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ABSTRACT Cryptosporidium parvum and Cryptosporidium hominis have emerged as
major enteric pathogens of infants in the developing world, in addition to their
known importance in immunocompromised adults. Although there has been recent
progress in identifying new small molecules that inhibit Cryptosporidium sp. growth
in vitro or in animal models, we lack information about their mechanism of action,
potency across the life cycle, and cidal versus static activities. Here, we explored four
potent classes of compounds that include inhibitors that likely target phosphatidyl-
inositol 4 kinase (PI4K), phenylalanine-tRNA synthetase (PheRS), and several potent
inhibitors with unknown mechanisms of action. We utilized monoclonal antibodies
and gene expression probes for staging life cycle development to define the timing
of when inhibitors were active during the life cycle of Cryptosporidium parvum
grown in vitro. These different classes of inhibitors targeted different stages of the
life cycle, including compounds that blocked replication (PheRS inhibitors), pre-
vented the segmentation of daughter cells and thus blocked egress (PI4K inhibitors),
or affected sexual-stage development (a piperazine compound of unknown mecha-
nism). Long-term cultivation of C. parvum in epithelial cell monolayers derived from
intestinal stem cells was used to distinguish between cidal and static activities based
on the ability of parasites to recover from treatment. Collectively, these approaches
should aid in identifying mechanisms of action and for designing in vivo efficacy
studies based on time-dependent concentrations needed to achieve cidal activity.

IMPORTANCE Currently, nitazoxanide is the only FDA-approved treatment for cryp-
tosporidiosis; unfortunately, it is ineffective in immunocompromised patients, has
varied efficacy in immunocompetent individuals, and is not approved in infants un-
der 1 year of age. Identifying new inhibitors for the treatment of cryptosporidiosis
requires standardized and quantifiable in vitro assays for assessing potency, selectiv-
ity, timing of activity, and reversibility. Here, we provide new protocols for defining
which stages of the life cycle are susceptible to four highly active compound classes
that likely inhibit different targets in the parasite. We also utilize a newly developed
long-term culture system to define assays for monitoring reversibility as a means of
defining cidal activity as a function of concentration and time of treatment. These
assays should provide valuable in vitro parameters to establish conditions for effica-
cious in vivo treatment.

KEYWORDS cryptosporidiosis, enteric pathogen, target identification, small-molecule
inhibitors, intestinal stem cells, primary cell culture, mechanism of action

Cryptosporidiosis is a debilitating diarrheal disease in humans that is largely caused
by two species, Cryptosporidium parvum, a zoonotic species acquired primarily from

agricultural animals that can also transmit between humans, and the anthroponotic
Cryptosporidium hominis species, which is almost exclusively transmitted from human
to human (1). Infections are most severe in immunocompromised patients (2) and
infants under age 2, particularly in developing countries (3). Unfortunately, the only
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FDA-approved drug for the treatment of cryptosporidiosis, nitazoxanide, is largely
ineffective in the most susceptible patient populations and is not licensed for infants
under 1 year of age (4, 5). The identification of new compounds that inhibit C. parvum
is hampered by the difficulty of in vitro propagation combined with animal models
limited to immunocompromised mice (C. parvum), gnotobiotic piglets (C. hominis), or
calves (C. parvum) (6).

Recent efforts have leveraged high-throughput screening platforms and repurpos-
ing screens to identify new compounds with the potential for advancement to clinical
trials. A high-throughput screen of almost 80,000 small molecules identified 12 anti-
cryptosporidial compounds that inhibit growth in the submicromolar range, including
clofazimine (7). Screening of the open-access Malaria Box of compounds available
through the Medicine for Malaria Venture (https://www.mmv.org/) identified a
piperazine-based inhibitor (i.e., MMV665917) that showed potent activity in a NOD SCID
gamma immunocompromised mouse model of chronic cryptosporidiosis (8), in neo-
natal dairy calves (9), and in gnotobiotic piglets infected with C. hominis (10). Screening
of a focused library of antimalarial compounds identified imidazopyrazine compounds
as potent inhibitors of C. parvum growth (11). This class of imidazopyrazines inhibits
phosphatidylinositol 4 kinase (PI4K) in Plasmodium falciparum (12), an activity that may
explain its potent ability to control C. parvum growth in vitro and in vivo. Prior studies
have identified benzoxaboroles that act on mRNA polyadenylation in P. falciparum (13),
and genetic evidence supports a similar target in Toxoplasma gondii (14). Related
benzoxaboroles are potent inhibitors of C. parvum growth in an in vitro model and calf
model of cryptosporidiosis (15). Previous studies in P. falciparum have also highlighted
the potency of bicyclic azetidines that inhibit parasite phenylalanine-tRNA synthetases
(PheRS) (16), suggesting that these may also have broad-spectrum activity against other
apicomplexans. Consistent with this prediction, recent studies indicate that bicyclic
azetidines are also potent inhibitors of C. parvum growth in vitro (17).

The majority of studies that have identified new inhibitors have utilized microtiter
plate-based growth assays that do not rely on knowledge of specific targets. To better
understand their mode of action, it would be beneficial to develop assays that identify
when compounds act across the life cycle and to define the minimum concentration
and time required to achieve complete killing in vitro. Deconvolving the targets of
activity within the life cycle has been a major focus of successful efforts to define new
compounds that inhibit Plasmodium spp. (18). Limitations in culturing C. parvum in vitro
have made it difficult to perform similar studies, although methods have recently been
described for staging the activity of inhibitors in tumor cell lines, where partial
development takes place (17).

Cryptosporidium spp. undergo their entire life cycle in a single host, consisting of
several rounds of asexual amplification followed by sexual differentiation and fertiliza-
tion to form an oocyst (19). C. parvum can be propagated for several rounds of asexual
growth in a variety of tumor cell lines in vitro, and although it develops into gameto-
cytes, it does not complete the sexual cycle to form oocysts. Thus, only short-term
propagation is possible in these systems (20). Recent efforts have developed new
platforms to alleviate this restriction and have led to organoid-based systems that use
human stem cell-derived cultures to propagate C. parvum and to produce oocysts that
are infectious to mice (21). However, this system requires microinjection of parasites
and does not allow ready access for experimental manipulation. As an alternative
system for long-term propagation of C. parvum, we have recently described a mouse
enterocyte model that is based on the propagation of intestinal stem cells, followed by
differentiation on two-dimensional (2D) transwell filters (22, 23). Removal of the liquid
medium from the upper chamber to create an air-liquid interface (ALI) induces differ-
entiation of intestinal cell lineages and favors the growth of C. parvum (22, 23).
Importantly, the ALI culture system is amenable to adding compounds for defined
intervals of treatment, and because transwells are grown in microtiter plates, the
system can be scaled easily to evaluate multiple parallel cultures.

Here, we sought to examine several newly identified compounds that are potent
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inhibitors of C. parvum growth in vitro. We were interested in defining the window of
development when inhibitors are active across the life cycle. We took advantage of the
fact that the cycle is somewhat synchronous in HCT-8 adenocarcinoma cells, combined
with newly defined antibodies (24) and gene probes for defining the stages of the life
cycle, to profile when inhibitors show peak activity. We also used the long-term ALI cell
culture to define time- and concentration-dependent conditions required for cidal
activity. Together, these tools provide a defined set of reagents and assays for profiling
compounds that inhibit C. parvum in vitro and help establish guidelines for achieving
effective control in vivo.

RESULTS
Efficacy of selected anti-Cryptosporidium compounds in vitro. We focused our

study on four classes of potent anti-Cryptosporidium compounds identified in previous
screening efforts, bicyclic azetidines BRD7929 and BRD8494, the imidazopyrazine
KDU691, the benzoxaborole AN7973, and the piperazine MMV665917. To confirm their
efficacy with our C. parvum strain, AUCP-1, we performed dose-curve assays in HCT-8
cells using a medium-throughput imaging assay (see Materials and Methods) and
calculated their respective 50% and 90% effective concentration (EC50 and EC90,
respectively) values from three independent experiments (Table 1). To determine
whether the compounds would be effective under conditions that better mimic the
parasite’s natural niche, we performed similar dose-response curves in an ALI system
that allows long-term cultivation of C. parvum in vitro (22, 23). Briefly, mouse ileal stem
cell spheroids were plated in transwells on top of an irradiated fibroblast feeder cell
layer (Fig. 1A). Monolayers were cultured in conditioned medium (CM) (25–27) for 7
days, at which point the top medium was removed to form the air-liquid interface and
promote differentiation of the monolayers. Oocysts were added to the monolayers 3
days after removal of the top medium, and serial dilutions of the compounds were
added to the top and bottom chambers of the transwell. After 48 h of compound
treatment, EC50 and EC90 values were calculated based on the number of C. parvum
genome equivalents in each transwell as quantified by quantitative PCR (qPCR). Even
though the times of treatment between the two assays differed (24 h for HCT-8 cells
versus 48 h for ALI cultures), all compounds showed a �4-fold change in EC50 values
between the two systems, except for nitazoxanide, which was �12-fold less potent
against C. parvum in ALI than in HCT-8 cultures (Table 1).

Reversibility of compound effects on C. parvum infection during long-term
culture. Although assays to test the cidal versus static properties of compounds against
C. parvum in HCT-8 cells have been described (8), the lack of C. parvum growth after the
first 72 h in transformed cell lines limits the ability of these assays to test parasite
recovery after compound removal. Thus, we performed washout experiments in our
long-term ALI culture system to determine whether treatment with compounds for 48 h
was sufficient to kill C. parvum or if parasite growth would resume after compound
removal during a 72-h recovery period (Fig. 1B). Each compound was tested at three
different concentrations (EC50, EC90, and 3� the EC90 for ALI conditions; Table 1) to see

TABLE 1 EC50 and EC90 values for compounds against C. parvum grown in HCT8 versus ALI cultures

Compound

EC50 (�M) in (mean � SD):

Fold changec

EC90 (�M) in (mean � SD):

HCT8 cellsa ALI cellsb HCT8 cellsa ALI cellsa

Nitazoxanide 2.190 � 0.378 25.940 � 4.137 11.8 6.497 � 2.632 49.250 � 26.110
KDU691 0.053 � 0.019 0.132 � 0.022 2.5 0.164 � 0.069 0.392 � 0.130
BRD7929 0.033 � 0.009 0.113 � 0.015 3.4 0.225 � 0.041 0.847 � 0.264
BRD8494 0.011 � 0.003 0.028 � 0.002 2.5 0.081 � 0.019 0.055 � 0.020
AN7973 0.347 � 0.129 0.633 � 0.359 1.8 1.378 � 0.500 0.778 � 0.205
MMV665917 2.360 � 0.643 3.607 � 0.944 1.5 9.543 � 3.568 7.540 � 2.649
an � 3; 9-point (pt) curve. Calculated as log(inhibitor) versus normalized response – variable slope. The assay is based on 24 h of growth.
bn � 2; 5-pt curve. Calculated as log(inhibitor) versus normalized response – variable slope. The assay is based on 48 h of growth.
cFold change is defined as the ALI-EC50 divided by the HCT8-EC50.
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FIG 1 Testing time-dependent killing of C. parvum by compounds under air-liquid interface (ALI) culture conditions.
(A) Mouse intestinal spheroids were trypsinized and plated on top of irradiated 3T3 (i3T3) feeder cells and Matrigel. The
culture was grown in 50% conditioned medium (CM) containing 10 �M ROCK inhibitor. On day 7, medium from the
top chamber of the transwell was removed to create the air-liquid interface. Samples were infected 3 days post-
medium removal. (B) Compounds were added 2 hpi to transwell monolayers (top and bottom compartments). The
transwells were treated with compound for 48 h (washout treatment) or for the entire length of the experiment (5 days)
in parallel wells. DNA was harvested at 0, 2, and 5 days postinfection. (C to G) For KDU691 (C), MMV665917 (D),
BRD7929 (E), AN7973 (F), and BRD8494 (G) washout experiments, C. parvum genome equivalents were quantified using
qPCR and normalized to a no-compound control for each time point. Each compound was tested at its ALI EC50 (green),
EC90 (red), and 3� the EC90 (blue), with parasite recovery after washout represented by dashed lines and continuous
treatment represented by solid lines. Data represent the mean � standard deviation (SD) for four separate replicate
wells from two independent experiments. Statistical analysis was performed using two-way ANOVA corrected for
multiple comparisons by Sidak’s method. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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whether recovery dynamics changed as the concentration of compound increased. Due
to the much less potent activity of nitazoxanide in ALI culture (Table 1), it was not
included in these washout assays.

There was significant recovery in parasite growth for all compounds at their respec-
tive EC50s after washout versus continuous treatment (Fig. 2C to G). Since the EC50, by
definition, would be expected to inhibit only 50% of growth after 48 h of treatment, it
was not surprising to see recovery in parasite numbers after washout. However, some
compounds were more reversible than others at their respective EC50; KDU691 only
showed an �10% recovery in parasite numbers in washout transwells versus continuous
treatment (Fig. 1C), whereas MMV665917 and BRD8494 both demonstrated an �30%
recovery in growth after washout (Fig. 1D and G). Interestingly, parasite growth was
irreversible following washout for KDU691, MMV665917, and BRD7929 at their respective
EC90s (Fig. 1C to E), while AN7973 and BRD8494 showed significant recovery after washout
at the EC90 (Fig. 1F and G). However, no compound exhibited recovery after washout at its
respective 3� EC90 value (Fig. 1C to G), indicating that all compounds are parasiticidal at
higher concentrations. Most compounds were not toxic to ALI cultures even at 3� the EC90,
with the exception of MMV665917 that showed reduced host cell viability at this concen-
tration (see Fig. S1 in the supplemental material).

Delineating life cycle progression of C. parvum in HCT-8 cells. The differences in
reversibility at defined potency suggests that the compounds have different mecha-
nisms of inhibiting C. parvum growth. To determine if they target different life cycle
stages of the parasite, we developed microscopy-based assays to examine the timing
of inhibition (Fig. 2A). In both HCT-8 and ALI cultures, C. parvum undergoes asexual
development and formation of gamonts; however, fertilization is blocked in HCT-8
cultures (20), while it proceeds to oocyst development in ALI cultures (22). To deter-
mine the stage against which each compound is most active, we developed methods
to define the proportion of each stage present at defined time points during infection.
We performed these experiments in HCT-8 cells since the infection is easier to syn-
chronize and visualize by immunofluorescence (IF) microscopy. Infections were syn-
chronized by infection with excysted sporozoites for 2 h and then washing the cultures
twice to remove extracellular parasites. Starting 6 hours postinfection (hpi), the thymi-
dine analog EdU was added to cultures in 2-h intervals over a 48-h infection window.
Following the EdU pulse, cells were fixed and labeled with an anti-C. parvum antibody
(referred to as anti-Cp or Cp), and EdU incorporation into parasite DNA was visualized
using click chemistry. Parasites were manually counted for each time point and binned
into life stages based on the following criteria: those with a single nucleus were
classified as trophozoites (Fig. 2B); type I meronts had either 2 nuclei (Fig. 2C), 4 EdU�

nuclei (Fig. 2D), or 8 nuclei (Fig. 2E); type II meronts had four EdU� nuclei (Fig. 2F);
microgamonts contained more than 8 nuclei (Fig. 2G); and macrogamonts lacked a
well-defined nucleus and contained oocyst wall-forming bodies visible by phase con-
trast microscopy (Fig. 2H).

Trophozoites were exclusively present in the cultures up until 8 hpi; they transi-
tioned to type I meronts by 12 hpi before egressing at 16 hpi and reinvading to
commence a second round of asexual merogony that was completed by 24 hpi (Fig. 2I).
Type II meronts started appearing as early as 28 hpi and only represented a small
fraction of parasites in the culture. However, there are presently no good markers to
distinguish between early type I and immature type II meronts, both of which would
have four EdU� nuclei. Thus, it is possible that our assay underestimates the true
number of type II meronts in the culture. Microgamonts appeared around 36 hpi, and
macrogamonts with distinguishable wall-forming bodies were visible at �40 hpi and
outnumbered microgamonts by 44 hpi. C. parvum gene expression markers confirmed
the timing of specific stages in the culture. For example, expression of a transporter
gene (cgd2_800) was upregulated at 12 and 20 hpi when type I meronts were most
prevalent in the culture but declined over time as gamont differentiation predominated
(Fig. 2J). Conversely, the Hap2 gene (cgd8_2220), a microgamont-specific gene that is
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FIG 2 Characterization of C. parvum intracellular stages over the first 48 h of infection in HCT-8 cells. (A) Diagram
of the C. parvum intracellular life cycle. Single-nucleus trophozoites replicate mitotically to form eight mature type I
merozoites that egress and reinvade host cells. After at least two rounds of asexual replication, parasites divide into
four mature type II meronts, which differentiate into one of two sexual life stages, macrogamonts or multinucleated
microgamonts. (B to H) Immunostaining of parasite stages with rabbit polyclonal anti-C. parvum (Cp, red) and either
EdU, a fluorescent thymidine analog that incorporates into replicating DNA (green), or the nuclear stain Hoechst
(blue). Life cycle stages were distinguished as follows: trophozoites, with the presence of a single nuclei (B); type I
meronts with the presence of two nuclei C), four EdU� nuclei (D), or eight nuclei (E); type II meronts with four EdU�

nuclei (F); microgamonts with more than eight nuclei (G); and macrogamonts, with the presence of wall-forming
bodies visible by phase contrast (black arrows) (H). Scale bars � 5 �m. (I) Abundance of each life cycle stage as a
percentage of total C. parvum at the indicated hours postinfection (hpi). For each time point, EdU was added to the
culture 2 h prior to fixation and antibody labeling, and the number of parasites at each stage was counted for 10
fields of view with a 100� oil objective. The number of total parasites counted per time point is shown above bar
graph. Troph, trophozoites; Macro, macrogamonts; Micro, microgamonts. (J to L) Gene expression of a predicted
transporter protein (cgd2_800) (J), the microgametocyte-specific gene HAP2 (cgd8_2220) (K), and a macrogamont
oocyst wall protein 8 (cgd6_200) (L) at specified times postinfection with C. parvum sporozoites. Gene expression
profiles are from a single experiment with three replicates per time point. Values are plotted as the means � SD.
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conserved in male gametes of many eukaryotic species, including Plasmodium spp. (28,
29), turned on at 36 hpi when microgamonts started to form (Fig. 2K). Similarly,
macrogamont-specific genes such as oocyst wall protein 8 (cgd6_200) were highly
expressed 48 hpi when macrogamonts dominated the culture (Fig. 2L).

Determining the effective treatment window for anti-C. parvum compounds.
To examine the stage(s) in the C. parvum life cycle that each compound affected, we
performed a sliding window analysis of treatment using the EC90 in HCT-8 cells (Table 1
and Fig. 3A). Treatment time windows were chosen to target specific steps in the C.
parvum life cycle, as summarized in Fig. 3A. Treatment with KDU691 significantly
inhibited C. parvum growth starting 8 hpi, indicating that it may block merozoite
replication or development (Fig. 3C). In contrast, MMV665917 inhibited growth after the
first round of asexual merogony was complete, indicating that it may affect parasite
egress and/or merozoite reinvasion (Fig. 3D). The compounds that showed the broad-
est spectrum of stage inhibition were BRD7929 (Fig. 3E) and BRD8494 (Fig. 3F). Both
significantly reduced C. parvum growth compared to dimethyl sulfoxide (DMSO)-
treated controls at almost every time point, indicating that they likely block multiple
biological processes or one process shared by multiple stages of parasite development.
AN7973 was not active during most of the individual treatment windows and only had
a slight, but significant, effect on parasite growth at 28 to 36 hpi (�25% inhibition). In
contrast, continuous culture with the compound for the full 48 h inhibited parasite
growth by �85% (Fig. 3B). This indicates that C. parvum needs to be exposed to
AN7973 for longer than the 4- to 12-h treatment windows in order to be effective.
Similarly, treatment with control compound nitazoxanide at the EC90 had little effect on
parasite growth for most short time points (Fig. S2A); however, such treatment for the
full 48 h was completely cytotoxic to the host cells (Fig. S2B). Previous studies have also
emphasized the potential toxicity of nitazoxanide, limiting its clinical usefulness (30).
None of the other compounds exhibited host toxicity at the EC90 over the same time
window (Fig. S2B).

EdU pulsing to further dissect the stage specificity of anti-Cryptosporidium
compounds. We combined EdU pulsing with a monoclonal antibody that labels
mature merozoites, 1A5 (24), to better understand the specific biological processes
inhibited by each compound. Infected HCT-8 cultures were treated with compounds at
the EC90, and EdU was added to individual cultures in 4-h increments until 20 hpi
(Fig. 4A). At the end of each 4-h EdU pulse, coverslips were fixed and labeled with 1A5,
anti-C. parvum (anti-Cp), and click chemistry to label EdU incorporation into newly
synthesized DNA. Life cycle stages were then defined based on the number and EdU
status of their nuclei and whether the 1A5 marker was present, as follows: trophozoites
had one nucleus, early stage meronts had either two or four EdU� nuclei, middle
meronts had eight EdU� nuclei but no 1A5 labeling, and late meronts had eight nuclei
and positive 1A5 labeling indicative of merozoite development (Fig. 4B and Fig. S3).

As expected, DMSO control cultures showed a cyclical pattern of DNA replication
and merozoite reinvasion, with trophozoites dominating the cultures at 8 hpi and 16
hpi, followed by meronts at 12 hpi and 20 hpi (Fig. 4C). In contrast, KDU691-treated
cultures stalled at the late meront stage at 16 hpi, indicating a possible block in
merozoite maturation or egress (Fig. 4D). MMV665917-treated cultures lagged in
development compared to the DMSO control and still contained a majority of tropho-
zoites at 20 hpi (Fig. 4E). Treatment with BRD7929 completely blocked DNA replication
(nearly all parasites contained a single EdU-negative nucleus) up until 20 hpi (Fig. 4F).
Last, AN7973-treated cultures showed a lag in development, with fewer parasites
continuing to the late meront stage (Fig. 4G). These results were intriguing considering
that a recent study reported that AN7973 completely blocked DNA synthesis as
detected by a lack of EdU incorporation in compound-treated C. parvum (15). This prior
study used a higher effective concentration of compound (2� the EC90) and only
evaluated a single time point (11 hpi). When we repeated the EdU pulse experiment for
AN7973 at both the EC90 and 2� the EC90, we found that DNA replication was blocked
at the higher concentration until 16 hpi, when �15% of the parasites had two or more
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FIG 3 Sliding window analysis of compound effects on different stages of the C. parvum life cycle in HCT-8 cells. (A) Diagram
of experimental design in which compounds were added at their respective HCT-8 EC90s at specified time intervals (dark gray
bars) preinfection (�2 h to 0 h) or postinfection with C. parvum oocysts. All wells were washed 4 hpi to remove unexcysted
oocysts. After each treatment window, wells were washed then cultured in medium without compound (cmpd) (light-gray
bars) for the remainder of the experiment. At 48 hpi, all wells were fixed and labeled with anti-Cp, followed by goat
anti-rabbit Alexa Fluor 488. The number of C. parvum cells in each well was imaged and counted on a Cytation 3 imager and
normalized to DMSO-treated control wells. Approximate timing of C. parvum developmental stages is indicated by colored
bars. Tr, trophozoites; Micros, microgamonts, Macros, macrogamonts. (B to F) Ratio of Cp growth relative to DMSO controls
for AN7973 (B), KDU691 (C), MMV665917 (D), BRD7929 (E), and BRD8494 (F) at their respective EC90s during the indicated time
windows postinfection. Each bar represents the mean � SD for six replicates in total from two independent experiments.
Data were analyzed with a one-way ANOVA, followed by Dunnett’s multiple-comparison test (*, P � 0.05; ***, P � 0.001).
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EdU� nuclei (Fig. S4). Our results corroborate the previous study since we did not
detect DNA replication at 12 hpi when treated at 2� the EC90; however, our findings
also reveal that some parasites recover at the higher dose given additional time despite
constant drug pressure.

FIG 4 Use of EdU labeling to define effects of compounds on different stages of C. parvum asexual
replication. (A) HCT-8 cells plated on coverslips were infected with excysted sporozoites for 4 h before
compound was added at the EC90. EdU was added to culture medium starting at 4, 8, 12, or 16 hpi. Coverslips
were fixed and stained after 4 h of incubation with EdU. (B) Immunofluorescence assay (IFA) images defining
the progression of asexual replication using EdU- and stage-specific antibodies. Single-nucleus trophozoites
undergo two rounds of DNA replication to form “early meronts” with 2 or 4 EdU� nuclei (green). A third round
of DNA replication generates “middle meronts” with 8 EdU� nuclei, which then mature into “late meronts”
containing 8 individual merozoites that each label with monoclonal antibody 1A5 (red) in a polarized manner.
Scale bars � 3 �m. (C to G) Quantification of the proportion of each asexual stage present at the indicated
time points as defined with EdU and 1A5 labeling for the DMSO control (C), KDU691 (D), MMV665917 (E),
BRD7929 (F), and AN7973 (G). Error bars represent the mean � SD for three biological replicates for each
compound and 6 biological replicates for the DMSO control.
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KDU691 treatment impedes individual merozoite formation. To further define
the block in growth in KDU691-treated cultures, we used immunofluorescence (IF)
imaging and transmission electron microscopy (TEM) to examine merozoite develop-
ment. Monoclonal antibody 1E12, which localizes to C. parvum membranes (24), labeled
the membranes of individual merozoites in DMSO control cultures at 22 hpi but
remained localized around the perimeter of meronts in KDU691-treated cultures
(Fig. 5A). Furthermore, monoclonal antibody 5E3, which recognizes the apical pole of
excysted sporozoites and individual merozoites in late meronts (24), was detectable at
the poles of merozoites in DMSO cultures but showed more diffuse labeling throughout
the cytosol in KDU691-treated cultures (Fig. 5B). When examined by electron micros-
copy, KDU691-treated meronts contained aberrant membrane invaginations and

FIG 5 Influence of KDU691 on merozoite maturation. (A and B) IFA images of DMSO- or KDU691-treated parasites
from HCT-8 cultures infected with excysted sporozoites fixed and labeled at 22 hpi with anti-Cp (red), Hoechst DNA
stain (blue), and either monoclonal antibody 1E12 (green), which localizes to the parasite membrane (A) or
monoclonal antibody 5E3, which recognizes the apical end of individual merozoites (B). Images on the right are 3D
renderings from confocal z-stacks of parasites labeled with the same antibodies but from independent experiments
from the images on the left. Scale bars � 3 �m. (C) Transmission electron micrographs of DMSO- or KDU691-treated
parasites at 22 hpi. Scale bars � 500 nm.
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lacked separate merozoites compared to DMSO control parasites (Fig. 5C). Taken
together, these results indicate that KDU691 inhibits merozoite formation, perhaps by
impeding the separation of membranes surrounding individual merozoites after DNA
replication has occurred. Combined with the accumulation of late-stage meronts as
judged by nuclear staining (Fig. 4D), these results indicate that nuclear division is not
affected but that egress is likely blocked by the failure of individual merozoites to form
in KDU691-treated cultures.

MMV665917 inhibits macrogamont development. Although MMV665917 de-
layed meront development in the EdU pulse assay (Fig. 4E), there were no obvious
defects in merozoite formation based on labeling with 1E12 (Fig. S5A) or 5E3 (Fig. S5B).
A previous study found that MMV665917 acted predominantly against the sexual
stages of C. parvum based on antibody labeling of a meiosis-specific protein, DMC1 (17).
To examine macrogamont formation in our cultures, we utilized monoclonal antibody
4D8, which recognizes elongated fibrillar structures in macrogamonts (24). Infected
cultures were cultured without compound for 36 hpi to allow for normal asexual
development before adding compounds at their respective EC90s for an additional 36 h
of culture (Fig. 6A). The labeling pattern of 4D8 was used to quantify the percent
inhibition of macrogamont formation after compound treatment. Macrogamonts were
considered 4D8� if they showed any striated structure that labeled with 4D8, regardless
of length or branching pattern. Macrogamonts treated with KDU691, BRD7929, or
AN7973 had 4D8 labeling patterns in both length and branching similar to those in the
DMSO control, while 4D8� structures in MMV665917 macrogamonts were much
shorter and unbranched (Fig. 6B). When the ratio of macrogamonts to total C. parvum
was quantified for each compound and expressed as a percentage of inhibition
compared to the DMSO control, MMV665917 was the only compound that significantly
inhibited the development of 4D8� macrogamonts (Fig. 6C).

BRD7929 treatment blocks nuclear replication and increases feeder organelle
area. BRD7929-treated parasites showed a nearly complete block of EdU incorporation
(Fig. 4F), suggesting that this compound blocks DNA replication. To test this prediction,
we labeled with monoclonal antibody 1B5, which recognizes the base of trophozoites
in a unique doughnut pattern (24), at 12 hpi when the type I meronts should be
maturing (Fig. 3A). Consistent with this prediction, many parasites in the DMSO control
cultures had progressed to the mature type I meront stage, whereas only trophozoites
were present in BRD7929-treated cultures (Fig. 7A). Interestingly, we observed ex-
panded 1B5 labeling at the base of BRD7929-treated trophozoites compared to DMSO
control cultures when viewed as three-dimensional (3D) renderings of transverse
confocal z-stacks through the parasites (Fig. 7B). Since 1B5 likely recognizes an antigen
at the host-parasite interface (24), we analyzed infected DMSO- or BRD7929-treated
cultures at 12 hpi to determine whether we could observe morphological differences
by transmission electron microscopy. To capture parasites with similar orientations
from the two treatment groups, we specifically imaged single-nucleus trophozoites
sitting on electron-dense pedestals with a sizable host-parasite interface (Fig. 7C).
BRD7929-treated trophozoites exhibited normal membrane and nuclear architecture
comparable to those from DMSO control cultures (Fig. 7C). However, compound-
treated parasites had expanded feeder organelles (Fig. 7C, highlighted in pink) that
were significantly larger in area than those from DMSO trophozoites (Fig. 7D). These
findings are consistent with BRD7929 blocking parasite replication and stalling growth
at the early trophozoite stage.

DISCUSSION

Although several new inhibitors of Cryptosporidium sp. growth have been identified
in high-throughput screening efforts, we lack good methods for defining their mech-
anisms of action. To begin alleviating this problem, we have developed several in vitro
assays to profile the development of life cycle stages that occur in vitro and to define
static versus cidal activities. Taking advantage of air-liquid interface cultures that allow
complete parasite development, we define concentration- and time-dependent treat-
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ment conditions that provide irreversible inhibition. Using a combination of EdU
labeling of replicating nuclei and monoclonal antibodies to specific stages, we define
the progression of life cycle development that occurs in HCT-8 cells. By combining
pulsed compound treatment for defined intervals with EdU pulse labeling, we were
able to identify key points in the life cycle that were affected by distinct classes of
inhibitors. Among the four classes of compounds studied here were those that block
nuclear division (PheRS inhibitors), prevent merozoite formation and hence block
egress (PI4K inhibitors), or block macrogamont development (a piperazine inhibitor of
unknown function). Collectively, these assays provide a set of guidelines for evaluating
future compounds to define the stages of the life cycle that they affect and for defining
time- and concentration-dependent killing.

FIG 6 Effect of compounds on formation of macrogamonts. (A) HCT-8 cells plated on coverslips were
infected with excysted sporozoites and then washed at 4 hpi to remove extracellular parasites. Com-
pounds were added at their respective EC90s starting at 36 hpi, and cells were fixed and labeled at 72 hpi.
(B) IFA images of macrogamonts treated with the indicated compound and labeled with monoclonal
antibody 4D8 (green) and anti-Cp (red). Scale bars � 5 �m. (C) Percent inhibition of 4D8� macrogamonts
present in cultures treated with the indicated compound compared to DMSO control cultures. Error bars
represent the mean � SD of the results from three independent experiments. Data were analyzed using
a nonparametric Kruskal-Wallis test, followed by Dunn’s multiple-comparison test that compared each
compound to the DMSO control (***, P � 0.001).
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One of the limitations of using transformed cell lines such as HCT-8 cells for growing
C. parvum is that the parasites do not proceed past gamont development (20), and
parasite numbers decline over time after reaching a peak between 48 and 72 hpi (31,
32). Although previous studies have tried to estimate “time-to-kill” rates in response to
treatment in HCT-8 cells (8, 17), it is not possible to perform classical washout and
recovery experiments using such transformed lines due to the fact that replication
ceases after a few days. In contrast, C. parvum undergoes complete development,
including the production of viable oocysts in ALI cultures (22). Moreover, infected ALI

FIG 7 Effect of BRD7929 on parasite replication and formation of the feeder organelle. (A) IFA images of DMSO-
or BRD7929-treated parasites from HCT-8 cultures infected with excysted sporozoites fixed and labeled at 12 hpi
with anti-Cp (red) and monoclonal antibody 1B5 (green), which localizes to the host-parasite interface. The stages
of individual parasites are indicated with “M” for type I meronts or “T” for trophozoites. Scale bars � 5 �m. (B)
Three-dimensional renderings from confocal z-stacks of DMSO- or BRD7929-treated parasites from HCT-8 cultures
infected with excysted sporozoites fixed and labeled at 8 hpi with 1B5 and rabbit polyclonal anti-Cp (red). Images
represent four parasites per treatment group from the same experiment. Scale bars � 1 �m. (C) Transmission electron
micrographs of DMSO- or BRD7929-treated parasites at 12 hpi. Bottom images are enlarged sections of the top images
with the feeder organelles outlined and false-colored red. Scale bars � 500 nm. (D) Area in �m2 of the feeder organelles
of trophozoites from images from the same experiment as panel C. n � 10 trophozoites for DMSO and n � 11
trophozoites for BRD7929. Data were analyzed using an unpaired, two-tailed Student t test (**, P � 0.01).
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cultures can be propagated for up to 3 weeks (22), providing an experimental system
for treatment and recovery experiments. We utilized ALI cultures of C. parvum to
examine the four classes of compounds studied here using increasing concentrations
from the EC50, to the EC90, and to 3� the EC90 for a duration of 48 h. All compounds
showed partial recovery following treatment at the EC50, a result expected from the fact
that this concentration should block growth only by 50%. In contrast, raising the
concentration to the EC90 resulted in a complete absence of recovery for KDU691,
MMV665917, and BRD7929. Somewhat surprisingly, treatment with BRD8494 resulted
in partial recovery at the EC90, despite the fact that this compound is very closely
related to BRD7929 and likely shares the same PheRS target (16), although this has not
been formally demonstrated in Cryptosporidium spp. The difference in potency may be
a result of the greater hydrophobicity of BRD7929, such that removal by the replace-
ment of medium during the washout phase may be less effective. Additionally, the
benzoxaborole AN7973 showed partial recovery even when treated at the EC90 and 2�

the EC90. This compound was also much less effective than either PheRS or PI4K
inhibitors when used for short treatment windows. The longer time requirement for
inhibition by AN7973 is consistent with a recent report that estimated the half-life (t1/2)
for killing to be on the order of 9 h (15). Although we have not extended our studies
to in vivo treatment, the concentration- and time-dependent findings may be useful in
estimating exposure levels that would be needed to achieve complete killing in vivo.

A recent study developed a suite of assays for profiling the inhibition of C. parvum
growth using a combination of cellular assays (17). Here, we extend these assays to
examine additional details of the life cycle based on shorter EdU pulses to label
replicating nuclei combined with monoclonal antibodies to stage-specific antigens (24).
Several of our findings help extend the toolkit for analyzing the life cycle and for
deconvolving cellular pathways targeted by different inhibitors. First, the use of short
EdU pulses indicates that, in HCT-8 cells, C. parvum growth proceeds through two
rounds of type I merogony that precedes type II merogony and the appearance of
macrogamonts and microgamonts. Second, using antibodies to apical antigens that
appear late in merogony (24), we were able to distinguish immature from mature type
I meronts as well as type II meronts. It is generally believed that type II meronts give rise
to gamonts (33), which makes the low abundance of type II meronts in our cultures
surprising given the significant number of gamonts that appear after 36 hpi. However,
it is possible that our methods underestimate the true frequency of type II meronts, as
there are no known stage-specific markers that are exclusive to type II meronts. Further
studies to identify such markers may help resolve this apparent discrepancy. Finally, by
using short treatment pulses that were designed to pinpoint distinct life cycle stages,
we were able to separate the inhibitor classes in terms of when they are most active.

The compounds BRD7929 and BRD8494, which likely target PheRS, were the most
potent in terms of acting rapidly across multiple stages, including preventing nuclear
division and thus blocking type I merogony development. In contrast, KDU691, which
likely targets PI4K, and MMV665917, which acts on an unknown target, had almost no
effect on replicating type I meronts and were only effective when added later in the
cycle at the boundary of type I/type II merogony or as sexual stages emerge. By further
dissecting the development of type I merogony, it was evident that KDU691 resulted
in accumulation of a late-stage type I meront, while the BRD7929 completely blocked
nuclear division, arresting parasites at the early trophozoite stage. Finally, both AN7973
and MMV665917 delay the progression of later stages but do not block DNA replication.

By extending our analysis to use monoclonal antibodies that recognize specific
structures in the parasite that help define the life cycle, combined with transmission
electron microscopy to examine the cellular ultrastructure, we were able to confirm the
findings described above and provide a cellular context for understanding the different
mechanisms of individual compounds. For example, labeling with antibodies that
recognize the apical pole in mature merozoites revealed that KDU691 prevents the
separation of merozoites into individual daughter cells. A similar finding has been
described previously for P. falciparum, where treatment with a related imidazopyrazine
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led to multinucleate schizonts that failed to segment into merozoites (12). Conse-
quently, it is likely that KDU691 prevents the egress of merozoites from type I meronts,
thus stalling the cycle at this asexual replicating phase. In contrast, MMV665917 has no
effect on merozoite division, and fully functional type I meronts are formed, although
they are slightly delayed in development. However, the major effect of MMV665917
appears to be aberrant macrogamont formation, as revealed by labeling with mono-
clonal antibody (MAb) 4D8 that detects a striated fiber that forms in macrogamonts
(24). Our finding corroborates a previous report that reached a similar conclusion using
a different antibody to macrogamonts (17). However, pulsed treatments with
MMV665917 at earlier time points also decreased the number of asexual parasites,
indicating that this compound acts on both asexual and sexual development in C.
parvum. As the target of MMV665917 is unknown, further work is needed to determine
whether it targets multiple pathways that independently inhibit asexual and sexual
stages or a single pathway shared between the two stages. Finally, the most potent
compound that we examined was BRD7929, which completely blocked parasite repli-
cation, stalling the parasite at the trophozoite stage. This bicyclic azetidine likely targets
PheRS based on studies conducted in P. falciparum (16), suggesting that it prevents the
synthesis of proteins critical for DNA replication. Treated parasites remain intact for 20
hpi, and the only morphological defect that they displayed was an enlarged feeder
organelle, a highly membranous region at the host-parasite interface that is thought to
be responsible for the transport of nutrients (34, 35). The enlargement of the feeder
organelle suggests that some functions may persist in treated parasites (i.e., transport)
despite the block in replication. Nonetheless, treatment with BRD7929 was effective
when given for short time intervals, and, when treated for 48 h at the EC90, parasites did
not recover from treatment, indicating that the compound is cidal under these condi-
tions.

Cryptosporidiosis has recently been recognized as an important cause of diarrheal
disease in infants in the developing world (3, 36). Treatment is limited by the fact that
the only existing FDA-approved drug, nitazoxanide, is not approved for infants, is not
effective in immunocompromised patients (37), and has varied efficacy in immuno-
competent individuals (38). As such, there has been a concerted effort to identify new
compounds that are potent and selective inhibitors of Cryptosporidium sp. growth as
potential leads for the development of new drugs (39). To contribute toward this goal,
we have developed methods that can be used to define cidal activity. Importantly, this
outcome varies with the concentration and time of treatment that is necessary to
prevent the recovery of parasite growth, parameters that are more easily monitored in
long-term ALI cultures that support continuous parasite growth. We also expand the
repertoire of probes for determining the life cycle stages where compounds are most
effective, revealing several novel modes of action among existing lead compounds.
These tools should aid future studies evaluating differences in potency, selectivity,
mechanism of action, and potential synergy when establishing metrics to achieve in
vivo efficacy of new drugs for the treatment of cryptosporidiosis.

MATERIALS AND METHODS
Preparation of oocysts. C. parvum oocysts were obtained from the Witola lab (University of Illinois

at Urbana-Champaign). The C. parvum isolate (AUCP-1) was maintained by repeated passage in male
Holstein calves and purified from fecal material, as described previously (40). Animal procedures were
approved by the Institutional Animal Studies Committee at the University of Illinois at Urbana-
Champaign.

Purified oocysts were stored at 4°C in phosphate-buffered saline (PBS) plus 50 mM Tris and 10 mM
EDTA (pH 7.2) for up to 6 months. Before infection, C. parvum oocysts were treated in a 40% bleach
solution (commercial bleach containing 8.25% sodium hypochlorite) diluted in Dulbecco’s phosphate-
buffered saline (DPBS; Corning Cellgro) for 10 min on ice. Oocysts were then washed three times in DPBS
containing 1% (wt/vol) bovine serum albumin (BSA; Sigma) before storing at 4°C in DPBS containing 1%
BSA for up to 2 weeks before infection. For some experiments, oocysts were excysted in 0.75% sodium
taurocholate at 37°C for 1 h. The excysted sporozoites were centrifuged at 2,500 rpm for 3 min and then
resuspended in culture medium prior to use.

Compounds. Previously characterized inhibitors of C. parvum growth were obtained from the
following organizations: compound MMV665917 was obtained from the University of Vermont, com-
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pound AN7973 was obtained from Calibr, compound KDU691 was obtained from Novartis, and com-
pounds BRD7929 (full name, BRD-K78727929-001-03-2) and BRD8494 (full name, BRD-K21118494-001-
01-1) were obtained from the Broad Institute. Compounds were dissolved at 10 mM in DMSO and stored
at – 80°C until use. For use in biological assays, compounds were diluted in culture medium to a final
concentration of 1% DMSO and compared to medium containing only 1% DMSO as a control.

HCT-8 cell culture. Human ileocecal adenocarcinoma cells (HCT-8 cells; ATCC CCL-244) were
maintained in RPMI 1640 medium (Gibco, ATCC modification) supplemented with 10% fetal bovine
serum. Cells were confirmed to be mycoplasma free with the e-Myco plus Mycoplasma PCR detection kit
(Boca Scientific).

EC50 determination in HCT-8 cells. HCT-8 cells plated on 96-well optically clear plates (Greiner
Bio-one 655090; Fisher) were infected with oocysts the day after cells reached confluence. Compounds
were added in culture medium containing 1% DMSO to generate a 9-point dilution curve to determine
their EC50 values. Twenty-four hours after compound addition, samples were fixed in 4% formaldehyde
for 10 min, washed twice with PBS, permeabilized, and blocked in 0.1% Triton X-100 and 1% BSA in PBS.
Samples were labeled with rabbit anti-Cp antibody developed against C. parvum oocysts and sporozoites
(22), followed by goat anti-rabbit Alexa Fluor 488 (A11034; Invitrogen) in blocking buffer and incubated
for 1 h at room temperature, washed three times with buffer, and stained with 1 �g/ml Hoechst for
10 min. Plates were imaged using a BioTek Cytation 3 cell imager to quantify parasite growth (Alexa Fluor
488 label) and monitor host cell viability (Hoechst nuclear staining). EC50 and EC90 values were calculated
using a nonlinear regression curve fit (log inhibitor versus normalized response – variable slope) with
three technical replicates per experiment using the Prism 8 software (GraphPad). The mean EC50 and EC90

per compound are expressed as average values from three independent experiments.
Air-liquid interface culture. The conditions for generating the ALI monolayer system have been

defined in greater detail previously (23). Irradiated 3T3 mouse fibroblast (i3T3) cells were plated on
transwells (polyester membrane, 0.4-�m pore; Corning Costar, with 12 transwells per 24-well plate)
coated with 10% Matrigel (Corning) at a density of 8 � 104 i3T3 cells per transwell. DMEM-high-glucose
medium supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 0.1 mg/ml streptomycin
was added to the top (200 �l) and bottom (400 �l) of the transwells and incubated at 37°C for 24 h.
Mouse intestinal epithelial cell (mIEC) spheroids were trypsinized and plated on the i3T3 feeder layer the
next day (5 � 104 mIECs per transwell). The medium was then changed to 50% L-WRN conditioned
medium (CM) supplemented with 10 �M Y-27632 (ROCK inhibitor), as defined previously (25, 26), at the
same volumes mentioned above. The 50% CM plus ROCK inhibitor medium was used for the mainte-
nance of ALI transwells, with transwells receiving fresh top medium (200 �l) and bottom medium (400 �l)
every 2 to 3 days. After 7 days, medium from the top compartment was removed to initiate the ALI
culture, while the bottom medium was changed every 2 to 3 days to maintain the culture.

EC50 determination and washout experiments in ALI cultures. ALI monolayers were infected with
oocysts on day three after top medium removal and washed at 2 hpi, and a 5-point dilution series of
compounds was added to both the top (50 �l) and bottom (400 �l) chambers of the transwell. DNA
extraction was performed at 48 h postinfection with the QIAamp DNA minikit (Qiagen). C. parvum growth
and host cell viability were tracked by monitoring the expression of their respective glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) genes using qPCRs that were run on the QuantStudio 3 real-time
PCR system (Thermo Fisher), as described previously (22). EC50 and EC90 values were calculated using a
nonlinear regression curve fit (log inhibitor versus normalized response – variable slope) with two
technical replicates per experiment using the Prism 8 software (GraphPad). The mean EC50 and EC90

values per compound are an average of the values from two independent experiments.
ALI monolayers were also used to monitor recovery after treatment with different concentration of

compounds. ALI transwells were infected with oocysts on day three after top medium removal and
washed at 2 hpi with DPBS, 50 �l of the compound in 50% CM was added to the top of the monolayer,
and 400 �l of the compound in 50% CM was added to the bottom chamber. At 48 hpi, transwells were
washed three times with DPBS, and the medium was replaced without compound (50 �l top and 400 �l
bottom) for the remaining duration of the experiment. For continuous treatments, medium replacement
included fresh compound. DNA extraction was done at 2 dpi and 5 dpi using the QIAamp DNA minikit
(Qiagen). C. parvum and host genome qPCRs were analyzed on the QuantStudio 3 real-time PCR system
(Thermo Fisher), as described previously (22), using the QuantStudio software. Two replicates from two
independent experiments (n � 4) were combined for statistical analysis.

EdU pulsing to define C. parvum life cycle progression in HCT-8 cells. To reduce the amount of
EdU uptake by replicating host cells, HCT-8 cells from confluent cultures were irradiated at 6,000 rad and
stored in liquid nitrogen until further use. Thawed irradiated HCT-8 cells were plated on round coverslips
in 24-well culture plates and incubated for �24 h. HCT-8 monolayers were infected with excysted
sporozoites and washed two times with sterile DPBS at 2 hpi to remove extracellular parasites. Starting
at 6 hpi, EdU was added to the culture medium at a final concentration of 10 �M for separate 2-h pulses
spaced over 48 h before fixing the cells in 4% formaldehyde for 10 min. Coverslips were permeabilized
in 0.05% saponin and treated with the Click-iT Plus EdU 488 imaging kit (Thermo Fisher Scientific) to label
EdU. Coverslips were then labeled with anti-RH (a polyclonal antibody generated against Toxoplasma
gondii that recognizes all intracellular stages of C. parvum [24]), followed by labeling with Alexa Fluor 568
antibody (Thermo Fisher Scientific) and Hoechst staining. To calculate the percentage of parasites in each
life stage per time point, the number of parasites at each life stage was counted from 10 fields using a
100� oil immersion objective on a Zeiss Axioskop Mot Plus fluorescence microscope, and then the sum
was divided by the total number of C. parvum parasites for that time point.
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Analysis of C. parvum gene expression. HCT-8 cells were plated in 6-well culture plates and
incubated �24 h before infection. Monolayers were infected with excysted sporozoites, washed twice
with DPBS at 2 hpi, and returned to culture in fresh HCT-8 medium. RNA was collected from three wells
per time point in RLT buffer (Qiagen) plus 1% � - mercaptoethanol, homogenized using a QIAshredder
column (Qiagen), and then stored at – 80°C until further processing. RNA was extracted using the RNeasy
minikit (Qiagen), treated with the DNA-free DNA removal kit (Thermo Fisher Scientific), and converted to
cDNA using the SuperScript VILO cDNA synthesis kit (Thermo Fisher Scientific). Reverse transcription-
quantitative PCR (RT-qPCR) was run on a QuantStudio 3 real-time PCR system (Thermo Fisher Scientific)
with TB Green Advantage qPCR premix (TaKaRa Bio) and the following primers (5= to 3=): Transporter
cgd2_800 (forward, TGAAAGCGATACAGATGATGGT; reverse, GTTTGTAGGGATTAGCTGGTCAA) (41), HAP2
cgd8_2220 (forward, TTGGATTCATTAGGAGAAATTGG; reverse, ATGTTGCTACCCAAGACACAGA) (41),
Oocyst wall protein 8 cgd6_200 (forward, TGATATGCCCAGAAGGAG; reverse, TTATCTCCTCTCTAGCAAC
GCA) (41), and C. parvum 18S (forward, TAGAGATTGGAGGTTGTTCCT; reverse, CTCCACCAACTAAGAACG
GCC) (42). Relative gene expression was calculated with the ΔΔCT method (43) using C. parvum 18S rRNA
as the reference gene and normalizing expression to the mean expression of that gene at 4 hpi.

Sliding window analysis of compound effects on C. parvum in HCT-8 cells. HCT-8 cells were
plated on 96-well optically clear plates (Greiner Bio-one 655090; Fisher) and incubated until confluency
(�24 h). To test the effect of pretreatment, wells were treated with compounds at their EC90s in medium
containing 1% DMSO for 2 h and then washed three times with DPBS before infection with C. parvum
oocysts. The remaining wells were infected with C. parvum oocysts, washed three times with DPBS after 4 h
to remove unexcysted oocysts, and returned to culture. Separate wells were treated with compounds at the
EC90s in medium containing 1% DMSO for defined time intervals after infection (i.e., 4- or 8-h intervals, or
continuous treatment). At 48 h postinfection, cells were fixed in 4% formaldehyde for 10 min and then labeled
with rabbit anti-Cp, followed by goat anti-rabbit Alexa Fluor 488 and Hoechst dye. The plate was imaged on
the BioTek Cytation 3 cell imager to calculate the number of C. parvum parasites (Alexa Fluor 488 signal) and
host cells (Hoechst signal) using the Gen 5 software. Experiments represent two biological replicates
performed on different days with three technical replicates per biological replicate.

Determining the stage specificity of compound inhibition using EdU pulsing. HCT-8 cells were
plated on 12-mm-diameter glass coverslips (Thermo Fisher Scientific) in 24-well tissue culture plates and
incubated until confluency (�24 h). Monolayers were infected with excysted sporozoites, washed twice
with DPBS at 4 hpi, and treated with compounds at their EC90s (Table 1) in 1% DMSO in HCT-8 medium.
For the EdU pulse labeling, one set of two coverslips per treatment group was incubated with 10 �M EdU
and then fixed in 4% formaldehyde after 4 h. Fixed cells were permeabilized, processed for click
chemistry as described above, and labeled with mouse monoclonal antibody 1A5 labeled with goat
anti-mouse Alexa Fluor 568 (Thermo Fisher Scientific), rabbit anti-Cp labeled with goat anti-rabbit Alexa
Fluor 647 (Thermo Fisher Scientific), and Hoechst nuclear stain. Coverslips were mounted on glass slides
using ProLong glass antifade mountant (Thermo Fisher Scientific) and sealed with nail polish. The
number of parasites at each life stage was counted from 10 fields using a 100� oil immersion objective
on a Zeiss Axioskop Mot Plus fluorescence microscope, and the sum was divided by the total number of
C. parvum parasites for that time point. Ratios were averaged across three independent experiments per
compound (six total independent experiments for the DMSO control).

Macrogamont inhibition assay. HCT-8 cells were plated on 12-mm-diameter glass coverslips
(Thermo Fisher Scientific) in 24-well tissue culture plates and incubated until confluency (�24 h).
Monolayers were infected with unfiltered, excysted oocysts (0.75% sodium taurocholate for 1 h at 37°C),
washed twice with DPBS at 4 hpi, and cultured in fresh medium in the absence of compound. At 36 hpi,
medium was replaced with compounds at their EC90s (Table 1) in HCT-8 medium containing 1% DMSO
and incubated for an additional 36 h before fixation at 72 hpi with 4% formaldehyde. Coverslips were
labeled with mouse monoclonal antibody 4D8 labeled with goat anti-mouse Alexa Fluor 488 (Thermo
Fisher Scientific), rabbit anti-Cp labeled with goat anti-rabbit Alexa Fluor 568 (Thermo Fisher Scientific),
and Hoechst stain. The ratio of 4D8� parasites to the total number of C. parvum cells was counted for
10 fields of view on a Zeiss Axioskop Mot Plus fluorescence microscope with a 100� oil immersion
objective, and the percent inhibition of 4D8� macrogamonts was calculated for each compound relative
to the DMSO control for that experiment. The data represent three independent experiments per
compound.

Stage-specific antibody labeling and confocal microscopy. HCT-8 cells were plated on 12-mm-
diameter glass coverslips (Thermo Fisher Scientific) in 24-well tissue culture plates and incubated until
confluency (�24 h). Monolayers were infected with excysted sporozoites, washed twice with DPBS at 4
hpi, and treated with compounds at their EC90s (Table 1) in HCT-8 medium containing 1% DMSO.
Coverslips were fixed in 4% formaldehyde for 10 min, permeabilized and blocked in PBS plus 1% BSA and
0.1% Triton-X, and labeled with primary antibodies, namely, mouse monoclonal antibody 1E12, 5E3, or 1B5,
and either rabbit anti-Cp or anti-RH. Mouse monoclonal antibodies were labeled with goat anti-mouse Alexa
Fluor 488 (Thermo Fisher Scientific), and rabbit polyclonals were labeled with goat anti-rabbit Alexa Fluor 647
(Thermo Fisher Scientific). DNA was stained with Hoechst.

Epifluorescence images were acquired on a Zeiss Axioskop Mot Plus fluorescence microscope with a
100�, 1.4 numerical aperture (NA) Zeiss Plan-Apochromat oil objective and an AxioCam MRm mono-
chrome digital camera. Images were acquired using AxioVision software (Carl Zeiss, Inc.) and manipu-
lated in ImageJ (https://fiji.sc/). Confocal z-stacks were acquired on a Zeiss LSM880 confocal laser
scanning microscope with a 63�, 1.4 NA Zeiss Plan-Apochromat oil objective and Airyscan processing
using the ZEN 2.1 black edition software. Three-dimensional images were generated using the visual-
ization module of Volocity version 6.3 (Improvision).
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Transmission electron microscopy and measurement of feeder organelle area. HCT-8 cells were
plated in 6-well culture plates and incubated for �24 h until confluency. Monolayers were infected with
excysted sporozoites, washed twice with DPBS at 4 hpi, and treated with compounds at their EC90s in
HCT-8 medium containing 1% DMSO. At 12 hpi, cell monolayers were scraped, pelleted, and fixed for
electron microscopy in 2% paraformaldehyde–2.5% glutaraldehyde (Polysciences, Inc., Warrington, PA) in
100 mM sodium cacodylate buffer (pH 7.2) for 2 h at room temperature and then overnight at 4°C.
Samples were washed in sodium cacodylate buffer at room temperature and postfixed in 1% osmium
tetroxide (Polysciences, Inc.) for 1 h. Samples were then rinsed extensively in distilled water (dH2O) prior
to en bloc staining with 1% aqueous uranyl acetate (Ted Pella, Inc., Redding, CA) for 1 h. Following several
rinses in dH2O, samples were dehydrated in a graded series of ethanol and embedded in Eponate 12
resin (Ted Pella, Inc.). Sections of 95 nm were cut with a Leica Ultracut UCT ultramicrotome (Leica
Microsystems, Inc., Bannockburn, IL), stained with uranyl acetate and lead citrate, and viewed on a 1200
EX transmission electron microscope (JEOL USA, Inc., Peabody, MA) equipped with an AMT 8 megapixel
digital camera and AMT Image Capture Engine V602 software (Advanced Microscopy Techniques,
Woburn, MA). To capture parasites with similar orientations between treatment groups, single-nucleus
trophozoites were only imaged if a sizeable host-parasite interface with an electron dense pedestal was
present. Feeder organelles were manually outlined in each image, and the surface area within the outline
was calculated in ImageJ.

Quantification and statistical analyses. All statistical analyses were performed in Prism (GraphPad).
A two-way ANOVA corrected for multiple comparisons by Sidak’s method was used to compare
compound treatments in ALI. For treatments in HCT-8 cells, data were analyzed with a one-way ANOVA
(after confirming normality with a Shapiro-Wilk test), followed by Dunnett’s multiple-comparison test. For
the macrogamont inhibition assay, data were analyzed with a nonparametric Kruskal-Wallis test, followed
by Dunn’s test for multiple comparisons. Data on the area of feeder organelles were analyzed with a
parametric two-tailed, unpaired Student t test after confirming normality with a Shapiro-Wilk test.
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