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A body of research demonstrates convincingly a role for syn-
chronization of auditory cortex to rhythmic structure in sounds
including speech and music. Some studies hypothesize that an
oscillator in auditory cortex could underlie important temporal
processes such as segmentation and prediction. An important cri-
tique of these findings raises the plausible concern that what is
measured is perhaps not an oscillator but is instead a sequence
of evoked responses. The two distinct mechanisms could look
very similar in the case of rhythmic input, but an oscillator
might better provide the computational roles mentioned above
(i.e., segmentation and prediction). We advance an approach to
adjudicate between the two models: analyzing the phase lag
between stimulus and neural signal across different stimulation
rates. We ran numerical simulations of evoked and oscillatory
computational models, showing that in the evoked case,phase lag
is heavily rate-dependent, while the oscillatory model displays
marked phase concentration across stimulation rates. Next, we
compared these model predictions with magnetoencephalogra-
phy data recorded while participants listened to music of varying
note rates. Our results show that the phase concentration of
the experimental data is more in line with the oscillatory model
than with the evoked model. This finding supports an auditory
cortical signal that (i) contains components of both bottom-
up evoked responses and internal oscillatory synchronization
whose strengths are weighted by their appropriateness for par-
ticular stimulus types and (ii) cannot be explained by evoked
responses alone.
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Understanding the temporal dynamics of neural activity in
the processing of rhythmic sounds is critical to uncovering

a mechanistic explanation of speech and music perception. A
considerable body of research has investigated such activity dur-
ing processing of forward and backward speech (1–3), music (4),
frequency- and amplitude-modulated noise (3, 5), and rhythmic
tones (6). In each case, activity in auditory cortex synchronizes to
rhythmic patterns in the stimulus. Critically, this synchrony corre-
lates with intelligibility and comprehension of the stimulus itself,
suggesting that the neural activity underpins behavioral process-
ing (3, 7, 8). Synchronizing to acoustic rhythms may also support
information transfer to other brain regions (9) and selection of
information for attention (10).

These properties have been hypothesized to reflect the action
of a neural oscillator in auditory cortex (e.g., ref. 11). A hypoth-
esized oscillator would be the result of a population of neurons
whose resting-state activity (with no external stimulation) fluctu-
ates around an intrinsic natural frequency. Further, the oscillator
frequency shifts to synchronize with the frequency of external
stimulation only if that external frequency is within a range
around the resting frequency. For a detailed discussion on such
synchrony in weakly coupled oscillators see ref. 12.

The major alternative to the oscillatory entrainment hypothe-
sis proposes that the auditory cortex shows a transient response
to each acoustic input. Proponents of this model suggest that
neural recordings are only rhythmic due to the rhythmic inputs

they receive. In this case, the underlying mechanism is a stereo-
typed delayed-peak response to individual stimuli (e.g., syllables,
notes, or other acoustic edges). As the stimuli occur periodically,
the neural signal is also periodic. This model is similar to steady-
state responses or frequency-tagging experiments which expect
to find the frequency of a rhythmic input in the signal of the
neural region processing it (e.g., ref. 13).

Distinguishing between evoked vs. oscillatory models and
establishing which better explains the observed neural signals
has been challenging using noninvasive human electrophysio-
logical recordings such as magnetoencephalography (MEG) and
EEG. This is, in part, due to the analytical tools used to iden-
tify significant frequency bands of activity which are sensitive
to any type of rhythmic activity without distinguishing the gen-
erative mechanism. Further, showing resting-state oscillatory
activity, a potentially distinguishing feature between the two
models, has been difficult in human auditory cortex, presumably
because the signal is weaker at rest. While resting intrinsic fre-
quencies have been found more invasively in macaque auditory
cortex (14), noninvasive human studies have required impres-
sive but highly complex techniques to show the same effect
(15, 16). A recent review (17) highlights the many methods
used to tease apart the two models and their strengths and
weaknesses.

These two competing hypotheses are conceptually distinct.
The oscillator model suggests that the spectral characteris-
tics of the neural signal are due in large part to the specific

Significance

Previous work in humans has found rhythmic cortical activity
while listening to rhythmic sounds such as speech or music.
Whether this activity reflects oscillatory dynamics of a neural
circuit or instead evoked responses to the rhythmic stimulus
has been difficult to determine. Here, we devised a met-
ric to tease apart the two hypotheses by analyzing phase
lag across many stimulation rates. We test this phase con-
centration metric using numerical simulations and generate
quantitative predictions to compare against recorded magne-
toencephalography data. Both previously recorded and new
data were better predicted by a model of oscillatory dynamics
than evoked responses. This work, therefore, provides defini-
tive evidence for the presence of an oscillatory dynamic in
auditory cortex during processing of rhythmic stimuli.

Author contributions: K.B.D., B.P., and D.P. designed research; K.B.D. and D.B. performed
research; K.B.D. and M.F.A. contributed new reagents/analytic tools; K.B.D. and D.B.
analyzed data; and K.B.D., M.F.A., B.P., and D.P. wrote the paper.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 To whom correspondence should be addressed. Email: keith.doelling@gmail.com.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1816414116/-/DCSupplemental.y

Published online April 24, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1816414116 PNAS | May 14, 2019 | vol. 116 | no. 20 | 10113–10121

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:keith.doelling@gmail.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816414116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816414116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1816414116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1816414116&domain=pdf


neural circuitry. While the evoked model is capable of priori-
tizing certain timescales depending on the frequency content of
its evoked response, the output is generally a weighted reflec-
tion of the input. The oscillator model has a number of the-
oretical advantages for auditory processing: (i) The cycles of
the oscillators generate windows in time for a simple mecha-
nism of stream segmentation (18, 19); (ii) the ability to adapt
to a range of frequencies based on previous input can sup-
port more robust temporal prediction (6); and (iii) processing
can be made more efficient by aligning the optimal phase of
the oscillator to the moments in the acoustics with the most
information (11). Given these computational differences, it
is important to know which of these mechanisms is actually
implemented.

There are sharp disagreements both on the role of oscilla-
tory behavior in the brain and, most critically, on what counts
as evidence for oscillatory activity in noninvasive electrophys-
iological recordings. See, for example, the recent discussion
on enhanced neural tracking of low-frequency sounds (20–22).
Here, our goal is to present a methodology to effectively resolve
these disagreements.

Our method focuses on analyzing how the phase lag between
neural response and acoustic periodic input varies as a function
of the stimulus rate. To illustrate the logic of this analysis, we
present the behavior of two toy models in Fig. 1. The evoked
model (Fig. 1A) generates a neural response with a fixed time
lag for each incoming stimulus. As the stimulus rate increases,
the lag stays largely fixed, becoming an increasing portion of
the stimulus cycle. According to this model, the stimulus posi-
tion changes relative to the two surrounding peaks of the model
response. In contrast, the oscillator model (Fig. 1B) generates
an oscillation at the stimulus frequency. The shape of its cycle
shifts so that the phase of the model output at stimulus onset
remains similar across stimulus rates that exist within its range of
synchrony (Fig. 1B).

∆φ=
2π(∆t)

λ
[1]

The relation between time and phase is governed by Eq. 1, where
∆φ is the phase lag between the signals, ∆t is the time lag, and
λ is the cycle length. In the evoked model, ∆t is fixed: As λ
decreases, ∆φ increases. In the oscillator model, ∆t adjusts with
the cycle length to maintain a relatively constant proportion and
thus a constant phase.

The rose plots shown in Fig. 1 C and D are typical of this
study. The vector angle represents the phase lag between two
rhythmic signals (“east”: 0 rad , fully aligned; ”west”: π rad , fully
opposed) and the length typically represents the consistency of
that phase across time (i.e., phase locking value). Phase locking is
high in both cases. However, in the evoked model, the phase dif-
ference is widely spread around the cycle, whereas the oscillator
model shows greater phase consistence. We term this consistency
high phase concentration and estimate its value using the phase
concentration metric (PCM). PCM is calculated as follows: First
the length of red, yellow, and orange vectors is normalized, then
the mean vector is computed. The length of this mean vector, the
PCM, shown in teal (evoked) and violet (oscillator) distinguishes
between the models.

The PCM analysis is mathematically quite simple and similar
to intertrial phase coherence (ITPC; refs. 23 and 24). However, it
is conceptually distinct. While ITPC is sensitive to similar phase
patterns in neural data across repetitions of the same stimulus,
the PCM compares phase patterns to different stimuli (and stim-
ulus rates). By analyzing phase differences between the neural
signal and the stimulus envelope, we are able to compare phase
differences across stimulus rates, which would not be possible
with a typical ITPC analysis.

Fig. 1. Toy oscillatory and evoked models. Toy models demonstrate intu-
itions of PCM. (A) The evoked model (teal) convolves a response kernel to
the stimulus envelope. As input rate increases, phase difference between
stimulus and output shifts. (B) The oscillator model (violet) is a cosine func-
tion with a frequency that matches the stimulus note rate. Here the time
lag shifts with frequency, maintaining a near-constant phase. (C and D).
Phase lag calculated for each stimulus–response pair in evoked model (C)
and oscillator (D). The angle of the arrow corresponds to the phase while
the length corresponds to the strength of synchrony. The teal and violet
arrows represent the PCM of each model.

The analysis shown in Fig. 1 uses idealized models to illustrate
the key distinctions. The models are simplified for clarity. For
example, the oscillator model is perfectly sinusoidal, an assump-
tion unlikely to be replicated in the neural system (see ref. 25)
and synchronized to a perfectly isochronous input, unlikely to
occur in a natural environment. To further clarify the under-
lying mechanisms of activity observed using MEG, we need
quantitative predictions of the PCM using more realistic models.

We, therefore, first performed a computational study to estab-
lish whether PCM can distinguish between more biologically
plausible models that “listen” to ecologically valid stimuli: music
clips of a wide range of note rates. The musical clips were drawn
from piano pieces with one of six note rates ranging from 0.5
to 8 notes per second (nps). We then applied the PCM anal-
ysis to MEG responses of participants listening to the same
clips and compared the results to our models’ predictions. The
responses are better predicted by the oscillator model than by
the evoked model. However, evoked transient responses are
clearly elicited and likely play a critical role. Consistent with
this is that the oscillator model appears to overestimate the
PCM of the MEG data. We conclude that the measured MEG
responses consist of both components, an evoked, bottom-up,
transient response as well as an internally generated oscillatory
response, synchronizing to the input. By this reasoning, overesti-
mation in the oscillator model prediction is due to the presence
of an evoked response in the experimental data that is not in
the model.
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To demonstrate the coexistence of the two components and
explain why the oscillator model overestimates the phase con-
centration, we aimed to manipulate each component inde-
pendently. We designed a further study in which we manip-
ulated the musical stimulus by smoothing the attack of each
note. We hypothesized that such a manipulation will reduce
the evoked component and thereby improve PCM. As pre-
dicted, modulating attack acoustics increased the phase con-
centration of the neural responses relative to the oscillator
model. Taken together, our data demonstrate the coexistence
of both evoked and oscillatory components that combine tem-
poral prediction with bottom-up transient responses to effi-
ciently process rhythmic or quasi-rhythmic stimuli such as speech
and music.

Results
Model Analysis. Fig. 2 shows the design of the two models.
The evoked model (Fig. 2A) convolves the stimulus envelope
with an average kernel derived from the participants’ MEG
response to individual tones. The oscillator model (Fig. 2B)
is an instantiation of the Wilson–Cowan model (26) with the
stimulus envelope as a driving force to the excitatory popula-
tion. See Materials and Methods for more information on model
design.

Example model outputs and PCM analyses are shown in Fig. 3.
PCM clearly distinguishes between the two models. Under the
evoked model (Fig. 3A), the phase lag between model output
and stimulus strongly depends on the musical note rate. As note
rate increases, so does the phase difference between model out-
put and stimulus. This is summarized in Fig. 3A, Right, where all
note rates are plotted together. The results show a nearly full
cycle shift of phase difference from 0.5 nps to 8 nps. For phase
patterns based on single subject kernels see SI Appendix, Fig.
S1; the pattern is remarkably consistent. To quantify this pat-
tern, we compute the PCM. The resulting phase concentration
vector (PCV) is plotted in teal. PCM = 0.17, calculated as the
absolute value of the PCV. Small PCM is characteristic of a wide
phase spread.

Note how highly coupled the model output is to the stimu-
lus; each subject arrow shows a coupling value near 0.6. Such

high synchrony in the evoked model clearly demonstrates how
a model that does not actively synchronize can appear synchro-
nized. In this way, our evoked model represents the alternative
hypothesis well.

Fig. 3B, Left shows example outputs of the oscillator model
(violet). The behavior of the oscillator changes depending on the
frequency of the input. At the lowest frequency (0.5 nps), the
model largely oscillates at its resting frequency (∼4 Hz). As the
stimulus rates gets closer to the natural resting-state frequency,
the oscillator begins to synchronize more readily. The degree of
synchrony changes depending on the stimulus frequency. This
demonstrates the dynamic nature of such synchrony: It priori-
tizes certain timescales over others and as such is well matched
to oscillatory entrainment theory.

Critically, the phase lag remains concentrated (Fig. 3B, Right)
so that the range of synchronous phase is smaller for the oscil-
latory model than for the evoked model. The PCV (plotted
in violet) confirms this quantitatively to show a longer vec-
tor (PCM = 0.66) than seen in the evoked model. Interestingly,
for this Wilson–Cowan oscillator, the responses to 5- and 8-
nps inputs are grouped in at a slightly different phase regime
than the other frequencies, which we did not predict. Future
work is needed to understand how this phase lag depends on
the underlying oscillator mechanism. Using a permutation test
across groups, we found that the difference in PCM is significant
(∆PCM = 0.49, P = 0.017).

Exp. 1. We next turned to investigate MEG responses to the same
rhythmic stimuli. Participants listened to music clips with varying
note rates and made judgments about their pitch. Previous anal-
yses of these data used ITPC, a measure of phase consistency
across trials but not directly to the stimulus, to reveal entrain-
ment at frequencies 1 to 8 Hz (4). Here, we reanalyzed these data
to more directly relate the MEG response to the stimulus. We
selected the best auditory channels based on responses to single
tones (Fig. 4A) and analyzed the direct synchrony from stimulus
to brain using cerebro-acoustic coherence (CACoh; ref. 7). An
example of high synchrony is shown in Fig. 4A, Right, where
the acoustic signal and an average signal from auditory chan-
nels are plotted; notice the alignment of signal peak and note

A

B

Fig. 2. Model design. The figure shows the process that generated model outputs for the evoked model (A) and the oscillator (B). (A) The stimulus envelope
(dark gray, Left) is fed into the evoked model through a convolution with an evoked response kernel. A kernel was created for each participant based on
their average response to a single tone (light gray lines, Middle). The kernel used is the average across subjects (teal line, Middle). (B) The stimulus envelope
is an added drive to the excitatory population of the oscillator model. The output used for analysis is the difference between the activity of the excitatory
and inhibitory populations.
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Fig. 3. Model outputs. (A) Phase lag in the evoked model is frequency-
dependent. (Left) Example inputs (dark gray) and outputs (teal) of the
evoked model at a 0.5, 1.5, and 5 nps. (Right) Averages across subjects are
plotted for each clip (thin arrows) and an average across clips for each note
rate (thick arrows). Average phase concentration is plotted as the teal arrow.
(B) Phase lag in the oscillator model is highly concentrated. (Left) Stimulus
(dark gray) and output (violet) of the oscillator model for examples at the
same clips as in A. (Right) Phase lag is plotted for each clip (thin line) and
for the average across clips for each note rate (thick lines). PCV is plotted in
violet.

onset (shown above the figure). This analysis technique repli-
cated the results from the previous study. Fig. 4B shows the
CACoh values at each frequency across stimulus rates for the
previously recorded data. The data for all stimulus rates was col-
lected in two studies (study 1: 0.5, 5, and 8 nps; study 2: 0.7, 1,
and 1.5 nps) and are compared separately. Only values at 1 nps
and above show significant results. As such, from here on, we
only consider frequencies from 1 to 8 nps where synchrony was
successful.

Fig. 4C shows the average phase lag across subjects for each
frequency using the same analysis pipeline as in the model out-
puts. The pattern is similar to the phase pattern of the oscillator
model, specifically a narrow range for most frequencies. In con-
trast, the evoked model’s phase is monotonically dependent on
stimulation frequency and is spread to a wider phase range. In
gray, we plot the PCV for the average data, which has a length

more similar to the oscillatory model than the evoked model.
While the shift in phase at 8 Hz is surprising based on the intu-
itions from our toy models, it does follow from the predictions of
the Wilson–Cowan model.

While Fig. 4C shows the average PCV pattern per hemisphere
across all subjects, and Fig. 4D shows the PCM for each sub-
ject. We compare the resulting values with single predictions
from each model using again only the stimulus rates from 1
to 8 nps. We established CIs for the left (CIL = (0.30, 0.57))
and right (CIR = (0.35, 0.59)) hemisphere responses and com-
pared these to the model predictions. The prediction of the
evoked model is significantly outside the CI for the mean PCM
in either hemisphere (PCME = 0.245; left: t(14) = 3.08,P =
0.0082; right: t(14) = 4.11,P = 0.0011). The prediction of the
oscillator model is on the border, just outside the left hemi-
sphere’s CI and just inside the right’s (PCMO = 0.58; left:
t(14) =−2.32,P = 0.037; right: t(14) =−2.01,P = 0.065).

To compare the models’ performance, we fit Gaussian dis-
tributions to the responses with means set by the two models’
predictions. We then compared the fit of the distributions using
the Akaike information criteria (AIC) (Materials and Methods).
In both hemispheres, the oscillator model showed a better fit
to the data (left: AICE = 8.40,AICO = 5.51, ∆ = 2.89; right:
AICE = 8.73,AICO = 0.63, ∆ = 8.1).

Exp. 2. Exp. 1 provides evidence that the oscillatory model is
a better predictor of the MEG activity than the evoked. How-
ever, the results do not conclusively validate the oscillatory
model since its prediction is statistically ambiguous: In both
hemispheres, the oscillator model’s estimate of mean PCM hov-
ers around the threshold for statistical difference. Given that
evidence for an evoked response is well documented in the
literature, we hypothesize an interplay between evoked and
oscillatory mechanisms is present in the data. Such an inter-
play could explain the oscillator model’s overestimation of the
MEG PCM.

We conducted a second experiment in which the stimuli were
designed to test the relationship between the evoked response
and the accuracy of our models’ predictions—hypothesizing that
the evoked response would be reduced by smoothing the attack
of each note. To carefully control the attack of each note, we
rebuilt artificial versions of the stimuli note by note, rendering
the clips perfectly rhythmic. To avoid this potential confound,
we had the participants listen to two stimulus types: sharp attack
and smooth attack. Sharp attack differs from the original stim-
uli in that the notes are now perfectly rhythmic (rather than
natural recordings), while the smooth attack differs from the
original both in its perfect rhythmicity and in the smoothed
attack of note onsets (Materials and Methods). An example of
a sharp and smoothed note is shown in SI Appendix, Fig. S2A for
comparison. We then acquired new MEG recordings, this time
using clips from all six note rates in each participant, and we
ran the same analysis as in the previous experiment for the two
stimulus types.

An important first question is whether smoothing the attack
reduced the evoked response as expected. We segmented the
data to align trials to each individual note and compared the
event-related potential (ERP) response to the smooth and sharp
stimuli. The results of this analysis are shown in SI Appendix, Fig.
S2B. We found a significant reduction in the amplitude of the
response in two clusters from 100 to 130 ms and from 160 to
240 ms consistent with M100 and M200 responses. This suggests
our note transformation did indeed reduce the evoked response
as predicted.

Fig. 5A shows the phase pattern of left and right hemispheric
responses for perfectly rhythmic stimuli with a sharp note attack.
The phase patterns are consistent with results from Exp. 1.
Fig. 5B shows the comparison of the subject data to the model
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Fig. 4. Phase lag to various note rates. (A, Left) The topography of ITPC as analyzed in a previous paper (reprinted from ref. 4). Sensors shown are those
selected based on response to single tones. Grayscale represents the number of participants for which that channel was picked. (A, Right) An example from
single subject averaged over 20 trials of high synchrony. Note how the peak of the neural response (violet) is well aligned to the onset of acoustics (light
gray). Markers for peak and onset are presented above. (B) CACoh analysis shows significant synchrony at frequencies from 1 to 8 Hz. Colors refer to note
rate of each stimulus condition. They are analyzed separately by study. Asterisks denote significant main effects of note rate at the specific neural frequency
in a one-way ANOVA. (C) Phase lag in left and right hemispheres on the unit circle for the four note rates that showed successful synchrony. PCV is plotted
in dark gray. (D) Phase concentration for both hemispheres. Box plots show mean and CI of the MEG data (participant data in gray dots). The oscillator and
evoked model predictions are represented by lines in violet and teal, respectively.

outputs with new stimulus input. The sharp attack stimulus is
essentially a replication of Exp. 1; we find similar results. We
again compared the CIs of the left (CIL = (0.49, 0.67)) and
right (CIR = (0.46, 0.69)) hemispheres data with model pre-

dictions. While the prediction of the evoked model is signifi-
cantly outside of the CIs of the MEG data (PCME = .278; left:
t(11) = 7.27,P = 0.00002; right: t(11) = 5.72,P = 0.00013), the
oscillator model prediction is within their upper border

A

C

B

D

Fig. 5. Smooth attacks place MEG data in line with oscillator model. (A) Phase lag for the four note rates that showed significance in the previous study
in response to new stimuli with sharp attack. The phase concentration angle is shown in dark gray. (B). PCM for models and data with the new stimulus
input. Box plots (light gray) show 95% CIs and mean (dark gray line) of the sample data (gray dots). Colored lines (teal and violet) reflect predictions of
the models (evoked and oscillator, respectively). (C and D) A plot of phase synchrony and phase concentration in response to new stimuli with smoothed
attacks.
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(PCMO = .644; left: t(11) =−1.46,P = 0.17; right: t(11) =
−1.2,P = 0.24). In this case, the oscillator model prediction
is always inside the CIs while the evoked model prediction
is always outside the CIs. This result is confirmed by our
direct model comparison which fit Gaussian distributions with
means set either by the evoked or oscillator model. Again,
the oscillator model is the better fit in both hemispheres (left:
AICE = 9.81,AICO =−9.19, ∆ = 19.00; right: AICE = 10.71,
AICO =−4.42, ∆ = 15.12).

Fig. 5C shows the phase lag to smoothed stimuli. Here the
phase pattern has narrowed relative both to the sharp attack
and the pattern in the previous experiment. This is made clear
in Fig. 5D, where the oscillatory model prediction is much
more in line with the MEG data. We compared the CIs of the
PCM for left (CIL = (0.43, 0.73)) and right (CIR = (0.62, 0.82))
hemispheres with model predictions in the smooth condition.
The prediction of the evoked model is again significantly lower
than the CIs of the data (PCME = .172; left: t(11) = 6.03, P =
0.00009; right: t(11) = 12.17,P < 0.00001). The prediction of
the oscillator model (PCMO = 0.619), however, is well within
the CIs of the left hemisphere (t(11) =−0.54,P = 0.60) and
even slightly underestimates the right hemisphere data (t(11) =
2.23,P = 0.047). This suggests that the smooth attack has
brought the MEG data more in line with expected results of an
oscillatory mechanism and, in the case of the right hemisphere,
even more oscillatory than the parameters set for our oscilla-
tor model. Further, a comparison of the right hemisphere across
conditions shows a significant increase in PCM in the smooth
condition compared with sharp (t(11) = 2.26, P = 0.045). No
such effect was found in the left hemisphere (t(11) =−.005,
P = 0.996).

Our direct model comparison—fitting Gaussian distributions
with means set by the model predictions—confirms these results.
Again, for the smooth condition in both hemispheres the oscilla-
tor model is the better fit (left: AICE = 17.87,AICO = 0.67, ∆ =
17.20; right: AICE = 22.47,AICO =−5.11, ∆ = 27.59). The
summary results for AIC model comparison across all experi-
ments are shown in Table 1.

Discussion
We present the PCM as a method for direct analysis of
the oscillatory nature of cortical activity during processing of

Table 1. Summary of AIC results for evoked and oscillator
models across all experiments

Model df AIC ∆AIC wi ERi log10 ERi

Exp. 1, left
Evoked 1 8.40 2.89 0.191 4.24 0.63
Oscillator* 1 5.51 0 0.81 1 0

Exp. 1, right
Evoked 1 8.73 8.10 0.017 57.4 1.76
Oscillator* 1 0.63 0 0.983 1 0

Exp. 2, sharp, left
Evoked 1 9.81 19.00 1.00× 10−4 1.34× 10+4 4.13
Oscillator* 1 −9.19 0 0.9999 1 0

Exp. 2, sharp, right
Evoked 1 10.71 15.12 5.00× 10−4 1.93× 10+3 3.29
Oscillator* 1 −4.42 0 0.9995 1 0

Exp. 2, smooth, left
Evoked 1 17.87 17.2 2.00× 10−4 5.43× 10+3 3.73
Oscillator* 1 0.67 0 0.9998 1 0

Exp. 2, smooth, right
Evoked 1 22.47 27.59 0 9.75× 10+5 5.99
Oscillator* 1 −5.11 0 1 1 0

See Materials and Methods for a description of the statistics reported.
*Denotes the model that best fits the PCM of MEG data as defined by AIC.

naturalistic stimuli. We validated the metric on two models: an
oscillatory, Wilson–Cowan model and an evoked convolution-
based model. The inputs for both models were musical stimuli
of varying rates. PCM clearly distinguished the two models. We
then used PCM to analyze previously recorded data of partici-
pants listening to the same clips. We found that the mean PCM
of participants matched that of the oscillatory model better than
that of the evoked model. The results show clear evidence for
an oscillatory mechanism in auditory cortex, likely coordinated
with a bottom-up evoked response. We then collected new data
on new participants listening to altered versions of the music
clips with sharp and smoothed attacks to reduce the evoked
response. Our results represent a three-time replication show-
ing across different participants and different stimulus types that
the oscillator model is a better predictor of the PCM of MEG
data than a purely evoked model. We conclude that the MEG
signal contains both oscillatory and evoked responses, with their
relative weights determined, in part, by the sharpness of the
note onsets.

Models Demonstrate a Clear Prediction. To tease apart the com-
peting hypotheses (evoked vs. oscillator), we contrasted the
phase lag of two computational models as a function of stim-
ulation rate. We hypothesized that the phase lag of the oscil-
lator would remain stable across rates. However, the evoked
model, based on real M100 recordings, would not constrain
the phase lag. These predictions are borne out in the model
outputs (Fig. 3).

The evoked model was designed to react to an input with a
stereotyped response. To identify the shape of that response,
we recorded our participants in the MEG as they listened to
tones. We then used the average response across participants to
a tone as a kernel that was convolved with the stimulus enve-
lope to generate the model output. The kernel, while fixed,
does have its own timescale, which depends on its length and
shape. It, therefore, can have the ability to prioritize certain
timescales over others and as such could generate meaningful
temporal predictions in limited circumstances. A common cri-
tique of the work studying oscillatory mechanisms in perception
is that a model such as this—with no oscillatory mechanism—
can generate an oscillatory output. Our model demonstrates
this very well. The model yields high synchrony values (mea-
sured by the length of the vectors in Fig. 3A) to all of the
presented clips. Still, while the data are rhythmic, the under-
lying mechanism has no oscillatory properties, and by inves-
tigating the relative phase alignment across stimulation rates
we can discern that there is no active synchronization to a
specific phase.

In contrast, the oscillator model does constrain phase lag to
a narrower range. As the oscillatory behavior arises from bal-
anced activation of its excitatory and inhibitory populations, the
temporal constant of their interaction imposes its own timescale
onto the stimulus input and drives the alignment between input
and output. The exact phase of alignment is not something we
expect to match the recorded neural data, particularly from the
perspective of MEG, where the signal of interest is altered in
each participant by changes in source orientation due to neural
anatomy and head position. Instead, we emphasize the relative
phase across stimulation rates.

The oscillatory model is more selective in terms of the rates it
will synchronize. While the evoked model showed high synchrony
to all stimulus rates, the oscillatory model prioritizes narrower
timescales. This specific model, implemented using the Wilson–
Cowan model, is not meant to fit the features and characteristics
of our recorded MEG data. Still, the model demonstrates the
kinds of features we should expect to see from an oscilla-
tory mechanism, specifically a constrained phase regime across
stimulation rates.
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The evoked model is implemented here using convolution
between the stimulus envelope and a response kernel. By the
convolution theorem, the phase transfer function in this lin-
ear system is entirely dependent on the Fourier transform
of the kernel that is convolved with the input. There do
exist kernels, therefore, that maintain a constant phase lag
within some frequency range, which could be confused with
an oscillator model by PCM. Some of these kernels may even
be biologically plausible in various neural contexts. Our results
depend critically on the empirical data that allowed us to
characterize the kernel shape in auditory cortex and its spec-
tral content by averaging the response to individual tones.
Further use of the PCM as a distinguishing feature between
evoked and oscillator models in other domains will similarly
depend on the spectral content of the kernel in the probed
region.

Our evoked model is in part based on the assumption that
the evoked response should not change much depending on the
stimulus rate. However, some classic studies (27–29) have shown
that the amplitude of the evoked response changes with stim-
ulus rates, decreasing as rates reach 2 Hz and then increasing
as they get faster. Of critical interest to us is the peak latency,
as we expected the ∆t between stimulus input and output to
heavily affect the ∆φ. In Exp. 2, we were able to address this
question directly by looking at how peak latency was affected by
note rate. If the evoked model’s underestimation of PCM were
due to a change in peak latency across stimulus rates, we would
expect that the latency of the peak response should decrease
with increasing note rate. SI Appendix, Fig. S2 C and D show
this not to be true. While the peak amplitude of the response
decreases with increasing note rate, the peak lag of the M100
increases. Given the logic of Fig. 1 and Eq. 1, we would expect
this effect—a longer lag for smaller cycle lengths—to decrease
the PCM of the MEG data further than predicted by the evoked
model. Therefore, that the true PCM is significantly higher
than the evoked model prediction further refutes the model’s
viability.

While there may be other added features that one may wish
to apply to the evoked model and improve its performance, we
have shown that the purest form of an evoked model is not suf-
ficient to explain auditory cortical synchrony, as is often claimed
(21). Indeed, the addition of complexity would have the effect
of rendering the evoked and oscillatory models more and more
indistinguishable. If a more complex evoked model naturally
fluctuates at a certain timescale, adapts its shape to match a
range of stimulation rates, and rebounds to align with stimulus
onset, then it may also be described as an oscillation that synchro-
nizes and aligns its phase to the note. To us, either description
would be acceptable.

Weighing Evoked and Oscillatory Components. The models allowed
us to generate quantitative predictions of the phase concentra-
tion we should expect to see in the MEG data. By comparing the
measured results with our models, we were able to get a sense of
how oscillatory the underlying neural mechanism may be. In the
initial experiment, the oscillatory model was clearly a better pre-
dictor of the PCM. Still, the oscillatory model overestimated the
phase concentration numerically, particularly in the left hemi-
sphere. This may reflect the interplay between oscillatory and
evoked components within the auditory cortex. That a new and
unpredicted input generates an evoked response is uncontrover-
sial, and the basis for a large field of research in ERP studies (30).
What our data may point to is a system in which these bottom-
up input responses are fed into neural circuitry that attempts
to predict the timing of new inputs through oscillatory dynam-
ics. Thus, both evoked and oscillatory components exist and are
more or less weighted depending on the predictability of the
stimulus.

If this hypothesis of cortical activity is reasonable, then we
should be able to increase the PCM of the MEG data by reducing
the evoked response to each note of the stimulus. We tested this
hypothesis by designing the stimulus to have a smoother attack
for each note (SI Appendix, Fig. S2A). We expected this to result
in a lower magnitude of the evoked response. This should in
turn increase the PCM. Our predictions were confirmed in the
right hemisphere. We compared stimuli with a sharp attack to
those with a smooth attack. The sharp stimuli generated a phase
concentration similar to what we saw in Exp. 1, with the oscil-
latory model as a better predictor but slightly overestimating
the MEG data. However, the smooth stimuli elicited a higher
PCM in the right hemisphere that was well underestimated by
the oscillatory model. This right hemisphere effect fits well with
the asymmetric sampling in time hypothesis (31), which predicts
that the right hemisphere is biased toward oscillatory temporal
processing in the theta (1 to 8 Hz) range. To date, many studies
have demonstrated stronger low-frequency oscillatory behavior
in the right hemisphere compared with the left (2, 32, 33). Our
study provides further evidence for this by suggesting that the
processing at this temporal scale is more oscillatory in the right
hemisphere.

This study focused on testing an oscillatory mechanism in audi-
tory cortical regions and thus used smooth stimuli to reduce the
evoked component and boost the oscillatory. The reverse should
also be possible. For example, by presenting participants with
extremely sharp and highly unpredictable notes, the oscillatory
component may be disrupted or reduced and less useful. In this
case, a bottom-up evoked response may be the only useful pro-
cessing method and the PCM should theoretically decrease. In
practice, however, the PCM may not be so useful in this case,
as the phase loses its meaning in the context of an arrhythmic
stimulus.

The analysis of model data has illustrated some interesting
points that are crucial to understanding the oscillatory entrain-
ment theory. First, the evoked model actually showed higher
overall synchrony and to a wider range of stimulation frequencies
than did the oscillator model. This may at first seem counter-
intuitive. However, the evoked model, in essence, mimics the
input with some delay. This will naturally give rise to high syn-
chrony values. However, because the model is always reactive,
it has limited capacity to predict note onset and provides few
theoretical benefits in this regard. The oscillator model, how-
ever, imposes its own temporal structure on to the incoming
stimulus. By synchronizing in this way, it is able to predict note
onsets, often rising just before new inputs (as the phase pat-
terns in Fig. 3B show). The oscillator also prioritizes certain
timescales near its natural frequency over others. This is use-
ful only if relevant information exists at this timescale. In line
with this, both syllable and note rates have been shown to con-
sistently fall in this specific timescale (34–37). Therefore, while
the overall synchrony values are lower in the oscillator model,
the dynamic nature of the model allows for the many ben-
efits described in previous research on auditory entrainment
(7, 11, 38).

Conclusion. Taken together, this model comparison and the
human MEG data argue in favor of an oscillatory model of
auditory entrainment. That is to say, the auditory cortex actively
synchronizes a low-frequency oscillator with the rhythms present
in sound from 1 to 8 Hz. To our knowledge, this represents
the clearest evidence to date of an oscillator mechanism in
humans (see ref. 39 for foundational work in macaque monkeys)
for processing auditory inputs with temporal regularity, in this
case music. We propose that the method be extended to other
cognitive domains, including speech, visual, and somatosensory
perception. In so doing, we hope to take a critical step forward
in understanding the role of oscillatory activity in the brain.
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Materials and Methods
Model Simulation.
Evoked model. The evoked model is designed to simulate a system that has
a clear impulse response and responds in the same way to all stimuli. It is
designed using a separate dataset in which participants listened to a single
tone for 200 trials. These trials are averaged and the 20 channels with the
largest response (10 on the left hemisphere and 10 on the right) are picked.
The average trace of these channels (adjusted to have the same sign at the
peak response) is used as a response kernel for each subject (gray traces
in Fig. 2A, Middle), which is then averaged across subjects to generate the
average response kernel (teal trace). The stimulus envelope (dark gray in
Fig. 2A, Left) is convolved with this average response kernel to generate
model outputs (light gray in Fig. 2A, Right).
Oscillator model. The oscillator model is based on a model of excitatory and
inhibitory neural populations first designed by Wilson and Cowan (26). Our
design is inspired by a recent paper (40) that modeled inputs from audi-
tory regions into motor cortex to explain selective coupling between motor
and auditory regions at specific rates. We have used a similar to design to
model coupling between auditory regions and the auditory stimulus. Here,
we model auditory cortex as an interaction between inhibitory and excita-
tory populations, where the excitatory one receives the stimulus envelope
as input. Fig. 2B shows a diagram of the model overall. The signal gen-
erated for further analysis is the difference between the excitatory and
inhibitory populations. The dynamics of these populations are governed by
Eqs. 2 and 3:

τ
dE

dt
=−E + S(ρE + cE− aI +κA(t)) [2]

τ
dI

dt
=−I + S(ρI + bE− dI), [3]

where S(z) = 1
1+e−z is a sigmoid function whose argument represents the

input activity of each neural population, E and I represent the activity
of the excitatory and inhibitory populations, respectively, and τ repre-
sents the membrane time constant. a and b represent synaptic coefficients,
and c and d represent feedback connections. ρ represents a constant
base input from other brain regions. A(t) represents the acoustic input—
the stimulus envelope—and κ represents the coupling value. a, b, c, d,
ρE , and ρI were fixed based on established literature (41), such that a =

b = c = 10, d =−2, ρE = 2.3, and ρI =−3.2. Previous work (ref. 41, p. 46)
has shown that these parameters are consistent with an Andronov–Hopf
bifurcation which is characteristic of the onset of spontaneous periodic
activity. The remaining parameters were set such that τ = 66 ms and
κ= 1.5. This is consistent with a resting state spontaneous frequency
of ∼4 Hz.

Experimental Design.
Participants. Data from Exp. 1 were previously collected and analyzed from
studies 1 and 2 of a previous paper (4). In this previous experiment, 27 partic-
ipants were collected undergoing MEG recordings across study 1 (listening
to note rates of 0.5, 5, and 8 nps) and study 2 (listening to note rates of
0.7, 1, and 1.5 nps) after providing informed consent. Further details about
these participants can be found in ref. 4. In Exp. 2 of this paper, we collected
new data with 12 new participants (8 female; median age 28 y; age range
22 to 51 y; average musical experience 1.53 y) undergoing MEG recording
after providing informed consent. Participants received either payment of
$40 or course credit for their time. Participants reported normal hearing and
no neurological deficits. Both experiments were approved by the New York
University Internal Review Board and the University Committee on Activities
Involving Human Subjects.
Stimuli. The stimuli in Exp. 1 were described in our previous study (4). They
consist of three clips from six piano pieces played by Murray Perahia. The
pieces were chosen for their nps rate and were meant to span the range of
possible speeds of music. The rates chosen were at 0.5, 0.7, 1, 1.5, 5, and 8
nps. The clip length ranged from 11 to 17 s.

Stimuli for Exp. 2 were designed from the same clips of music from
Exp. 1 with two important differences: (i) the timing of each note is pre-
cisely defined by the written music and (ii) the onset (or attack) of the
note could be smoothed so that we could determine the effect of sharp
onsets. To accomplish this, we copied the written form of each music clip
into the music notation software Sibelius 7 (https://www.avid.com/sibelius),
set the metronome mark of each to correspond exactly with the note rates
specified in our previous experiment, and exported the written music form
into MIDI files. MIDI files store musical playback information and contain
a list of note identities and their amplitude, duration, and start times. We
then were able to read these files into MATLAB using the matlab-midi tool-

box (https://github.com/kts/matlab-midi) to extract note identities and start
times and recreate the clips note by note. For the notes, we used a database
of individual piano notes at the University of Iowa Electronic Music Stu-
dios (theremin.music.uiowa.edu/MISpiano.html). Each note in the database
lasts as long as the piano will ring out, ∼5 to 30 s depending on note
frequency. We shorten the duration of each note by adding a cosine off-
ramp to match the duration specified in the MIDI file. SI Appendix, Fig. S2A
shows an example note for both sharp and smooth conditions shortened to
300-ms duration.

By designing the stimuli in this way, we are able to directly control the
strength of each attack. We developed these stimuli in two conditions: with
sharp attack and with smooth attack. In the sharp attack condition, we used
the note database as described above. In the case of the smooth attack,
before placing each note we multiply the note by a sigmoid function moving
from 0 to 1 in this first 150 ms. This effectively softened or smoothed the
attack of the note. After the full music piece is created, we normalize each
clip to have the same overall amplitude as its hard attack counterpart.
Task. Participants in Exp. 2 performed a modified version of the task from
the previous experiment (4). Each participant listened to 18 repetitions of
each clip, one clip from each of the six note rates in both sharp and smooth
attack conditions for a total of 6 note rates * 2 attacks * 18 repetitions =

216 trials. In 3 of the 18 repetitions, there was a short pitch distortion which
the participants were asked to detect to keep them focused on the stimuli.
The distortion was randomly placed using a uniform distribution from 1 s
after onset to 1 s before offset. After the trial, participants were asked to
identify whether (i) a pitch distortion shifted the music down, (ii) there was
no pitch distortion, or (iii) the pitch shifted the music up. Their accuracy
was not analyzed. Clips with pitch distortion were included in the analysis
shown here.

Analysis and Data.
MEG recording. Neuromagnetic signals were measured using a 157-channel
whole-head axial gradiometer system (Kanazawa Institute of Technology).
The MEG data were acquired with a sampling rate of 1,000 Hz and filtered
online with a low-pass filter of 200 Hz, with a notch filter at 60 Hz. The
data were high-pass-filtered after acquisition at 0.1 Hz using a sixth-order
Butterworth filter.
Channel selection. As we focused on auditory cortical responses, we used
a functional auditory localizer to select channels for each subject. Channels
were selected for further analysis on the basis of the magnitude of their
recorded M100 evoked response elicited by a 400-ms, 1,000-Hz sinusoidal
tone recorded in a pretest and averaged over 200 trials. In each hemisphere,
the 10 channels with largest M100 response were selected for analysis. This
method of channel selection allowed us to select channels recording sig-
nals generated in auditory cortex and surrounding areas while avoiding
“double-dipping” bias.
Phase analysis. After generating the model outputs (and MEG data) we run
both the output and the stimulus envelope through a Gaussian filter in the
frequency domain with peak at the relevant frequency and standard devia-
tion at half that frequency (e.g., for 8 nps condition µ= 8 Hz,σ= 4 Hz). We
then run the filtered signal through a Hilbert analysis to extract the instan-
taneous phase of both output and input. We calculate the phase difference
between the two signals at each time point and convert to complex format.
We then average this value across time, trials yielding a complex value for
each clip. We confirm that the absolute value (equivalent to the phase lock-
ing value) is significantly greater for each frequency at the preferred note
rate compared with others using permutation testing. Then, we average the
clip values across to yield an average value for each note rate.
CACoh. To analyze the phase meaningfully, we must first confirm that the
brain successfully synchronized to the music. To do so we used CACoh,
which measures the coherence between neural signal and stimulus response
normalized by the power of each signal. Eq. 4 shows how the value is
calculated:

CAf =

∣∣∣∑t

(
eiθt
√

Pa,t · Pc,t

)∣∣∣∑
t

(√
Pa,t · Pc,t

) , [4]

where θ, Pa, and Pc are the phase difference between neural signal and
stimulus envelope, the power of the acoustic signal, and the power of the
neural signal, respectively, at each time point and frequency. Phase angle
difference is calculated as the angle of the cross-spectral density between
the two signals.

We then compare the CACoh to a randomized CACoh in which
the neural signal and acoustic clip were not matched as a control.
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Statistics are analyzed comparing neural frequency in the correspond-
ing note rate (e.g., 5 Hz CACoh in 5-nps stimulus) to an aver-
age of the other note rates (e.g., 5-Hz CACoh at all other stimulus
rates).

Model comparison. In each experiment, the two models each generate a
single prediction for mean PCM across frequencies. To assess the accu-
racy of predictions relative the data we use two methods: (i) CIs and (ii)
Gaussian fitting. First, we use the Student’s t distribution to identify the
95% CIs of the PCM across our subjects. We then assess which of the
predictions exist inside these CIs for both left and right hemispheres,
establishing significance using a t test. Next, we assess the likelihood of
each model prediction given the PCM data for each subject. We first do
a maximum likelihood fit of the SD for each model with the mean set
to the prediction of each model. We then use AIC (42) to compare the
model fit performance for the evoked and oscillator prediction. This affords
the opportunity to compare the odds of each model using the evidence
ratio (43). Included with AIC we report the following statistics for model
comparison:

∆AICi = AICi −AICmin

Akaike Weight : wi =
exp(− 1

2 ∆AICi)∑M
m=1 exp(− 1

2 ∆AICi)

Evidence Ratio : ERi =
wbest

wi

Log10 Evidence Ratio : LERi = log10 ERi

. [5]

wi represents the weight that should be given to each model. The values
should sum to 1 across models and the difference in weights between mod-
els can be used as a metric of certainty of model selection. ERi represents the
strength of evidence for the best model over the current model and LERi is
the log10 of the ERi
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