) and riboregulators (Sakamoto et al., 2018). Riboswitches
allow the control of gene expression by forming secondary
structures within an mRNA transcript. A riboswitch is composed
of an aptamer sequence that imposes a secondary structure
on the targeted mRNA, leading to the transcriptional activation
or repression. The use of a modified theophylline-dependent
synthetic riboswitch was first reported in S. elongatus PCC 7942,
allowing a strict regulation of protein production (Nakahira et al.,
2013), and later used in diverse cyanobacterial strains such as
Synechocystis, Leptolyngbya, and Nostoc (Ma et al., 2014; Ohbayashi
et al., 2016). The riboregulator system relies on the interactions of
cis-repressing (crRNA) and trans-activating RNA (taRNA). When
the taRNA is not expressed, the transcribed crRNA forms a loop
structure at the 5′-UTR of the targeted mRNA, preventing the
binding of ribosomes for translation. On the other hand, when
transcribed, the taRNA binds the crRNA to expose the RBS for
translation (Isaacs et al., 2004). The use of riboregulators for
controlling translation has been observed in Synechocystis sp. PCC
6803 (Abe et al., 2014; Sakai et al., 2015; Ueno et al., 2017).However,
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Fig. 5. (A) An overview of major approaches for translational modulation of cyanobacterial BGC expression, including RBS engineering, codon
optimization, and the use of riboswitch and riboregulators. crRNA: cis-repressing RNA; taRNA: trans-activating RNA; R: RBS. (B) Selected examples that
tuned the expression of cyanobacterial BGCs by codon optimization and the use of engineered RBSs. Rn: native RBS; Re: engineered RBS.

the practical applications of these two RNA based approaches for
controlling the expression of cyanobacterial BGCs have not been
reported yet.

Due to the different abundance of tRNAs in various hosts, each
organism has its codon preference. Thus, codon optimization of
biosynthetic genes proves to be a good strategy to improve the
heterologous expression (Fig. 5). Indeed, the entire barbamide
BGC was codon optimized and synthesized for heterologous
expression in S. venezuelae (Kim et al., 2012). On the other hand,
for optimal production of teleocidin and pendolmycin in the
cyanobacterium host Anabaena sp. PCC 7120, the tleC and tleD
from Streptomyces blastmyceticus NBRC 12747, and the mpnD from
M. thermotolerans SCSIO0065 were also codon optimized and
synthesized (Videau et al., 2020).

Conclusion and Future Perspectives
Cyanobacteria are a prolific resource of NPs with varied structural
and bioactivity properties, which have drawn great attention in
the isolation and characterization of new compounds. In par-
ticular, culture-independent approaches have uncovered the
tremendous biosynthetic potential of cyanobacterial genomes
for discovery. These approaches are supported by the increas-
ing availability of the genome sequences of several hundred
cyanobacteria. In addition, Kazusa DNA Research Institute
(Japan) (http://www.kazusa.or.jp/) and DOE Joint Genome Insti-
tute (USA) (http://www.jgi.doe.gov/) have led efforts to sequence
more cyanobacteria. Furthermore, advanced bioinformatics
tools can accurately predict BGCs from cyanobacterial genome
sequences. The information on the structure and functions of
NPs from microbial sources including cyanobacteria can be

accessed from different platforms such as Natural Product Atlas
(Van Santen et al., 2019), NPASS (Zeng et al., 2018), and others.
Furthermore, the information of secondary metabolites from
cyanobacteria has recently been compiled and curated into
one database, CyanoMetDB (Jones et al., 2020). In addition, the
development of new analytic tools and databases, for example,
GNPS (Wang, Carver et al., 2016) and MASST (Wang et al., 2020)
for precise analysis and interpretation of molecular mass and
automated NMR data analysis (Howarth et al., 2020), has eased
structural predictions. These efforts have set the stage for the
discovery of new cyanobacterial NPs, particularly using the
bottom-up approaches. However, the biosynthetic potential of
cyanobacteria has not been translated proportionally into chemi-
cal entities yet as the majority of cyanobacterial BGCs are cryptic
or expressed at an extremely low level. Heterologous expression
of cyanobacterial BGCs is becoming a viable solution to this
critical problem in the discovery of new NPs. Diverse nonpho-
tosynthetic hosts such as E. coli, yeast, and Streptomyces species
have demonstrated successes in producing cyanobacterial NPs.
In addition, there are growing interests in developing cyanobac-
terial platforms for heterologous production. When developed,
these heterologous hosts can be suitable platforms for structural
diversification by precursor-directed biosynthesis, mutasynthesis
and combinatorial biosynthesis (Cummings et al., 2019; Dhakal
& Sohng, 2017; Yan et al., 2018), expanding the applications of
discovered cyanobacterial NPs. Moreover, many synthetic biology
approaches can facilitate the development of multivariate com-
binational setups to further expand structural diversity (Tsukada
et al., 2020). We anticipate that the above approaches will lead to
the discovery of significantly more new cyanobacterial NPs and
analogs for broad applications in the coming years.

http://www.kazusa.or.jp/
http://www.jgi.doe.gov/
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